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Abstract  Robustness is the ability  of a control system to maintain  its perfo rmance and stability characteristics in the 
presence of all uncertainties. Attitude control of rocket is a benchmark problem in aerospace and missile guidance control 
because such a system is subjected to number of uncertainties like flight path change, mass variation, thrust variat ion, drag 
and so on. In this paper the robust control techniques for attitude control of rocket has been examined. The control problem 
consists of actuating of fin deflections by the autopilot which modifies angle of attack and sideslip angle while stabilizing the 
rocket rotational mot ion. In  order to separate the uncertainties from nominal model, the uncertainties are expressed as 
diagonal structure in form of ULFT (Upper Linear Fractional Transforms) which avoids unnecessary conservation. Then 2 
DOF H-∞ loop shaping technique is carried out for pitch rate control problem. This has been compared with H-∞ controller 
design technique. It has been observed that 2 DOF H-∞ loop shaping technique can provides good robust stability and 
performance. Extensive simulat ions have been carried out to evaluate system performance. The comparat ive results are 
included in this paper. 
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1. Introduction 
Rockets differ from aircraft and spacecraft due to the 

rapidly time-varying parameters of their equations of motion, 
which often requires special guidance and control design 
strategies and short duration of flights. Furthermore, the fast 
response times required in both translation and rotation of 
rockets necessitate a much larger control loop bandwidth 
than that of either an aircraft or a spacecraft. 
With the advancement in control theory, it is now possible to 
design control system using MIMO frame work. Also are 
new mathemat ical approaches that take into account for the 
modeling uncertainties, disturbance & measurement noise 
and render a robust controller. New methods have appeared 
in literature for attitude control of rocket. Forexample 
optimal control adaptive control , nuero- fuzzy control, 
robust control lyapunov based control design and genetic 
algorithm development. Adaptive technique assures high 
computation speed. 

The rocket should be able to perform some maneuvers. 
This may include larger angle of attack, rap id rotational rate 
change, larger angular accelerat ion and wide variat ion in 
pressure and speed. This makes control problem challenging 
that  requ ires guaranteeing  robust  stab ility  and  robust  
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performance in p resence of large parameter variat ion andun
modelled dynamics with nonlinearities.  

In 1981 Zames[1] brought H-∞ norm as a performance 
requirement. H-∞ control techniques developed by Doyle et 
al[2] ,Glover et al[3] not only offers the tradeoff between 
performance and control effort but also provides thecapabili
ties of accommodating the d isturbance and parameter variat
ion. Reichert[4] was the first to apply H-∞ control and to 
show how it advantages over classical control in autopilot 
design. Similar autopilot designs were considered byReiche
rt Wise and Jackson. The autopilot robustness uncertain 
aerodynamic parameters are also examined by Wise.  

From[11] we see that the H-∞ loop shaping controller was 
proposed by McFarlane and Glover in 1990. The systematic 
procedure was developed by Hyde in 1993. After that 
Limbeer,Kasenally and Perkinns extended it to 2 DOF loop 
shaping controller development and formulate standard H∞ 
optimization problem which allows to use model matching 
function in robust stabilization.  

In this paper 2 DOF feedback H-∞ loop shaping techniqu
es is applied for pitch rate control of rocket. Applicat ion to 
rocket model shows that closed loop system for pitch rate 
control is robust under structural natural frequency variation. 
In this paper aerodynamic data which is the function of Mach 
number 2.78 used for design purpose and the parameters are 
related to that described  in [8]. The controller shouldguaran
tee stability for the model in addition to the performance 
specification that will be demanded. 

Remaining part of the paper is organized as follows. Secti
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on 2 describes about system modeling and equations of mot
ion, linearizat ion of model, uncertainty modeling. Sect ion 3 
includes 2 DOF loop shaping design details. Section 4 
contains results, discussion & limitations of two approaches. 
Section 5 describes conclusion.  

2. System Modeling 
The model o f rocket is first derived  using 6 DOF custom 

variable mass blocks. 
The six degrees of freedom consist of three translations, 

and three rotations, along and about the missile ( Xb ,Yb, Zb ) 
axes. These motions are illustrated in Figure (1) the 
translations being (u,v,w) and rotation (P,Q,R) . Following 
Figure 1 shows complete 6 DOF representation of rocket 

 
Figure 1.  6 DOF representation of rocket 

In compact fo rm, the translation and rotation of a rigid  
body may be expressed mathematically by the following 
equations. 

Translation: ∑ F=ma 
Rotation: ∑𝜏𝜏 = 𝑑𝑑

𝑑𝑑𝑑𝑑
(𝑟𝑟 ×𝑚𝑚𝑚𝑚)  

2.1. Assumptions for Modeling of Rocket & Rocket 
Model Analysis 

No model can be truly depicting its real system. So the 
model is only approximate representation of the behavior of 
the real system. The model for the rocket is derived based on 
following assumptions:[6],[9] 

1. The rocket equations of motion are written in the 
body-axes coordinate frame. 

2. A spherical Earth rotating at a constant angular velocity 
is assumed. 

3. The vehicle aerodynamics are nonlinear. 
4. The winds are defined with respect to the Earth. 
5. An inverse-square gravitational law is used for the 

spherical Earth model. 
6. The gradients of the low-frequency winds are s mall 

enough to be neglected. 

7. A constant mass will be assumed, that is dm/dt =0 
8. The aerodynamic forces and moments acting on the 

vehicle is assumed to be invariant with the position of rocket 
relative to the free stream velocity  vector. Consequently the 
assumption greatly simplifies the equation of motion by 
eliminating the aerodynamic cross coupling terms between 
roll mot ion and pitch, yaw mot ion.  In addition a different 
set of aerodynamic characteristics for pitch and yaw is not 
required. 

 
Figure 2.  Pitch plane force diagram 

In controller design only pitch perturbation motion is 
considered. In this case rocket attitude is characterized by 
pitch angle θ and flight path angle Θ or equivalently angle of 
attack α and θ. Due to rocket symmetry the yaw stabilization 
system is analogous to pitch stabilizat ion system[7] . Hence 
equation of motion in p itch plane is considered. The followi
ng Figure 2 shows complete free body diagram for pitch 
plane analysis with mathematical equations.[8-10]. 

In following Figure 2 reference frame notations used for 
writ ing equations of motion as the x* -axis of the vehicle-ca
rried vertical reference frame is d irected to the North, the y* 
-axis to the East. The x1-axis of the body-fixed reference 
frame is d irected towards to the nose of the rocket, the y1- 
axis points to the top wing. The x-axis of the flight-path 
reference frame is aligned with the velocity vector V of the 
rocket and the y-axis lies in the plane x1 y1. 

1. Equations describing the motion of the mass centre 
𝑚𝑚�̇�𝑉 = 𝑃𝑃 𝑐𝑐𝑐𝑐𝑐𝑐  𝛼𝛼 − 𝑄𝑄 − 𝐺𝐺𝑐𝑐𝐺𝐺𝐺𝐺𝐺𝐺 + 𝐹𝐹𝑥𝑥 (𝑑𝑑)     (1) 
𝑚𝑚𝑉𝑉�̇�𝐺 = 𝑃𝑃 sin𝛼𝛼 + 𝑌𝑌– 𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐  𝐺𝐺 +𝐹𝐹𝑦𝑦 (𝑑𝑑)     (2) 

where 
P = engine thrust. 
Q = aerodynamic drag. 
 𝐹𝐹𝑥𝑥 (𝑑𝑑) ,𝐹𝐹𝑦𝑦 (𝑑𝑑)  = generalized disturbance forces in x, y 

direction. 
m = mass of rocket  
V = velocity of rocket  
2. Equations, describing the rotational motion about the 

mass centre 
         𝐼𝐼𝑧𝑧𝜔𝜔𝑧𝑧̇ = 𝑀𝑀𝑧𝑧

𝑓𝑓 + 𝑀𝑀𝑧𝑧
𝑑𝑑 + 𝑀𝑀𝑧𝑧

𝑐𝑐 + 𝑀𝑀𝑧𝑧 (𝑑𝑑) 
�̇�𝜃 = 𝜔𝜔𝑧𝑧                   (3) 
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wher 𝑀𝑀𝑧𝑧
𝑓𝑓  = the rocket moments  due to the angle of  

attack α 
𝑀𝑀𝑧𝑧

𝑑𝑑 = the aerodynamic moments due to pitch rate ωz 
𝑀𝑀𝑧𝑧

𝑐𝑐= the control moments due to fins deflection δz 

 𝑀𝑀𝑧𝑧 (𝑑𝑑)  = generalized d isturbance moments about 
corresponding axes. 
�̇�𝜃 = p itch rate change 
3 Equation giving the relationships between the angles α, 

θ, Θ  

𝛼𝛼 = 𝐺𝐺 − 𝜃𝜃                   (4) 

4 Equation giving the normal acceleration  
𝐺𝐺𝑦𝑦 = −𝑃𝑃 cos 𝛼𝛼− 𝑄𝑄 

𝐺𝐺
sin 𝛼𝛼 + 𝑃𝑃 sin 𝛼𝛼+𝑌𝑌

𝐺𝐺
cos 𝛼𝛼       (5) 

2.2. Linearization of Equations  
In order to obtained a linear controller equations (1) –  (5) 

are linearised about trim operating points 𝐺𝐺 = 𝐺𝐺0,  𝜃𝜃 =
𝜃𝜃0, 𝛼𝛼 = 𝛼𝛼0,𝜔𝜔𝑧𝑧 = 𝜔𝜔0

𝑧𝑧 ,𝛿𝛿𝑧𝑧 = 𝛿𝛿0
𝑧𝑧  under the assumptions that 

the variations ∆𝐺𝐺 = 𝐺𝐺 − 𝐺𝐺0, ∆𝜃𝜃 = 𝜃𝜃 − 𝜃𝜃0,  ∆𝛼𝛼 = 𝛼𝛼 −
𝛼𝛼0, ∆𝜔𝜔𝑧𝑧 = 𝜔𝜔𝑧𝑧 −𝜔𝜔0

𝑧𝑧 , ∆𝛿𝛿𝑧𝑧 = 𝛿𝛿𝑧𝑧 − 𝛿𝛿0
𝑧𝑧  are sufficiently small. 

In such a case it is fu lfilled that sinΔα ≈ Δα, cos α ≈ 1. 
As a result, the linearised equations of the perturbed 

motion of the rocket take the form  
�̇�𝐺 = 𝑃𝑃+𝑌𝑌𝛼𝛼

𝑚𝑚𝑉𝑉
𝛼𝛼 + 𝑌𝑌𝛿𝛿𝑧𝑧

𝑚𝑚𝑉𝑉
𝛿𝛿𝑧𝑧 +

𝐹𝐹𝑦𝑦 (𝑇𝑇)

𝑚𝑚𝑉𝑉
 

�̇�𝜔 =
𝑀𝑀𝛼𝛼

𝑧𝑧

𝐽𝐽𝑧𝑧
𝛼𝛼 +

𝑀𝑀𝜔𝜔𝑧𝑧 𝑧𝑧

𝐽𝐽𝑧𝑧
𝜔𝜔𝑧𝑧 +

𝑀𝑀𝛿𝛿𝑧𝑧 𝑧𝑧

𝐽𝐽𝑧𝑧
𝛿𝛿𝑧𝑧 +

𝑀𝑀𝑧𝑧 (𝑑𝑑)
𝐽𝐽𝑧𝑧

 

�̇�𝜃 = 𝜔𝜔𝑧𝑧  

 𝐺𝐺𝑦𝑦 =
𝑄𝑄 + 𝑌𝑌𝛼𝛼

𝐺𝐺
𝛼𝛼 +

𝑌𝑌𝛿𝛿𝑧𝑧

𝐺𝐺
𝛿𝛿𝑧𝑧 

𝛼𝛼 = 𝜃𝜃 − 𝐺𝐺                              (6) 
 

where 
𝑌𝑌𝛼𝛼 = 𝑐𝑐𝑦𝑦 𝛼𝛼𝑞𝑞𝑞𝑞 ;  𝑌𝑌𝛿𝛿𝑧𝑧 = 𝑐𝑐𝛿𝛿𝑧𝑧 𝑦𝑦 𝑞𝑞𝑞𝑞 ; 𝑀𝑀𝑧𝑧

𝛼𝛼 = 𝑚𝑚𝑧𝑧
𝛼𝛼𝑞𝑞𝑞𝑞𝑞𝑞  ;  

𝑀𝑀𝜔𝜔𝑧𝑧 𝑧𝑧 =
𝑚𝑚𝜔𝜔𝑧𝑧 𝑧𝑧𝑞𝑞𝑞𝑞𝑞𝑞2

𝑉𝑉
 ;   𝑀𝑀𝛿𝛿𝑧𝑧 𝑧𝑧 = 𝑚𝑚𝛿𝛿𝑧𝑧 𝑧𝑧𝛿𝛿𝑧𝑧𝑞𝑞𝑞𝑞𝑞𝑞 

equations (6) can be represented as 
 �̇�𝐺 = 𝑎𝑎𝜃𝜃𝜃𝜃 𝛼𝛼 + 𝑎𝑎𝜃𝜃 𝛿𝛿𝑧𝑧 𝛿𝛿𝑧𝑧 + 𝐹𝐹𝑦𝑦 (𝑑𝑑) 
�̈�𝜃 = 𝑎𝑎𝜃𝜃 �̇�𝜃 �̇�𝜃+ 𝑎𝑎𝜃𝜃𝜃𝜃 𝛼𝛼 + 𝑎𝑎𝜃𝜃𝛿𝛿𝑧𝑧 𝛿𝛿𝑧𝑧 + 𝑀𝑀𝑧𝑧 (𝑑𝑑)  
𝛼𝛼 = 𝜃𝜃 − 𝐺𝐺 
𝐺𝐺𝑦𝑦 = 𝑎𝑎𝐺𝐺𝑦𝑦𝛼𝛼𝛼𝛼 + 𝑎𝑎𝐺𝐺𝑦𝑦𝛿𝛿𝑧𝑧 𝛿𝛿𝑧𝑧                       (7) 

where  

𝑎𝑎𝐺𝐺𝐺𝐺 =
𝑃𝑃 +𝑌𝑌𝛼𝛼

𝑚𝑚𝑉𝑉
 ; 𝑎𝑎𝜃𝜃 𝛿𝛿𝑧𝑧 =

𝑌𝑌𝛿𝛿𝑧𝑧

𝑚𝑚𝑉𝑉
 ; 𝑎𝑎𝜃𝜃�̇�𝜃 =

𝑀𝑀𝜔𝜔𝑧𝑧 𝑧𝑧

𝐽𝐽𝑧𝑧
 ; 

𝑎𝑎𝜃𝜃𝜃𝜃 =
𝑀𝑀𝛼𝛼

𝑧𝑧

𝐽𝐽𝑧𝑧
 ;  𝑎𝑎𝜃𝜃𝛿𝛿𝑧𝑧 =

𝑀𝑀𝛿𝛿𝑧𝑧 𝑧𝑧

𝐽𝐽𝑧𝑧
 ;  𝑎𝑎𝐺𝐺𝑦𝑦𝛼𝛼 =  

𝑄𝑄 + 𝑌𝑌𝛼𝛼

𝐺𝐺
 ; 

  𝑎𝑎𝐺𝐺𝑦𝑦𝛿𝛿𝑧𝑧 =
𝑌𝑌𝛿𝛿𝑧𝑧

𝐺𝐺
 

In (7) we used the notation 
𝐹𝐹𝑦𝑦 (𝑑𝑑) =

𝐹𝐹𝑦𝑦 (𝑑𝑑)

𝑚𝑚𝑉𝑉
 and 𝑀𝑀𝑧𝑧 (𝑑𝑑) = 𝑀𝑀𝑧𝑧 (𝑑𝑑)

𝐽𝐽
 

Equations (7) are extended by the equation describing the 
rotation of the fins  

𝛿𝛿�̈�𝑧 + 2𝜉𝜉𝛿𝛿𝑧𝑧 𝜔𝜔𝛿𝛿𝑧𝑧 𝛿𝛿�̇�𝑧 + 𝜔𝜔𝛿𝛿𝑧𝑧
2𝛿𝛿𝑧𝑧 = 𝜔𝜔𝛿𝛿𝑧𝑧

2𝛿𝛿𝑧𝑧
0      (8) 

Where 𝛿𝛿𝑧𝑧
0  is the desired angle of fins deflection (the 

servo actuator reference); 𝜔𝜔𝛿𝛿𝑧𝑧   is the natural frequency and 
𝜉𝜉𝛿𝛿𝑧𝑧  is the damping coefficient of servo actuator. The set of 
equations (7) and (8) describes the perturbed rocket longitu
dinal motion. The coefficients in the mot ion equations are to 
be determined for the nominal (unperturbed) rocket mot ion. 
Nominal values of the parameters are assumed in the absence 
of disturbance forces and moments. 

The unperturbed longitudinal motion is described by the 
equations . 
     

𝑚𝑚𝑉𝑉∗̇ = 𝑃𝑃 cos 𝛼𝛼∗ − 𝑄𝑄∗ − 𝑚𝑚𝑔𝑔0 sin𝐺𝐺∗ 
𝑚𝑚𝑉𝑉∗�̇�𝐺 = 𝑃𝑃 sin𝛼𝛼∗ + 𝑌𝑌∗ − 𝑚𝑚𝑔𝑔0 cos𝐺𝐺∗ 
�̇�𝐻 = 𝑉𝑉∗ sin𝐺𝐺∗ 
�̇�𝑚 = −𝜇𝜇 
where 
𝛼𝛼∗ = 𝜃𝜃∗ − 𝐺𝐺∗ 

𝛿𝛿𝑧𝑧
∗ = −

𝑚𝑚𝑧𝑧
𝛼𝛼

𝑚𝑚𝛿𝛿𝑧𝑧 𝑧𝑧
𝛼𝛼∗ 

𝑄𝑄∗ = 𝑐𝑐𝑥𝑥𝑞𝑞𝑞𝑞 + 𝑐𝑐𝛿𝛿𝑧𝑧 𝑥𝑥|𝛿𝛿𝑧𝑧
∗|𝑞𝑞𝑞𝑞 

𝑌𝑌∗ = 𝑐𝑐𝛼𝛼𝑦𝑦𝛼𝛼∗𝑞𝑞𝑞𝑞 + 𝑐𝑐𝑦𝑦 𝛿𝛿𝑧𝑧 𝛿𝛿𝑧𝑧
∗𝑞𝑞𝑞𝑞 

𝑞𝑞 =
𝜌𝜌𝑚𝑚∗2

2
 ; 𝜌𝜌 = 𝜌𝜌(𝐻𝐻)  

𝑐𝑐𝑥𝑥 = 𝑐𝑐𝑥𝑥 (𝑀𝑀) ;  𝑐𝑐𝛼𝛼𝑦𝑦 = 𝑐𝑐𝛼𝛼𝑦𝑦 (𝑀𝑀) ;  𝑐𝑐𝑦𝑦 𝛿𝛿𝑧𝑧 = 𝑐𝑐𝑦𝑦 𝛿𝛿𝑧𝑧 (𝑀𝑀) 

𝑀𝑀 =
𝑉𝑉∗

𝑎𝑎∗
 ;  𝑎𝑎∗ = 𝑎𝑎∗(𝐻𝐻) 

𝑚𝑚𝑧𝑧
𝛼𝛼 =

�𝑐𝑐𝑥𝑥 + 𝑐𝑐𝛼𝛼𝑦𝑦 �(𝑥𝑥𝐺𝐺 − 𝑥𝑥𝐶𝐶)
𝑞𝑞

 ; 𝑚𝑚𝛿𝛿𝑧𝑧 𝑧𝑧 =
𝑐𝑐𝛿𝛿𝑧𝑧 𝑦𝑦 (𝑥𝑥𝐺𝐺 − 𝑥𝑥𝑅𝑅)

𝑞𝑞
 

𝜃𝜃∗ = 𝜃𝜃∗(𝑑𝑑)                                         (9) 
In these equations, 𝜃𝜃∗ (𝑑𝑑) is the desired time program for 

changing the pitch angle of the vehicle.  

2.3. Nominal Model and Stability of Model 

A nominal system model has been obtained using the 
parameters given in the Table 1. The model is described in 
form of  

𝑥𝑥̇ = 𝐴𝐴𝑥𝑥(𝑑𝑑) + 𝐵𝐵𝐵𝐵(𝑑𝑑) 
𝑦𝑦 = 𝐶𝐶𝑥𝑥(𝑑𝑑) + 𝐷𝐷𝐵𝐵(𝑑𝑑) 

Here 𝑥𝑥(𝑑𝑑) ∈ 𝑅𝑅𝑚𝑚×2  is the state vector 𝐵𝐵(𝑑𝑑) ∈ 𝑅𝑅𝑚𝑚×1  is the 
input vector 𝑦𝑦(𝑑𝑑) ∈ 𝑅𝑅𝑝𝑝×1  is the output vector. 

𝐴𝐴 = 1 × 104 �

−0.0001 0.0001 0 0
−0.1217 −0.0003 0 0.0286

0 0 0.0212 −2.2500
0 0 0.0001 0

� 

𝐵𝐵 = �

0
0

22900
0

� 

𝐶𝐶 = [59.1024 0 0 28.7188] 
𝐷𝐷 = [0] 

For matrix A , the Eigen values −2 ± 𝑗𝑗 34.87 
corresponds to stable mode and this pair exp lains system 
slow dynamics behavior. The pair  −106 ± 𝑗𝑗 106.13 gives 
the unstable mode and explains about system fast dynamics.  

Controllab ility index is 4. And hence system is fu lly cont
rollable. The observability index is 4 and hence system is 
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fully observable. It is require to design 𝐵𝐵(𝑑𝑑) given by  
𝐵𝐵(𝑑𝑑) = −𝐾𝐾𝑥𝑥(𝑑𝑑) 

This will g ive a robust performance. 

Table 1.  System parameters 

Symbol Rocket Parameter Value 
L Length of rocket 4.2   m 
d Rocket diameter 0.168  m 
m Initial rocket mass 96  kg 
Sa Engine nozzle output section area 0.0204 m2 

P0 engine thrust at the sea level 740g  N 
μ propellant consumption per second 0.7    kg/s 

Jx 
initial rocket moment of inertia 
about x axis 

14.21 × 10 2       
kg M2 

Jy 
initial rocket moment of inertia 
about y axis 7.64   kg M2 

Jz 
initial rocket moment of inertia 
about z axis 7.64  kg M2 

XG initial rocket mass centre coordinate 1.7   m 

XC 
initial rocket pressure centre 
coordinate 1.0   m 

xR fins rotation axis coordinate 0.5   m 

ωn 
natural frequency of the 
servo-actuator 236   Hz 

ξ servo-actuator damping 0.707 

t f 
duration of the active stage of the 
flight 25  s 

S Reference area 0.094 m2 

2.4. Uncertainty Modeling  

Separation of different uncertain parameters in d ifferent 
parts of model and combin ing into one block and forming 
ULFT is basic principle of uncertainty modeling[12]. For 
above rocket model main variat ion of coefficients of perturb
ed motion happens in aerodynamic coefficients 
𝑐𝑐𝑥𝑥 , 𝑐𝑐𝛼𝛼𝑦𝑦 ,𝑚𝑚𝛼𝛼

𝑧𝑧 ,𝑚𝑚𝑧𝑧
𝜔𝜔𝑧𝑧  and these are the function of mach 

number[7]. For above model 7 coefficients are considered as 
uncertainty given in equation (7). The uncertainty block △ of 
all coefficients of variation is diagonal matrix of size 7×7. 
Complete ULFT model is shown in Figure 3 

△= 𝑑𝑑𝐺𝐺𝑎𝑎𝑔𝑔(𝛿𝛿𝐺𝐺) 

G

∆

u
•

θ
yn

 
Figure 3.  ULFT representation of model 

3. H-∞ Loop Shaping Design 
The loop-shaping design procedure described is based on 

H ∞ robust stabilization combined with classical loop shapi
ng, as proposed by McFarlane and Glover 1992[5].  

The open-loop plant is augmented by pre and post-compe
nsators to give a desired shape to the singular values of the 
open-loop frequency response. Then the resulting shaped 

plant is robustly stabilized with respect to co prime factor 
uncertainty using H-∞ optimization. The H-∞ can make a 
balance between robustness, performance and stability of 
closed loop system . 

3.1. Robust Stabilization Against Normalized Coprime 
Factor Perturbations[11] 

To the normal system G constitutes left coprime 
factorization 𝐺𝐺 = 𝑀𝑀−1𝑁𝑁 . Considering its uncertainty a 
perturbed model as shown in Figure 4 can be described by 

u y

+ 

+

+

− 

N∆ M∆

N 1−M

K

φ

 
Figure 4.  Normalized coprime factor uncertainty description 

𝐺𝐺 = (𝑀𝑀 +∆𝑀𝑀)−1(𝑁𝑁 + ∆𝑁𝑁)          (10) 
where ∆𝑀𝑀  𝑎𝑎𝐺𝐺𝑑𝑑 ∆𝑁𝑁  are unknown but stable transfer 
functions that represent uncertainty in nominal plant model.  

The design objective of robust control is to make normal 
model G and family of perturbed plant stable. The family of 
perturbed  plant is defined by 

𝐺𝐺 = {(𝑀𝑀 + ∆𝑀𝑀)−1(𝑁𝑁 + ∆𝑁𝑁):‖∆𝑀𝑀 , ∆𝑁𝑁‖∞ < 𝜀𝜀}  (11) 
where 𝜀𝜀 is stability marg in. Using small gain theorem the 
feedback system is robustly stable if (G,K)  is internally 
stable and  

�𝐾𝐾(𝐼𝐼 − 𝐺𝐺𝐾𝐾)−1𝑀𝑀−1

(𝐼𝐼 − 𝐺𝐺𝐾𝐾)−1𝑀𝑀−1 �
∞
≤ 1

𝜀𝜀
          (12) 

In order to maximize the stability marg in it needed to 
minimize the  𝛾𝛾 = 1

𝜀𝜀
 

𝛾𝛾 = ��𝐾𝐾
𝐼𝐼
� (𝐼𝐼 − 𝐺𝐺𝐾𝐾)−1𝑀𝑀−1�

∞
       (13) 

Here γ is the H-∞ norm from ϕ to �
𝐵𝐵
𝑦𝑦� and (𝐼𝐼 − 𝐺𝐺𝐾𝐾)−1  

is the sensitivity function for this positive feedback 
arrangement. The lowest achievable value of γ and 
corresponding stability margin 𝜀𝜀 are given as  

𝛾𝛾𝑚𝑚𝐺𝐺𝐺𝐺 = 𝜀𝜀𝑚𝑚𝑎𝑎𝑥𝑥 −1 = �1 − ‖[𝑁𝑁   𝑀𝑀]‖𝐻𝐻
2�
−0.5

 
 = (1 + 𝜌𝜌(𝑋𝑋  𝑍𝑍))0.5                      (14) 

where ‖. ‖𝐻𝐻  denotes the Hankel norm of system 𝜌𝜌 denotes 
the spectral radius, and for min imal state space realization of 
G , Z is unique positive defin ite solution to algebraic Riccati 
equation  
 (𝐴𝐴 − 𝐵𝐵𝑞𝑞−1𝐷𝐷𝑇𝑇𝐶𝐶)𝑍𝑍+ 𝑍𝑍(𝐴𝐴 − 𝐵𝐵𝑞𝑞−1𝐷𝐷𝑇𝑇𝐶𝐶)𝑇𝑇 −   𝑍𝑍𝐶𝐶 𝑇𝑇𝑅𝑅−1𝐶𝐶𝑍𝑍+

       𝐵𝐵𝐵𝐵𝑇𝑇𝑞𝑞−1 = 0                (15) 
where  
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𝑅𝑅 = 𝐼𝐼 + 𝐷𝐷𝐷𝐷𝑇𝑇   ,𝑞𝑞 = 𝐼𝐼 + 𝐷𝐷𝑇𝑇𝐷𝐷 
X is unique positive definite solution to algebraic Riccati 

equation  
(𝐴𝐴 − 𝐵𝐵𝑞𝑞−1𝐷𝐷𝑇𝑇𝐶𝐶)𝑇𝑇𝑋𝑋+ 𝑋𝑋(𝐴𝐴 − 𝐵𝐵𝑞𝑞−1𝐷𝐷𝑇𝑇𝐶𝐶)− 𝑋𝑋𝐵𝐵𝑇𝑇𝑞𝑞−1𝐵𝐵𝑋𝑋 +

        𝐶𝐶𝑇𝑇𝑅𝑅−1𝐶𝐶 = 0             (16) 
A controller which guarantees that  

�𝐾𝐾(𝐼𝐼 − 𝐺𝐺𝐾𝐾)−1𝑀𝑀−1

(𝐼𝐼 − 𝐺𝐺𝐾𝐾)−1𝑀𝑀−1 �
∞
≤ 𝛾𝛾 

for specified 𝛾𝛾 > 𝛾𝛾𝑚𝑚𝐺𝐺 𝐺𝐺  is given by 

𝐾𝐾 = �𝐴𝐴+ 𝐵𝐵𝐹𝐹 + 𝛾𝛾2(𝑞𝑞𝑇𝑇)−1𝑍𝑍𝐶𝐶𝑇𝑇(𝐶𝐶 +𝐷𝐷𝐹𝐹) 𝛾𝛾2(𝑞𝑞𝑇𝑇)−1𝑍𝑍𝐶𝐶𝑇𝑇

𝐵𝐵𝑇𝑇𝑋𝑋 −𝐷𝐷𝑇𝑇 � (17) 

where 
𝐹𝐹 = −𝑞𝑞−1(𝐷𝐷𝑇𝑇𝐶𝐶 + 𝐵𝐵𝑇𝑇𝑋𝑋)             (18) 
𝑞𝑞 = (1 − 𝛾𝛾2)𝐼𝐼 + 𝑋𝑋                  (19) 

3.2. Two Degree of Freedom Controllers[10],[11] 

In Doyle et al. and Limebeer et al.[5] a two degrees-of-fr
eedom extension of the Glover-McFarlane procedure was 
proposed to enhance the model matching properties of the 
closed-loop . With  this the feedback part of the controller is 
designed to meet robust stability and disturbance rejection 
requirements in a manner similar to the one degree-of-freed
om loop-shaping design procedure except that only a pre-co
mpensator weight W is used. It is assumed that the measured 
outputs and the outputs to be controlled are the same althou
gh this assumption can be removed as shown later. An 
additional pre filter part  of the controller is then introduced to 
force the response of the closed-loop system to follow that of 
a specified model M called as reference model.  

3.2.1. Scheme of 2 DOF Control  

2 DOF H∞ loop shaping control is a robust control techni
que where the time domain specificat ion can be incorporated 
in the design. The controllers designed by this approach are 

feed-forward pre-filter and feed- back controllers. The feed - 
forward pre-filter controller (K1)is adopted to control the 
time domain response of the closed loop system, and the 
feed-back controller is designed for achieving the desired 
robust stability and the disturbance rejection requirement 
[10]. In this techn ique, on ly a p re compensator weight func
tion (W1) and reference model (Mref) is needed to be 
specified. The shaped plant (Gs) is formulated as the 
normalized  co prime factor which separates the nominal 
plant into normalized nominator & denominator (Ns,Ms) 
respectively. 

The design problem is to find out stabilizing controller  
𝐾𝐾 = [ 𝐾𝐾1 𝐾𝐾2] for shaped plant  𝐺𝐺𝑐𝑐 = 𝐺𝐺𝑊𝑊1  with normalized 
coprime factorization 𝐺𝐺𝑐𝑐 = 𝑀𝑀−1

𝑐𝑐𝑁𝑁𝑐𝑐  which min imizes the 
H∞ norm of the transfer function between the signals  
[𝑟𝑟𝑇𝑇   𝜙𝜙𝑇𝑇 ]𝑇𝑇 and [𝐵𝐵𝑐𝑐𝑇𝑇   𝑦𝑦𝑇𝑇 𝑒𝑒𝑇𝑇 ]𝑇𝑇 as defined in Figure 5. Here 𝜌𝜌 
is a scalar value specified by the designer to assign the 
degree of significance of the time domain specification. 

The control signal 𝐵𝐵𝑐𝑐 to the shaped plant is given by  

𝐵𝐵𝑐𝑐 = [𝐾𝐾1 𝐾𝐾2] �𝛽𝛽𝑦𝑦�                 (20) 

where K1 is a pre filter and K2 is a feedback controller , β is 
scaled reference and  y is measured output. The purpose of 
pre filter is to ensure that  

�(𝐼𝐼 − 𝐺𝐺𝑐𝑐𝐾𝐾2)−1𝐺𝐺𝑐𝑐𝐾𝐾1 − 𝑀𝑀𝑟𝑟𝑒𝑒𝑓𝑓 �∞ ≤ 𝛾𝛾𝜌𝜌−2   (21) 
From Figure 5 we have 

�
𝐵𝐵𝑐𝑐
𝑦𝑦
𝑒𝑒
� =

�
𝜌𝜌(𝐼𝐼 −𝐾𝐾2𝐺𝐺𝑐𝑐)−1𝐾𝐾1 𝐾𝐾2(𝐼𝐼 − 𝐺𝐺𝑐𝑐𝐾𝐾2)−1𝑀𝑀−1

𝑐𝑐
𝜌𝜌(𝐼𝐼 − 𝐺𝐺𝑐𝑐𝐾𝐾2)−1𝐺𝐺𝑐𝑐𝐾𝐾1 (𝐼𝐼 − 𝐺𝐺𝑐𝑐𝐾𝐾2)−1𝑀𝑀−1

𝑐𝑐
𝜌𝜌2[(𝐼𝐼 − 𝐺𝐺𝑐𝑐𝐾𝐾2)−1𝐺𝐺𝑐𝑐𝐾𝐾1 − 𝑀𝑀𝑟𝑟𝑒𝑒𝑓𝑓 ] 𝜌𝜌(𝐼𝐼 − 𝐺𝐺𝑐𝑐𝐾𝐾2)−1𝑀𝑀−1

𝑐𝑐

� �
𝑟𝑟
𝜙𝜙�(22) 

Here 𝜌𝜌 is a scalar value specified by the designer to assign 
the degree of significance of the time domain 
specification[11]. 
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Figure 5.  2 DOF H-∞ loop shaping design 
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To put the 2 DOF design problem into the standard control 
configuration, we can define a generalized plant P by 

⎣
⎢
⎢
⎢
⎡
𝐵𝐵𝑐𝑐
𝑦𝑦
𝑒𝑒
𝛽𝛽
𝑦𝑦 ⎦
⎥
⎥
⎥
⎤

=   �
𝑃𝑃11 𝑃𝑃12
𝑃𝑃21 𝑃𝑃22

� �
𝑟𝑟
𝜙𝜙
𝐵𝐵𝑐𝑐
�               (23) 

⎣
⎢
⎢
⎢
⎡
𝐵𝐵𝑐𝑐
𝑦𝑦
𝑒𝑒
𝛽𝛽
𝑦𝑦 ⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡

0 0 𝐼𝐼
0 𝑀𝑀−1

𝑐𝑐 𝐺𝐺𝑐𝑐
−𝜌𝜌2𝑀𝑀𝑟𝑟𝑒𝑒𝑓𝑓 𝜌𝜌𝑀𝑀−1

𝑐𝑐 𝜌𝜌𝐺𝐺𝑐𝑐
𝜌𝜌𝐼𝐼 0 0
0 𝑀𝑀−1

𝑐𝑐 𝐺𝐺𝑐𝑐 ⎦
⎥
⎥
⎥
⎤

 �
𝑟𝑟
𝜙𝜙
𝐵𝐵𝑐𝑐
� (24) 

Further if the shaped plant Gs and desired stable closed 
loop transfer function  Mref  have the following state space 
realizations. 

𝐺𝐺𝑐𝑐 = �𝐴𝐴𝑐𝑐 𝐵𝐵𝑐𝑐
𝐶𝐶𝑐𝑐 𝐷𝐷𝑐𝑐

�                  (25) 

𝑀𝑀𝑟𝑟𝑒𝑒𝑓𝑓 = �𝐴𝐴𝑟𝑟 𝐵𝐵𝑟𝑟
𝐶𝐶𝑟𝑟 𝐷𝐷𝑟𝑟

�               (26) 

Then P may be realized by   

𝑃𝑃 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝐴𝐴𝑐𝑐 0 0 (𝐵𝐵𝑐𝑐𝐷𝐷𝑐𝑐𝑇𝑇 +𝑍𝑍𝑐𝑐𝐶𝐶𝑐𝑐𝑇𝑇)𝑅𝑅𝑐𝑐−0.5 𝐵𝐵𝑐𝑐

0 𝐴𝐴𝑟𝑟 𝐵𝐵𝑟𝑟 0 0
0 0 0 0 𝐼𝐼
𝐶𝐶𝑐𝑐 0 0 𝑅𝑅𝑐𝑐0.5 𝐷𝐷𝑐𝑐
𝜌𝜌𝐶𝐶𝑐𝑐 −𝜌𝜌2𝐶𝐶𝑟𝑟 −𝜌𝜌2𝐷𝐷𝑟𝑟 𝜌𝜌𝑅𝑅𝑐𝑐0.5 𝜌𝜌𝐷𝐷𝑐𝑐
0 0 𝜌𝜌𝐼𝐼 0 0
𝐶𝐶𝑐𝑐 0 0 𝑅𝑅𝑐𝑐0.5 𝐷𝐷𝑐𝑐 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

(27) 

And used in standard H ∞ algorithm to synthesize 
controller K. note that Rs and Zs are the unique positive 
definite solution to the generalized Riccati equation (15). 

3.3. Design Procedure 

The procedure to design 2 DOF H-∞ loop shaping 
controller as follows[11]: 

1. Specify the pre-compensator weighting function (W1) 
for achieving the desired open loop shape. 

2. Specify Mref which is the desired closed loop transfer 
function for time domain specifications and select 𝜌𝜌 which is 
a scalar value between 0 and 1. If the designer selects 𝜌𝜌 = 0, 
the 2DOF H-∞ loop shaping control becomes the 1DOF H-∞ 
loop shaping control. 

3. Find optimal stability margin 𝜀𝜀opt  by solving following 
equation 

𝛾𝛾𝑐𝑐𝑝𝑝𝑑𝑑 = εopt
−1  

= ��
𝜌𝜌(𝐼𝐼 − 𝐾𝐾2∞𝐺𝐺𝑐𝑐)−1𝐾𝐾1∞ 𝐾𝐾2∞(𝐼𝐼 − 𝐺𝐺𝑐𝑐𝐾𝐾2∞)−1𝑀𝑀−1

𝑐𝑐
𝜌𝜌(𝐼𝐼 − 𝐺𝐺𝑐𝑐𝐾𝐾2∞)−1𝐺𝐺𝑐𝑐𝐾𝐾1∞ (𝐼𝐼 − 𝐺𝐺𝑐𝑐𝐾𝐾2∞)−1𝑀𝑀−1

𝑐𝑐
𝜌𝜌2[(𝐼𝐼 − 𝐺𝐺𝑐𝑐𝐾𝐾2∞)−1𝐺𝐺𝑐𝑐𝐾𝐾1∞ − 𝑀𝑀𝑟𝑟𝑒𝑒𝑓𝑓 ] 𝜌𝜌(𝐼𝐼 − 𝐺𝐺𝑐𝑐𝐾𝐾2∞)−1𝑀𝑀−1

𝑐𝑐

��

∞

 

4. Select the stability marg in and then synthesize 
controllers (K1∞,K2∞) that satisfy  
‖𝑇𝑇𝑧𝑧𝑧𝑧 ‖∞

= ��
𝜌𝜌(𝐼𝐼 − 𝐾𝐾2∞𝐺𝐺𝑐𝑐)−1𝐾𝐾1∞ 𝐾𝐾2∞(𝐼𝐼 − 𝐺𝐺𝑐𝑐𝐾𝐾2∞)−1𝑀𝑀−1

𝑐𝑐
𝜌𝜌(𝐼𝐼 − 𝐺𝐺𝑐𝑐𝐾𝐾2∞)−1𝐺𝐺𝑐𝑐𝐾𝐾1∞ (𝐼𝐼 − 𝐺𝐺𝑐𝑐𝐾𝐾2∞)−1𝑀𝑀−1

𝑐𝑐
𝜌𝜌2[(𝐼𝐼 − 𝐺𝐺𝑐𝑐𝐾𝐾2∞)−1𝐺𝐺𝑐𝑐𝐾𝐾1∞ − 𝑀𝑀𝑟𝑟𝑒𝑒𝑓𝑓 ] 𝜌𝜌(𝐼𝐼 − 𝐺𝐺𝑐𝑐𝐾𝐾2∞)−1𝑀𝑀−1

𝑐𝑐

��

∞

 

The elements (1,1) and (2,1) help to limit actuator usage, 
elements (2,2) and (1,2) are associated with robust stability 
optimization, (3,1) is used to model matching and element 
(3,2) is linked to the robust performance of the loop. 

5. Wi is a scalar vector which is given by  

𝑊𝑊𝐺𝐺 = �𝑊𝑊0�−𝐺𝐺𝑐𝑐 (0)𝐾𝐾2(0)�
−1
𝐺𝐺𝑐𝑐 (0)𝐾𝐾1(0) �

−1
𝑀𝑀𝑟𝑟𝑒𝑒𝑓𝑓 (0) 

Where 

𝑊𝑊𝑐𝑐 = �
1 0 0 0
0 1 0 0
0 0 1 0

� 

6. Final the feed forward  pre filter  and feedback 
controller (K1 and K2) can be determined by following 
equation 

𝐾𝐾1 = 𝑊𝑊1𝐾𝐾1∞𝑊𝑊𝐺𝐺  
𝐾𝐾2 = 𝑊𝑊1𝐾𝐾2∞  

The schematic diagram of controller is given in following 
Figure 6. 
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+
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Figure 6.  2 DOF H-∞ loop shaping controller diagram 

4. Simulation Results and Comparison 
of H-∞ Controller and H-∞ Loop 
Shaping Controller Design and 
Analysis 

4.1. H-∞ Controller Design and Analysis 

In our study the rocket parameters are selected from Table 
1. Figure 7 shows generalized structure of H-∞ 
controller[13]. 

To design H-∞ controller, select the weight functions in 
such way that controller order will be equal to total number 
of system states plus weight function[14]. Basic requirement 
of weight function is to tune the controller[14]. 
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Figure 7.  H-∞ generalized feedback control system 

 
Figure 8.  Nominal performance for H-∞ controller 
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The sensitivity weight function is selected as  

𝑊𝑊𝑐𝑐 (𝑐𝑐)−1 = 0.14 �
𝑐𝑐2 + 7𝑐𝑐 + 2
𝑐𝑐2 + 4𝑐𝑐 + 9

� 

Similarly complimentary sensitivity function is selected as  

𝑊𝑊𝑝𝑝 (𝑐𝑐)−1 = 0.6�
𝑐𝑐2 + 4𝑐𝑐 + 8
𝑐𝑐2 + 10𝑐𝑐 + 10

� 

The tracking performance weight function Ws is aimed  at 
minimizing low frequency tracking error and the robustness 
weighting function Wp is to reject high frequency 
multip licat ive uncertainties[14]. In addition the control 
energy weight function is selected as  

𝑊𝑊𝐵𝐵 (𝑐𝑐)−1 = 0.3 �
𝑐𝑐2 + 4𝑐𝑐 + 6
𝑐𝑐2 + 7𝑐𝑐 + 9

� 

The objective is to avoid actuator operating at high 
frequencies which lead to saturation[16] . The model 
matching function is the ideal model to be matched by 
designed closed loop system which can be  selected as[16] 

𝑀𝑀 =
1

0.0256𝑐𝑐2 + 0.96𝑐𝑐 + 1
 

The actuator noise weight function chosen as 

𝑊𝑊𝐺𝐺 = 0.95 × 10−5 �
0.17𝑐𝑐 + 1

0.0001𝑐𝑐 + 1
� 

With above data H-∞ controller is designed. The γ value 
obtained is 0.1509 which satisfies small gain theorem[12]. 
The nominal performance is analyzed  and it  is 0.00039808 as 
shown in Figure 8. The frequency response of structured 
singular values for the case of robust stability is shown in 
Figure 9. The maximum value of μ is 0.47663 which means 
that stability of closed loop system is preserved under all 
perturbations that satisfy ‖△‖∞ < 1

0 .47663
[12] .The 

frequency response of μ for the case of robust performance 
analysis is given in Figure 10. The peak value of μ is 1.22245 
which shows that robust performance has not been achieved.  

Figure 11 shows the transient response of closed loop 
system with designed H-∞ controller for step signal with 
magnitude 𝑟𝑟 = ± 5 which corresponds to change in normal 
acceleration. The overshoot is 22.74% and settling time is 
2.84 sec. The fins deflect ion obtained is 0.1881 rad. ( 11.78°) 
as shown in Figure 12. The pitch rate variation obtained is 
0.1232 (rad/sec) shown in Figure 13 . 

 
Figure 9.  μ- Robust stability for H-∞ controller 
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Figure 10.  Robust performance for H-∞ controller 

 
Figure 11.  Acceleration response for H-∞ controller 
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Figure 12.  Fins deflection response for H-∞ controller 

 
Figure 13.  Pitch rate response for H-∞ controller 
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4.2. H-∞ Loop Shaping Controller Design and Analysis 

Here in att itude controller of rocket is designed with 𝐺𝐺𝑦𝑦  
and pitch rate as feedback inputs. The pre compensator W1 
selected as  

𝑊𝑊1 = �𝑊𝑊11 0
0 𝑊𝑊22

� 

where  

𝑊𝑊11 = 10 �
16𝑐𝑐 + 18
19𝑐𝑐 + 2

� 

𝑊𝑊22 = 12 �
18𝑞𝑞 + 30
10𝑞𝑞 + 8

� 

Pre compensator is always a PI form to have enough slope 
in the cross frequency while low gain  in  high frequency can 
provide enough damping to gain the robustness[17]. The 
post compensator W2 is selected as  

𝑊𝑊2 = �1 0
0 1

� 

where  
𝑊𝑊11 = 1   &   𝑊𝑊22 = 1 

Post compensator generally  reflects the relative importan
ce of outputs to be controlled and therefore it can be chosen 
as a identity matrix[15]. The diagonal weight function puts 
constant weights on control actuators[16].In such a way W1 
and W2 are used to modify the nominal system G as W2GW1. 
The value of 𝜌𝜌 is taken as 1.The model matching function is 
selected as  

𝑀𝑀 =
1

0.0256𝑐𝑐2 + 0.96𝑐𝑐 + 1
 

Synthesize the controller K∞ to make transfer function 
from disturbance to error minimum. For all MIMO systems 

for γ < 4 it can be shown theoretically that controller K∞ does 
not change shapes of singular values[19]. The robust 
stability is ach ieved without significant degradation in 
original characteristics. If γ > 4 then readjust the weight 
matrix. The controller is synthesized and stability marg in 
(emax) calculated is 0.40851. The gamma value obtained is 
2.44792 which satisfies stability marg in. Figure 14 shows the 
frequency response of init ial plant and shaped plant. 

The sensitivity function of the closed loop system is 
shown in Figure 15. It can be see that requirement of 
disturbance attenuation is satisfied[18]. The nominal 
performance is analyzed and it is 0.0053998 as shown in 
Figure 16. The frequency response of structured singular 
values for case of robust stability is shown in Figure 17. The 
maximum value of μ obtained is 0.25883 which means that 
stability of closed loop system is preserved under all 
perturbations that satisfy ‖△‖∞ < 1

0.25883
[12]. The 

frequency response of μ for the case of robust performance 
analysis is given in Figure 18. The peak value of μ is 0.41893 
which shows that robust performance is  ach ieved and in 
higher frequency range it maintains constant value. 

Figure 19 shows the transient response of the closed loop 
system with designed 2 DOF H-∞ loop shaping controller for 
step signal with magnitude 𝑟𝑟 = ± 5 which corresponds to 
change in normal acceleration. The overshoot is found to be 
14.72%and corresponding settling time is 2.23 sec. The fins 
deflection obtained is 0.1617 rad. ( 9.27°) as shown in Figure 
20. The pitch rate variation obtained is 0.1 (rad/sec) as shown 
in Figure 21.  

 
Figure 14.  Frequency response of initial plant and shaped plant for H-∞ loop shaping controller 
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Figure 15.  Closed loop sensitivity function for H-∞ loop  shaping controller 

 
Figure 16.  Nominal performance for H-∞ loop shaping controller 
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Figure 17.  μ- Robust stability for H-∞ controller loop shaping controller 

 
Figure 18.  Robust performance for H-∞ loop shaping controller 
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Figure 19.  Acceleration response for H-∞ loop shaping controller 

 
Figure 20.  Fins deflection response for H-∞ loop shaping controller 
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Figure 21.  Pitch rate response for H-∞ loop shaping controller 

4.3. Comparison and Limitations of Two Approaches 

The comparison of closed loop system with H-∞ and H-∞ 
loop shaping controllers begins with robust stability and 
performance analysis. To achieve robust stability it is neces
sary that the μ values are less than 1 over the frequency range. 
In Figure 22 we compare the structured singular values, for 
the robust stability analysis, of the closed-loop systems with 
both controllers. It shows that H-∞ loop shaping controller 
achieving better result. 

Table 2.  Comparison of 2 controllers parameters 

parameters H-∞ 
controller 

H-∞ loop 
Shaping 

controller 

Nominal performance 0.000398 0.0053998 

Robust performance 1.22245 0.41893 

μ– robust stability 0.47663 0.25883 

Peak overshoot 22.74% 14.72% 

Settling time 2.84 Sec 2.23 Sec 

Fin deflection 11.780 
(0.1881 rad) 

9.270 
(0.1617 rad) 

RMS value of control 
signal 0.195587 0.151148 

The comparison of nominal performance o f two controlle
rs is shown in Figure 23. In case of H-∞ loop shaping 
controller performance is slightly more than H-∞ controller. 
The slightly larger magnitude over the low frequencies leads 
to an expectation of steady state errors. The robust 
performance is also computed as shown in Figure 24. It 
shows that H-∞ loop shaping controller achieves better 
performance than H-∞ controller in low frequency range.  

The output sensitivity to disturbance is less in H-∞ loop 
shaping approach as shown in Figure 25. Further we can 
reduce output sensitivity to disturbance by using high gain 
values in pre filter design. Transient response of controller is 
shown in Figure 26. The peak overshoot is reduced in H-∞ 
loop shaping approach also response is less oscillatory but 
settling time is not reduced to large extent. As shown in 
Figure 27 fins deflection is reduced it shows longitudinal 
stability is improved in H-∞ loop shaping approach. 
Reduction in  pitch rate is also achieved by H- ∞ loop shaping 
controller as shown in  Figure 28. The RMS value of control 
signal related to fuel consumption. As value decreases 
proportionally fuel consumption reduced. RMS value is less 
in H-∞ loop shaping approach so using H-∞ loop shaping 
controller fuel consumption reduced. Table 2 shows 
comparison of performance parameters of two controllers. 

Figure (22) to (28) shows comparison of parameters of 2 
controllers 
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Figure 22.  μ- Robust stability for both H-∞ and H-∞ loop shaping controller 

 
Figure 23.  Nominal performance of H-∞ and H-∞ loop shaping controller 
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Figure 24.  Robust performance for H-∞ and H-∞ loop shaping controller 

 
Figure 25.  Output sensitivity for H-∞ and H-∞ loop shaping controller 
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Figure 26.  Response for acceleration for H-∞ and H-∞ loop shaping controller 

 
Figure 27.  Response for fins deflection for H-∞ and H-∞ loop shaping controller 
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Figure 28.  Pitch rate for both H-∞ and H-∞ loop shaping controller 

 
Figure 29.  Acceleration response due to 5% decrement parameters 
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Figure 30.  Acceleration response due to 5% increment parameters 

In above discussion controllers are designed andcompare
d their performance results. Every controller has its specific 
operating range and depends upon system parameter variati
on. In above system 5 % change in  system parameters ,the 
controller fails. Table 3 shows peak over shoot. The 
responses are shown in Figure 28 and 29. 

Table 3.  Effect on change in peak overshoot 

% change in 
parameters 

Peak overshoot 

H-∞ controller H-∞ loop shaping 
controller 

5 % increment 240% 180% 
5 % decrement -196% -160% 

From above table it shows peak overshoot exceeds it  
maximum limit. So fo r our controller we can vary system 
parameters up to 1% obtaining desired value in range .  

5. Conclusions 
A rocket model is developed in which pitch rate control is 

analyzed and simulated. The pitch rate control problem is 
related to the longitudinal stability of the rocket. According 
to result obtained from simulation it can be seen that longitu
dinal stability is improved using 2 DOF loop shaping 
controller. 

Due to presence of  uncertain parameters the derivation 
of the uncertainty model required and  heavy computations 
are demanded. That is the main reason why it is necessary to 
investigate the parameter importance with respect to the 
robustness performance and an objective is to reduce their 
number to  an acceptable value. However, in the evaluation of 

the design, it is better to  take into account all the possible 
uncertainties to ensure a satisfactory design in a present case. 
Here 15% uncertainties in parameters are taken. 

The performance of closed loop system using H-∞ loop 
controller is evaluated .The model facilitates γ iteration 
method for solving Ricatti equation for H-∞ controller 
design The performance of the closed loop system using H-∞ 
loop shaping controller is further evaluated. The application 
of a 2 DOF H- ∞ loop shaping controller in p itch rate auto 
pilot design shows that it is better in robustness and reduces 
control efforts without the degrading performance.  

Actuator efforts are critical consideration in the rocket 
auto pilot design since they invoke how quickly actuator 
command limit ing is invoked. The pitch rate reduced and 
reduction in fins deflection shows that actuator efforts are 
reduced. 

Nomenclature 
Symbol Meaning 
ϑ Pitch Angle 
ψ Yaw Angle 
γ Roll Angle 
α Angle Of Attack 
β Sideslip Angle 
Θ Flight-Path Angle 
Ψ Bank Angle 
γc Aerodynamic Angle Of Roll 

δy, δ z 
Angles Due To Fins Deflection In Longitudinal And 

Lateral Motion 
M Mach Number 
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