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Abstract  Applications of impact damper to reduce machine tools vibration have been investigated analytically, nu-
merically, and experimentally for many years. The reason for this interest lies in the fact that impacts occur very often in 
many modern technical devices. In different applications, optimal values of impact damper parameters (impact mass, elastic 
coefficient of barrier etc.) should be found in order to damp vibrations efficiently. We investigate the predictions of a 
mathematical model for an impact damper consisting of a pendulum and an elastic barrier. Our model incorporates Hertzian 
contact between the spherical steel pendulum and the barrier. In next step, due to the strong non-linearity of the model, 
Homotopy Perturbation and iteration perturbation are used to solve the dynamics equation. Homotopy and iteration pertur-
bation method provide analytical solution for strong non-linear equation. To confirm the accuracy of this method, results are 
compared with numerical solutions in SimMechanics toolbox of MATLAB. Next, a systematic approach based on a Genetic 
Algorithm optimization method is used to determine the best design parameters for suppressing vibrations. Finally, optimum 
parameters for complete quenching of vibrations are obtained. 
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1. Introduction 
Mechanical systems whose elements impact on another 

during operation have been extensively investigated by re-
searchers. The reason for this interest lies in the fact that 
impacts occur very often in many modern technical devices. 
When the displacement of the primary system exceeds the 
clearance, the impact mass collides with the container wall 
companying with energy dissipation and momentum ex-
change. Sometimes, energy dissipation is helpful in attenu-
ating the excessive vibration amplitudes of the primary 
structure. 

In the past few years, behavior of impact dampers has 
been investigated experimentally, analytically and numeri-
cally[1-4]. Son et al.[5] proposed active momentum ex-
change impact dampers to suppress the first large peak value 
of the acceleration response due to a shock load. Bapat and 
Sankar[6] showed that the coefficient of restitution has a 
great effect on the performance of impact dampers. They 
demonstrated that in the case of single unit impact dampers, 
optimized parameters at resonance are not necessarily
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optimal at other frequencies. Cheng and Xu[7] obtained a
 relation between coefficient of restitution and impact 
damping ratio. They showed that optimal initial displace-
ment is a monotonically increasing function of damping.  

The main target of the present investigation is to analyze 
the system with two degree of freedom, which can operate as 
an impact damper of vibrations[8-9]. This paper investigates 
the prediction of mathematical model for a system consisting 
of a pendulum and an elastic barrier. This model incorporates 
Hertzian contact between the spherical steel pendulum and 
the elastic barrier[10-11]. 

The mathematical equation of motion is solved analyti-
cally using homotopy perturbation, which is a new method 
for solving strongly nonlinear equations[12-14]. Moreover, a 
numerical model of the mentioned system is developed using 
MATLAB and it verifies by comparing its results with the 
analytical solution of the mathematical equation. It is shown 
that both of results are pretty close to each other so, it is 
concluded that the model is reliable and can be used for 
investigating applications of the impact damper changing its 
properties. 

Using the discussed model for the presented vibro impact 
systems, effects of changing the design parameters of the 
impact damper is investigated. Finally, the optimum values 
for the design parameters of the impact damper system are 
obtained. It should be noted that there are alot of considera-
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tions toward the non-gradient based optimization algorithms. 
The reason for this interest lies in the fact that, these algo-
rithms: 
• can easily be used in computer programs. 
• have global properties. 
• do not require gradient information 
• can be tuned for each problem. 
•… 
Optimizing the structural and operational design of 

buildings, factories, machines, etc. is a rapidly expanding 
application of Genetic Algorithms (GAs). These are being 
created for such uses as optimizing the design of heat ex-
changers, robot gripping arms, satellite booms, building 
trusses, flywheels, turbines, and just about any other com-
puter-assisted engineering design application[15-17]. 

For finding the best design of the impact damper system, 
the GA optimization method is used. Finally, optimum pa-
rameters of the impact damper system for strongly vibration 
suppressing are obtained. 

2. Mathematical Modeling 
A model for an impact damper consisting of a pendulum 

and an elastic barrier is schematically shown in Fig. (1). As 
shown in this figure, the pendulum encounters the barrier in 
angular position Xc. 

 
Figure 1.  Schematic drawing of the impact damper 

The governing equation of pendulum motion can be ob-
tained using Lagrange’s equation. Kinetic energy for the 
pendulum, which is forced at an excitation frequency Ω and 
amplitude A, is 

𝑇𝑇 = (𝑚𝑚 2⁄ ){[𝐴𝐴Ω cosΩ𝑡𝑡 + 𝐿𝐿𝑥̇𝑥 cos 𝑥𝑥]2 + [𝐿𝐿𝑥̇𝑥 sin 𝑥𝑥]}  (1) 
For the discussed pendulum, the potential energy can be 

formulated as follows: 
𝑉𝑉 = 𝑚𝑚𝑚𝑚𝑚𝑚(1 − cos 𝑥𝑥)          (2) 

In the present study, the contact between spherical steel 
pendulum and the elastic barrier is described using the 
Hertzian contact model. The Hertzian contact force is as 
follows: 

𝐹𝐹𝑐𝑐(𝑥𝑥) = (4𝐸𝐸 3⁄ )√𝑅𝑅(𝑙𝑙 sin(𝑥𝑥 − 𝑥𝑥𝑐𝑐))3 2⁄     (3) 
where E is the elastic modulus of the barrier and R is the 

radius of the sphere that impacts the barrier. The elastic 
damping force is given by: 

𝑉𝑉𝑐𝑐(𝑥𝑥, 𝑥̇𝑥) = 𝜇𝜇𝜇𝜇𝑥̇𝑥(sin(𝑥𝑥 − 𝑥𝑥𝑐𝑐))3 2⁄        (4) 
where µ is the coefficient of barrier damping. Substituting 

Eq.(1) and Eq.(2) into the Lagrange’s equation yields: 
𝑥̈𝑥 + 2𝜁𝜁𝜁𝜁𝑥̇𝑥 + 𝛼𝛼𝜔𝜔2𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥) − (𝐴𝐴Ω2 𝐿𝐿⁄ ) sinΩ𝑡𝑡 cos𝑥𝑥

+ 𝜔𝜔2 sin𝑥𝑥 
+𝑚𝑚−1𝐿𝐿−2𝐻𝐻(𝑥𝑥 − 𝑥𝑥𝑐𝑐)�𝐹𝐹𝑐𝑐(𝑥𝑥 − 𝑥𝑥𝑐𝑐) + 𝑉𝑉𝑐𝑐�𝑥̇𝑥(𝑥̇𝑥, 𝑥𝑥 −

𝑥𝑥𝑐𝑐=0             (5) 
where 𝛼𝛼𝜔𝜔2 is the magnitude of the coulomb damping, 𝜁𝜁 

is the damping ratio and H is Heaviside step function. Sign 
function in Eq.(5) can be estimated by the 
(2 𝜋𝜋⁄ )𝑡𝑡𝑡𝑡𝑛𝑛−1(100𝑥̇𝑥). In other words: 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥) ≈ (2 𝜋𝜋⁄ )𝑡𝑡𝑡𝑡𝑛𝑛−1(100𝑥̇𝑥)     (6) 
Table (1) shows error of using the above approximation. 

As shown in this table, using the above relation provides 
accurate estimation.  

Regarding to Eq. (6), the simplified form of Eq.(5) can be 
written as follows: 

𝑥̈𝑥 + 2𝜁𝜁𝑥̇𝑥 + (2𝛼𝛼 𝜋𝜋⁄ )𝑡𝑡𝑡𝑡𝑛𝑛−1(100𝑥̇𝑥)
− 𝛽𝛽 sin(Ω𝑡𝑡 ω⁄ ) cos 𝑥𝑥 + sin𝑥𝑥 

+(𝛾𝛾 + 𝜇𝜇𝑥̇𝑥)(𝑥𝑥 − 𝑥𝑥𝑐𝑐)3 2⁄ 𝐻𝐻(𝑥𝑥 − 𝑥𝑥𝑐𝑐) = 0    (7) 
In the above relation, β and γ are defined by: 
𝛾𝛾 = (4𝑙𝑙2.5𝐸𝐸𝑅𝑅0.5) (3𝜔𝜔2𝑚𝑚𝐿𝐿2)⁄  ;  𝛽𝛽 = (𝐴𝐴Ω2) (𝜔𝜔2𝐿𝐿)⁄  (8) 

Table 1.  Error of using Eq. (7) instead of sign equation 
𝑥̇𝑥(𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠⁄ ) 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) (2 𝜋𝜋⁄ ) 𝑡𝑡𝑡𝑡𝑛𝑛−1(100𝑥̇𝑥) Error (%) 

-5 -1 -0.99923 0.07667 

-4 -1 -0.99891 0.10851 

-3 -1 -0.99838 0.16159 

-2 -1 -0.99732 0.26775 

-1 -1 -0.99414 0.58620 

0 0 0.00000 0.00000 

1 1 +0.99413 0.58620 

2 1 +0.99732 0.267747 

3 1 +0.99838 0.161592 

4 1 +0.99891 0.108514 

5 1 +0.99923 0.076667 

3. Investigating Oscillation of the Impact 
Mass 

In this section, oscillation of the impact mass is investi-
gated using the homotopy perturbation method. In doing so, 
assume the external and damping forces are negligible 
(ζ=α=μ=β=0). Therefore, Eq. (7) can be rewritten as: 

𝑥̈𝑥 + sin𝑥𝑥 + 𝛾𝛾(𝑥𝑥 − 𝑥𝑥𝑐𝑐)
3
2𝐻𝐻(𝑥𝑥 − 𝑥𝑥𝑐𝑐) = 0    (9) 
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Figure 2.  Phase plane of the pendulum motions 

 
Figure 3.  Effect of using impact damper on the main mass oscillation 

 
Figure 4.  Oscillation of the main mass with different barriers 

Therefore, the dynamic behavior of the discussed vi-
bro-impact system can be formulated using the following 
relations: 

�𝑥̈𝑥 + sin 𝑥𝑥 + 𝛾𝛾(𝑥𝑥 − 𝑥𝑥𝑐𝑐)1.5 = 0   ; 𝑥𝑥 > 𝑥𝑥𝑐𝑐
𝑥̈𝑥 + sin 𝑥𝑥 = 0                             ; 𝑥𝑥 < 𝑥𝑥𝑐𝑐

�   (10) 

As presented in the above relation, pendulum motions can 
be divided into the following motions:  

(1) no contact and forward motion ( 𝑥𝑥 < 𝑥𝑥𝑐𝑐 ) 
(2) contact (𝑥𝑥 > 𝑥𝑥𝑐𝑐 )  
(3) no contact and backward motion (𝑥𝑥 < 𝑥𝑥𝑐𝑐 ) 
In the first and third motion, the sine function in Eq.(10) 

can be simply estimated with two first terms of Taylor series. 
In case of the second motion, the sine function is only re-
placed with first term of Taylor series. Therefore, Eq.(10) for 

the first and third motions can be rewritten as follows: 
𝑥̈𝑥 + 𝑥𝑥 − 𝑥𝑥3 6⁄ = 0  ; 𝑥𝑥(0) = 𝐴𝐴 , 𝑥̇𝑥(0) = 0   (11) 

Circular natural frequency of the above relation can be 
calculated using the homotopy perturbation. It is shown as 
follows: 

𝜔𝜔2 = 1 − 𝐴𝐴2 8⁄                     (12) 
Therefore, the first harmonic motion of the pendulum 

when A=1.5 rad, can be formulated as follows: 

�𝑥𝑥(𝑡𝑡) = −1.5 cos(0.8478𝑡𝑡)   
𝑥̇𝑥(𝑡𝑡) = 1.2717 sin(0.8478𝑡𝑡)

�         (13) 

At the present study, consider  𝑥𝑥𝑐𝑐 = 0.323 rad . At the 
contact point, the pendulum velocity is equal to 1.2419 
rad/sec. Therefore, the differential equation of the second 
motion can be written as follows: 
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𝑥̈𝑥 + sin 𝑥𝑥 + 𝛾𝛾(𝑥𝑥 − 𝑥𝑥𝑐𝑐)1.5 = 0  ; 
 𝑥𝑥(0) = 0.323 rad, 𝑥̇𝑥(0) = 1.2419 rad s⁄    (14) 

Deformation of barrier (when contact occurs) is consid-
ered small. Therefore, the nonlinear term of the above equa-
tion can be approximated with a linear term. The linear term 
may be calculated using the least square method. Therefore, 
Eq.(14) changes to:  

𝑥̈𝑥 + 𝑥𝑥 + 𝛾𝛾(0.034𝑥𝑥 − 0.011) = 0       (15) 
The above linear ordinary differential equation can be 

easily solved. The time interval between two consecutive 
contact points (𝑥𝑥 = 𝑥𝑥𝑐𝑐 ) in the second motion is equal to 
contact duration.  In the present study, the contact duration 
is equal to 9.258×10-8 s.  

Afterward, the third motion will be investigated. The third 
motion is similar to the first motion, but its direction is op-
posite with respect to the first motion. Therefore, the third 
harmonic motion of the pendulum can be formulated as: 

�𝑥𝑥(𝑡𝑡) = 1.5 cos(0.8478𝑡𝑡 + 1.3537)          
𝑥̇𝑥(𝑡𝑡) = −1.2717 sin(0.8478𝑡𝑡 + 1.3537)

�    (16) 

Fig. (3) shows the phase-plane diagram of the pendulum 
motion. In this figure, the presented analytical solution is 
compared with the numerical solution, which is obtained 
using the model simulated in SimMechnics tool box of 
MATLAB software.  

Results of using numerical method and analytical method 
are precisely close to each other. As a result, it can be con-
cluded that the presented method can precisely describe the 
vibro-impact system. 

4. Investigating Effects of Barrier  
Material 

In this section, application of impact damper system is 
investigated with varying the barrier properties. In doing so, 
steel alloy, aluminum alloy and polyester elastomer are se-
lected as the barriers material. Elastic modulus these mate-
rials are listed in Table (2).  

Table 2.  Elastic modulus of the barrier materials 
Elastic modulus(GPa) Material 

200 Steel alloy (ASTM-A242) 
70 Aluminum alloy (6061-T6) 
0.2 Polyester elastomer 

Effect of using the impact damper system in free vibra-
tions of the primary mass is shown in Fig. (3). As shown in 
this figure, the impact damper system can effectively sup-
press vibration of the primary mass. 

Fig. (4) shows the oscillation of primary mass with impact 
damper, which is equipped with the presented barriers in 
Table (2) in time domain 1 to 2.5 seconds. It is shown that 
impact dampers can absorb oscillation faster than others can, 
if their barrier are less stiff. 

5. Optimizing Main Parameters of the 
Impact Damper Using Genetic   

Algorithm 
Genetic Algorithms are computerized search and optimi-

zation methods that work very similar to the principles of 
natural evolution. GA’s are attractive in engineering design 
and applications because they are easy to use and they are 
likely to find the globally best design or solution, which is 
superior to any other design or solution. 

In order to find the best design parameters of the impact 
damper system, values of R, L, m and E are considered as the 
design parameters. Genetic Algorithm (GA) is used to op-
timize the design parameters. Table (3) shows the specifica-
tions of the used GA method. Maximum and minimum limits 
of design parameters are shown in Table 4. Fitness function 
is considered as the rest time. After approaching to the rest 
time vibration amplitude is less than 10% of initial excitation 
amplitude. The optimization algorithm is designed to find 
optimum design parameters, which minimizes the fitness 
value. After performing GA method for 51 generation, av-
erage change in the fitness value becomes small that show 
the method converges. The optimum values of design pa-
rameters are shown in Table (5). 

In the presented study the death-type penalty is selected. If 
a feasible search space is a reasonable part of the whole 
search space, it can be expected that this method works 
well[18]. In the presented study, the penalty factor is selected 
as 100. Furthermore, to find the optimum design parameters, 
the algorithm is run 100 times.  

Table 3.  Genetic algorithm specifications 

Option Value 
Crossover function Heuristic 
Crossover fraction 0.8 

Elite number 2 
Initial penalty 10 

Mutation function Adaptive feasible 
Penalty factor 100 

Population size 100 
Population type Bit string 

Selection function Stochastic uniform 

Table 4.  Design parameters’ limits 

Design parameter Minimum Maximum 
m 0.010 kg 0.100 kg 
R 0.001 m 0.020 m 
L 0.030 m 0.300 m 
E 0.1 GPa 200 GPa 

Table 5.  Optimum design parameters 

Design parameter Optimum value 
m 0.0112 kg 
R 0.0096 m 
l 0.0681 m 
E 1.439 GPa 

6. Conclusions 
This paper studies the application of an impact damper for 

suppressing undesired vibration of an oscillator. In this in-
vestigation, the impact is modelled using Hertzian contact. 
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The governing equations of motion of the vibratory system 
are solved analytically and numerically. It is shown, the 
analytical solution, which is obtained using the homtopy 
perturbation method is completely close to numerical solu-
tion. Effects of changing the design parameters of the impact 
damper are investigated on the application of such systems. 
Moreover, the optimum parameters for complete quenching 
of vibrations are achieved by employing a Genetic Algo-
rithm optimization method. While investigating the effects 
of elastic coefficient of barrier, it observes that lower values 
of the elastic coefficients are resulted in better application of 
the impact damper for absorb the undesired oscillations. 
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