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Abstract  The wearable electrocardiogram (W-ECG) signal inherently contains motion artifacts due to various body 
movements of the wearer. The W-ECG signals with four body movement activit ies (BMAs) ‒ left  arm up-down, right arm 
up-down, waist-twist and walking of five healthy subjects have been acquired using the wearable ECG recorder. The 
classification of these four BMAs has been performed using artificial neural networks (ANN). In the process, the motion 
artifacts contained in the captured W-ECG signals have been extracted using Wavelet transform and the features of the 
motion  artifacts have been extracted using Gabor transform. These feature vectors are fed to a multi-layered  perceptron 
neural network (MLPNN) consisting of ten neuron hidden layer. The overall classification accuracy achieved using ANN is 
close to 92%. 
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1. Introduction 

Card iovascular disorders are now becoming common in  
early age groups of people of 30-40 years. A routine 
long-term monitoring of ECG is recommended for the 
people above 30 years of age which may be considered at 
potential risk of developing cardiac disorder for earlier 
diagnosis and cure. However, such monitoring has not been 
given due importance in the practice. It is mostly avoided 
because of the time and resource constraints, unless the 
patient has already been developed with a serious heart 
disorder and reports for medical care. A practical solution to 
prevent this situation is to have very small-size, light-weight 
wearable ECG devices for card iac monitoring which can 
continuously record ECG signals for many days. It is likely 
that the infrequent episodes of heart disorders that do not 
after short-time clin ical check-ups can become visible in 
continuous, long-term ambulatory ECG signals. Therefore, 
wearable ECG (W-ECG) is a more preferred and convenient 
option to hospitalization  of the person at potential risk for the 
purpose of the long-term cardiac monitoring. Though 
W-ECG is very useful for ambulatory cardiac monitoring of 
a person wearing the W-ECG recorder, the body movement 
activities (BMA) like walking, sitting down/standing up, 
climbing stairs up/down, left/right arm updown etc. of the 
wearer may distort the collected ECG signal by inducing the  
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motion art ifacts. Thus, mot ion artifacts resulting due to 
various BMAs are inherently present in the W-ECG signals. 
The difficu lty in ambulatory  cardiac monitoring is that the 
motion artifacts have significant spectral overlap with the 
ECG signal itself and can mimic an event of cardiac disorder 
even for a normal heart. Hence, it is necessary to detect the 
motion art ifacts and more importantly to investigate about 
the BMAs due to which the mot ion artifacts are generated in 
the W-ECG signals.  

In[1] and[2] Pawar et al. have used principal component 
analysis (PCA) based approach for classifying various 
BMAs. Pawar et al. have used the Gabor filter and Hidden 
Markov models (HMM) for classifying the BMAs in[3]. 
Ming Li et al.[4] have proposed a physical activity (PA) 
recognition algorithm for a wearable wireless sensor network 
using both ambulatory electrocard iogram (ECG) and 
accelerometer signals using support vector machine (SVM) 
and Gaussian mixture models (GMM). In[5], authors have 
classified the BMAs using energy expenditure estimation 
(EER) and neural networks (NN). The classification was 
performed on  the basis of four features acquired from motion 
sensors i.e. count, mean signal magnitude area (SMA), 
standard deviation of SMA and median SMA. In[6]-[8] 
authors have used the accelerometer sensor data and artificial 
neural networks (ANN) for classification of daily physical 
activities. Time domain features like mean, variance, median, 
skew, kurtosis and frequency domain features like spectral 
centroid, spectral spread, estimat ion of frequency peak, 
estimation of power of the frequency peak, and signal power 
in different frequency bands of the wearable sensors have 
been used for activity classification. In addition to these, 
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in[9],[10],[20]-[23] authors have performed transition 
detection and recognition of various BMAs in ambulatory 
ECG signals.  

In this paper, the classification of various BMAs has been 
performed using the motion artifacts present in the acquired 
W-ECG signals. The motion artifacts have been separated 
using the 1-D discrete wavelet transform (DWT) and the 
Gabor filter has been used for extracting the features of 
motion artifacts corresponding to various BMAs. The ANN 
has been trained using these feature vectors and then tested 
for various subjects. The organization of the paper is as 
follows: section 2 introduces the W-ECG recorder and data 
acquisition process, section 3 gives brief description of the 
Wavelet transform and Gabor filter for feature extraction 
followed by ANN structure, experimental results and 
conclusion in section 4, 5 and 6, respectively. 

2. Wearable ECG Data Acquisition 
The ECG signals have been acquired using a 

self-developed wearable ECG recording system shown in fig. 
1. In addition to wireless ECG transmitter/receiver modules 
it consists of the accelerometer module to provide the motion 
data corresponding to various movements. The 
specifications of the W-ECG recorder used in this study are 
as follows: single-lead, bandwidth- 0.05 to 106 Hz, sampling 
frequency- 512 Hz, A/D conversion- 12 bits/sample. The 
lead-II configuration is chosen for all the recordings in this 
study for consistency. The W-ECG signals with four body 
movement activities viz. left arm up-down, right arm 
up-down, waist twist and walking for five healthy subjects 
aged between 25-37 years were recorded. Fig. 2 shows the 
ECG signal recorded while performing left arm up-down 

movement and the corresponding accelerometer signals in x, 
y and z-d irections. However, the accelerometer signals have 
not been used in this study for estimating/detecting the 
motion art ifact signals present in the WECG signals.  

 
(a) 

 
(b) 

 
(c) 

Figure 1.  Wearable ECG recorder: (a) Transmitter module; (b) Receiver 
module and accelerometer module in (c) 

 

Figure 2.  W-ECG signal with left arm up-down movement (top) and accelerometer signal in x, y and z-direction (lower three) 
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3. Motion Artifact Detection and 
Feature Extraction  

Various approaches have been used for deriving the 
inherent motion artifacts present in ambulatory/wearab le 
ECG signals. Thakor et al.[11] have proposed an adaptive 
filter based technique for removing mot ion artifacts from 
ECG signals. Pawar et al.[3] have modified the adaptive 
filter suggested in[11] to make the ECG signal motion 
artifact free. In [12] authors have proposed Wavelet 
transform based method for detecting the motion art ifact 
signal from ambulatory ECG. We have applied  1-D discrete 
wavelet transform (DWT) for deriv ing the motion art ifacts.  

3.1. D Discrete Wavelet Transform (DWT) 

The Discrete Wavelet Transform (DWT), which is based 

on sub-band coding, is a useful tool to implement Wavelet 
transform for dig ital signals. The 1-D DWT is computed by 
successive low-pass and high-pass filtering of the discrete 
1-D signal as shown in fig. 3. The input signal x[n]  is 
low-pass filtered using the block denoted by G0 as well as 
high-pass filtered using H0 using the cut-off frequency, fc = 
fs/2. Thus, the original input signal x[n] will be 
down-sampled by two. This is also called as decomposition 
of the signal. At each level, the high pass filter p roduces the 
detail information, d[n], while the low pass filter associated 
with scaling function produces coarse approximations, a[n] . 
The low-pass filter output, a[n], is further down-sampled by 
two through the low-pass and high-pass filter b locks. Thus, 
one can go on decomposing the input signal upto nth level. 
Figure 3 illustrates the 3rd level decomposition of the signal, 
x[n]. 

 
Figure 3.  A Three-level wavelet decomposition tree 

In this work we have decomposed the W-ECG signal upto fifth (5th) level using ‘bior 3.7’ wavelet. The cardiac port ion of 
the signal is reconstructed, by eliminating higher frequency wavelet coefficients, given by following equation: 

1 70%( 5 5 4) 40%( 3) 10%( 1 2)S A D D D D D= + + + + +                             (1) 

where, S1 is reconstructed W-ECG signal; A5 is approximate wavelet coefficient and D1 to D5  are detail wavelet coefficients.   
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(b) 
Figure 4.  (a) Reconstructed W-ECG signal (top) and extracted motion artifact signal (bottom); (b) autocorrelation plot 

 
Figure 5.  Gabor feature signals gl(n), for fist  four subbands, l = 1, 2, 3, 4 

Fig. 4(a) shows the W-ECG signal with waist-twist 
movement for subject 1 (top), reconstructed motion 
artifact-free ECG signal (middle) and the ext racted motion 
artifact signal (bottom). The reason for selecting bior3.7 
wavelet is that after several trials with other wavelets the 
bior3.7 gave best signal reconstruction in form of 
autocorrelation function. Fig. 4(b) shows the autocorrelation 
plot of reconstructed W-ECG signal (with mot ion art ifacts), 
with respect to the original W-ECG s ignal (motion 
artifact-free). It indicates that there is highest correlat ion near 
QRS- complex regions and the correlation is almost zero at P 
and T-wave parts; because the motion artifacts have spectral 
overlap with P and T-waves and hence these regions are 
heavily affected whereas QRS parts remain unaffected by 
motion art ifacts. 

3.2. Gabor Transform 

The features, particularly the frequency domain features, 
in the motion artifact have been used for the BMA 
classification purpose. Since we are planning to  use temporal 
relations among time localized frequency features for the 
modeling, the motion artifact signal s(n) is analyzed into 
various subbands using Gabor filters. “Gabor transform has 

very good time-frequency localization properties. The 
different, equally spaced frequency components of the 
motion art ifact signal s(n) are computed by”[3], 
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where f0 is the filter frequency and 𝛾𝛾 is the filter bandwidth 
and ‘*’ indicates the convolution operation. The filter 
bandwidth basically ind icates the sharpness of the filter: a 
larger value of 𝛾𝛾 produces a larger bandwidth and greater 
sharpness. The Gabor filter is a complex sinusoidal wave of 
particular frequency modulated by a Gaussian envelope 
which defines the time duration. The effect ive time duration 
is inversely proportional to the effective bandwidth via the 
uncertainty relation. It is observed that the energies of the 
motion artifact signal are contained in 1-10Hz band, the 
number of subbands selected here is l = 1, 2, …. 10. The 
energy estimate in each of these ten subbands of ˆ ( )sl n  is 
calculated by a moving average of the windowed function as 
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where W is the width of the moving window. An example of 
the energy features for the analyzed signals in first four 
subbands is depicted in fig. 5. It is noted that the signal 
power drops down with the increasing number of the 
subband.  

For activity classificat ion, the feature vector G(n) is 
formed by selecting L frequency components: 

1 2( ) [ ( ) ( ) .... ( )]T
LG n g n g n g n=               (4) 

This feature corresponds to the properties of the artifact 
signal at a given time instant. In order to consider the 
properties over the duration of N0 consecutive samples, we 
form the fo llowing feature matrix: 

0 0 0( , ) [ ( 1) ( 2) .... ( )]F n N G n N G n N G n= − +   − +       (5) 

This feature vector is used for the training and 
classification of BMA classes using an artificial neural 
network (ANN). The dimension of the feature matrix F(n,N0) 
is L×N0. For this work we have selected the size of the 
feature matrix as 1×1600 for one BMA.  

4. Neural Network Structure 
The artificial neural network (ANN) is an important tool 

for classifying the pattern of data, when a set of feature 
vector is given as input. ANN has been widely used for 
various purposes like QRS complex detection, feature 
extraction, beat and arrhythmia classification[13]-[19]. We 
intend to classify the BMAs of an individual person. Hence, 
four 1×400 Gabor energy feature vectors (of first four 
subbands) have been combined to form a 1×1600 feature 
vector corresponding to one BMA. The similar feature 
vectors corresponding to other three BMAs are combined to 
form a 4×1600 and the ANN was trained using these set of 
feature vectors. In the training phase, we assigned “1”, “2”, 
“3” and “4” as targets corresponding to the input feature 
vectors four BMAs― left arm up-down, right arm up-down, 
waist-twisting and walking― respectively. Hence, when the 
test input comprising of feature vectors corresponding to left 
arm up-down BMA is given to the ANN, it should produce 
“1” at the output. The multi-layered perceptron neural 
network (MLPNN) with ten layers of hidden neurons, as 
shown in fig. 6, has been used for training and testing 
purpose.  The simulations have been performed  using 
neural network toolbox (NNTool) o f MATLAB 7®.  

 
Figure 6.  The MLPNN structure used for BMA classification 

5. Experimental Results and Discussion 

We intended to classify the BMAs of an indiv idual person. 
Hence, a 4×1600 feature vector (which comprises the 
features of all four BMAs to that person) was fed to ANN for 
training. In the training phase, we assigned “1”, “2”, “3” and 
“4” as targets corresponding to four BMAs― left  arm 
up-down, right arm up-down, twisting waist and walking― 
respectively. Hence, when a feature vector corresponding to 
left arm up-down BMA is given for testing the ANN should 
produce “1” at output. Fig. 7 indicates the test outputs and 
errors corresponding to all four BMAs of subject 1. Fig. 8 
indicates the test outputs when test data input corresponding 
to two BMAs are simultaneously given to the ANN. Fig. 8(a) 
is the test result when left arm up-down and right arm 
up-down test data are fed to the ANN and fig. 8(b) shows 
similar results when other two BMA test data are fed. The 
higher error pathes in fig. 8(a) (bottom) indicates that there is 
a higher matching in left -arm up-down and right arm 
up-down BMAs i.e. the ANN could make a slightly lesser 
distinction between these two BMAs. Whereas, the smaller 
error values in fig. 8(b) indicates that the ANN clearly 
distinguishes between the waist-twist  and walking BMA 
classes. 

The classification accuracy performance for rest of the 
subjects is described in Table I, which indicates the overall 
classification accuracy is close to 92%. In o rder to test the 
ANN performance, several combinations of feature vectors 
comprising of two, three and four BMA classes have been 
applied. The classification accuracy has been derived by 
giving a particualr BMA test data as input to the ANN and 
observing that how much closely the outputs match the 
corresponding target values. The simulations were carried 
out for five d ifferent subjects.  

Table 1.  BMA Classification Performance 

Subject Type of BMA Classification 
Accuracy (%) 

Subject 1 

LA up-down 98.3 
RA up-down 97.0 
Waist twist 81.6 
Walking 88.2 

Subject 2 

LA up-down 81.5 
RA up-down 91.7 
Waist twist 85.4 
Walking 96.3 

Subject 3 

LA up-down 92.5 
RA up-down 86.3 
Waist twist 94.9 
Walking 98.3 

Subject 4 

LA up-down 93.2 
RA up-down 97.9 
Waist twist 97.7 
Walking 93.2 

Subject 5 

LA up-down 90.6 
RA up-down 88.9 
Waist twist 91.4 
Walking 92.7 

Average 91.88% 
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(c) 

 
(d) 

Figure 7.  (a) Left arm up-down BMA test result output (top) and error (bottom); similar results for right arm up-down BMA waist rwist BMA and walking 
BMA in (b), (c) and (d), respectively for subject 1 
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(a) 

 
(b) 

Figure 8.  (a) ANN test output with left  arm up-down and right arm up-down test data as input; (b) similar results for waist twist and walking test data as 
input 
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(a) 

 

(b) 

 

(c) 
Figure 9.  (a) Training, validation and test performance; (b) training states and (c) regression plots of the neural network of fig. 6 used for simulation 
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6. Conclusions 
The wearable ECG signal gets contaminated with motion 

artifacts due to various boy movement activites (BMAs). A 
classification among four such BMAs present in W-ECG for 
five subjects has been perofrmed by combining Wavelet 
transform, Gabor transform  and ANN. The classification 
has achieved an overall accuarcy close to 92%. The model 
presented over here  can be used for classifying more BMAs. 
Also, here only the Gabor energy signals have been used as 
feature vectors for train ing the ANN; more features like 
accelerometer data, heart rate, R-R intervals etc. can be used 
for more classificat ion accuracy. 
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