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Abstract  Infrared (IR) spectroscopy was used as a rapid and non-destructive method to determine, carbon (C), n itrogen 
(N) and tree wood density.A total of 82 sample cores were scanned in the reflectance mode from 4000 to 400 cm-1 for 
mid-infrared (MIR) spectra and from 8000 to 4000cm-1 and 11000-4000cm-1 for near infrared (NIR) spectra. The reference 
values for C and N were measured using combustion method while wood density was calculated using auger method. 
Calibrat ion equations were developed using partial least-squares and first derivative spectra. Root mean square error 
(RMSEP) was used to calculate prediction error. Predict ion of Cusing MIR spectra gave R2 = 0.59, RMSEP = 0.02; NIR 
spectra R2 = 0.50, RMSEP = 0.02, whileN predict ion usingMIR spectra had R2 = 0.54, RMSEP = 0.22; NIR spectra R2 = 
0.48, RMSEP =0.24. Wood density prediction was fair for MIR (R2= 0.79, RMSEP = 0.14); NIR (R2= 0.69, RMSEP = 
0.17).Improved predictions using NIR were for extendedspectral range;though accuracies were inferior to MIR. Both MIR 
and NIR models showed good potentials to be used as rapid and cost effective method of predict ing C-N andwood density. 
Keywords  Infrared Spectroscopy, Partial Least Squares Regression,Carbon, Nitrogen,Wood Density 

 

1. Introduction 
Wood density provides vital information on how much 

carbon is stored by a plant[1]. Research to acquire the often 
sparse information on carbon,nitrogen and wood densityfor 
tropical t ree species needs to develop a rapid and low cost 
method that can be applied across species[2]. However, the 
informat ion on wood density can be acquired  from 
measurements of tree biovolume from field surveys[2]. 

Sampling trees for wood density can be achieved using 
destructive (discs) or non-destructive methods (increment 
cores). Non-destructive sampling conserves genotypes for 
later experimentation, research, and tree breeding[3]. 
However, measurements obtained by non-destructive 
methods must accurately represent the whole tree. 

Infrared Reflectance (IR) Spectroscopy, combined with 
chemometrics algorithms, is a promising spectroscopic tool 
for rap id assessment of wood parameters including carbon, 
nitrogen and wood density contents[2]. 

The spectroscopic technique utilizes the specificity of  
 

* Corresponding author: 
kennedyolale@gmail.com (Kennedy Olale) 
Published online at http://journal.sapub.org/aac 
Copyright © 2013 Scientific & Academic Publishing. All Rights Reserved 

absorption frequencies of the molecules given that 
molecules rotate or vibrate at discrete energies[4]. 

The IR technique is non-destructive for evaluation of 
organic materials where part icularly C–H, O–H, and N–H 
groups influence the properties to be assessed[4]. Of our 
interest are the near and mid infrared port ions. 

Better predictions have been achieved with NIR spectra 
in estimat ing wood density and pulping yield of Eucalyptus 
globulus with robust and precise predictions than those 
obtained using MIR spectral reg ion[5]. Studies have 
reported prediction of wood properties using NIR spectra 
collected at various moisture conditions; Thygesen[6] 
developed NIR calibrations for basic density and dry matter 
using green Norway spruce (Picea abies) discs and 
shavings that varied in moisture content.Thestudy findings 
showed that good calibration models are attainable for dry 
matter content of both solid wood and shavings.This further 
suggested that to evaluate the potential of NIR spectroscopy 
for wood density determination, it would be valuable to 
know why calibrat ion is possible and which aspects of the 
calibrat ion influence the predictive ability of the calibration 
models[6]. 

Schimleck et al.[7] reported various characteristics 
(air-dry  density, microfibril angle, stiffness, tracheid 
morphological traits) of Pinus taeda wood that could be 
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modelled using collected NIR spectra.Lignin and carbon 
content have also been predicted in  wood using NIR 
spectra[8], with the study indicating that species with high 
lignin content display high carbon content[8].  

Nitrogen content determination in plants is fundamental 
and requires rapid and reliable tests which can be relied on 
to provide recommendations for optimum N fert ilizer 
applications[9]. However, key challenge to N determination 
has beenthe existing destructive sampling and lengthy 
analysis time[10].  

In addition to chemical characteristicspredicted in wood, 
thenear infrared region (NIR) has been used to assess 
non-chemical characteristics of solid wood and showed 
capability of predict ing mechanical, anatomical and 
physical properties of solid wood[4,11,12]. 

Though most application of the infrared spectroscopy has 
been on NIR; mid-infrared (MIR) spectral region has 
alsobeen reported as useful in following the molecular 
conformat ional changes of atoms[2]. The band shape in 
MIR reg ion reflects the degree of ordering that is present in 
the molecular system[2]. The ability of the MIR model to 
discriminate or identify woodsamples is based on the 
vibrational responses of chemical bonds to the 
electromagnetic radiat ion of MIR region[13].  

Combination of IR spectra and mult ivariate data analysis 
techniques likePart ial least squares regression (PLSR), 
principal component (PCA) or discriminant analysis opens 
the possibility to unravel and interpret the spectral 
properties of the sample[13]. This interpretation allows for 
qualitative analysis of the samples, such as discrimination 
or classification[13]. 

PCA is used to find the main  variab ility sources in a data 
set and the relationship between/within objects and 
variables; PCA reduces the number of orig inal variab les to 
a few reduced variables or PCs, by keeping only the largest 
or most significant PCs[14]. Conversely, partial least 
squares regression (PLSR) is often regarded as the major 
regression technique for multivariate data[14].  

PLSR have the potential to estimate the component 
concentration and chemical/physical properties (loading 
vectors, vector of final calibration regression coefficients, 
and spectral residuals) from the infrared spectra[15]. PLSR 
has been used successfully in developing multivariate 
calibrat ion models for infrared  spectroscopy by reducing 
the influence of irrelevant spectral variations in the 
calibrat ion model[16;  17].  

This ability provides a more information-rich data set of 
reduced dimensionality and eliminates data noise which 
results in more accurate and reproducible calibration 
models[16]. 

Heterogeneous materials like wood have large numbers 
of overlapping absorption bands of different constituents 
within  caused by large light scattering effects[18]. To 
address this, spectral pre-treatment is often applied to 
remove or reduce the interferences from the physical 
heterogeneity (such as the variations in particle size, 
packing density and moisture content)[19].The objective of 

the study was to develop a mathematical relationship 
(model) between carbon-nitrogen andwood densitycontents 
and the IR spectral signal. The new method of IR scanning 
is cost-effective and rapid and is seen as a replacement to 
time-consuming and expensive wet chemistry analysis.  

2. Materials and Methods  
2.1. Sample Origin and Preparation  

A total of 84 wood auger cores representing 17 d ifferent 
species grown on three different benchmark sites of Yala 
basin were taken from trunk at breast height (DBH 1.3 m). 
The species included;Bridelia micrantha, Crotonmacrostac
hyus, Harungana madagascalensis, Markhamia lutea, 
Prunus africana, Syzygium cordatum,Cuppresus lusitanica, 
Eucalyptus camaldulensis, Eucalyptus grandis, Eucalyptus 
saligna, Mangifera indica, Persia americana, Syzygium 
cuminii, Acacia mearnsii, Grevillea robusta, Jacaranda 
mimosifoliaand Combretum molle. 

Fresh auger cores were placed in a zip lock bag then 
transportation to the laboratory. Cores were d ried at 105°C 
in oven until no further weight loss. Cores were ground and 
sieved using a sieve size of 0.5 mm into a fine powder and 
placed in zip lock bags. 

2.2. C and N Reference Analysis  

Total C and N concentrations of wood samples were 
measured by dry combustion using a CN analyser by 
placing approximately 2 mg of finely ground samples in tin 
capsule (Thermo-Quest Flash EA1112-Analytical 
Technologies Inc., CA, USA).  

2.3. Wood Density Measurement  

Cored volume was determined by assuming the core is 
cylindrical and wood density in g cm-3 was then calculated 
as the ratio of wood dry mass to core volume 

2.4. Near-infrared S pectroscopy and Mid Infrared 
Spectroscopy 

Spectral data was collected in reflectance mode using a 
high intensity contact probe attached to Fourier Transform 
Infrared Multi-purpose Analyzer (FTIR MPA) from 8000 to 
4000 cm−1 and 11000 to 4000 cm−1. For each spectrum, 30 
scans were collected by the spectrometer and averaged to 
produce a single spectrum. For MIR, Samples were scanned 
from 4000 to 600 cm−1 (2500 to 25,000 nm) using a Bruker 
High-Throughput-Screening (HTS-XT) accessory attached 
to a Bruker Tensor 27 FT-IR spectrometer (ICRAF-Laborat
ory). Different wavenumber ranges for NIR were used to 
develop prediction models in order to improve the 
quantitative prediction of wood parameters. 

The spectral range extending from 11000 to 12,000 cm-1 
had high noise level corresponding to the third harmonic 
region and was excluded for calibration[11]. 

2.5. Statistical Analysis and Modeling  
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Partial least squares (PLS) regression was employed to 
develop all pred iction models.To discuss how calibration 
models predict  carbon,nitrogen and wood density in relation 
to the spectral features, only the 1st derivative spectra were 
used in the analyses (Figure 1). 

Transformat ion of the raw spectra and analysis using 
Partial Least Square Regression (PLSR) were done usingR 
software version 2.13.1[20]. However,before transferring 
the spectral data to R, an automated optimisation for 
selecting the best spectral pre-treatment was first developed 
by the Bruker OPUS Quant software package vs. 6.5 (Bruker 
Optics). 84 samples were split into calibration set and 
validation set (Table 1). 

The selection of representative samples calibration set 
were based on recorded NIR and MIR spectral diversity 
using the Kennard and Stone algorithm[21].The 
performances of the models were evaluated in terms of the 
root mean square error of calib ration (RMSEC), the root 
mean square error of prediction (RMSEP) and the 
correlation coefficient (R). The RMSEC was calculated as 
follows: 

     (1) 

Where ŷi is the prediction value of the ith observationyi is 
the measured value of ithobservationand nc is the number of 
the observations in the calibration set.  

For the prediction set, the RMSEP was calculated as 
follows: 

          (2) 

Where ŷi is the prediction value of the ith observation, yi is 
the measured value of the ith observation and np is the number 
of the observations in the prediction set. 

The ratio  of performance to deviation (RPD), calculated 
as the ratio of the standard deviation of the reference data to 

the SEC, was also used to assess calibration 
performance.SECV and SEP should be as low as possible 
while coefficients of determination should be high. RPD 
parameter provides basis for standardizing the SECV or 
SEP to compare regression reliab ilit ies[22]. The standard 
error of predict ion (SEP) was used to give a measure of 
how well a calibration predicts the parameter of interest for 
a set of unknown samples that are different from the 
calibrat ion set.The higher the RPD value, the more reliab le 
is the calibrat ion[22]. 

3. Results and Discussion 
3.1. Carbon-Nitrogen Contents and Wood Density 

Measured carboncontent ranged from 44.00% to 50.05%, 
mean of 47.30%standard deviation of 1.38 %, and 
coefficient of variation = 2.92% (n=81). Nitrogen content 
ranged from a min imum of 0.23% to a maximum of 0.38% 
(Table 1) (n=82).Wood density ranged from 0.20 gcm-3 to 
0.88 gcm-3 with an average of 0.51 gcm-3, standard 
deviation of 0.14gcm-3 and coefficient of variat ion=26.91% 
(n=82). The summary of calibration and validation samples 
sets are shown in Table 1.  

Predictions corresponding to 11000-4000 cm-1 were 
slightly improved compared to those using 8000-4000 cm-1 
spectral range (Table 2). Major absorption bands were 
observed in the wavelength region of 6940-6900 cm-1, 
5700-5630 cm-1 and 5650-5600 cm-1, 4850-4780 cm-1, 
4400-4380 cm-1 and 4220-4180 cm-1. The regions are 
associated with C-H Stretching and O-H stretching 
vibrations[23]. The peak around 5650-5600 cm-1 could be 
as a result of -CH3 stretch in first harmonic reg ion. 

For MIR region, dominant absorption features were 
observed in the following region : 3400, 1750-1600, 2970, 
2250, 2220, 1750-1600 and 1200-1000 cm-1 suggesting the 
following functional groups; -NH2, -CH3, -C≡N, 
-C≡C, >C=O and from 1200-1000 cm-1; -C-C-, -C-N and 
-C-O-[23] (Figure 1). The high peak around 1350 cm–1 is 
due to C–H and O–H bending vibrations[23]. 

Table 1.  Summary Carbon-Nitrogen and Wood density used in Calibration and Validation 

Dataset N Property Min Max Mean ± Std C.V % 

Calibration 

44 Density (gcm-3) 0.20 0.88 0.52±0.14 28.08 

44 Nitrogen (%) 0.02 0.38 0.23±0.07 28.69 

44 Carbon (%) 44.00 49.84 47.36±1.37 2.88 

Validation 38 Density (gcm-3) 0.27 0.77 0.50±0.13 25.62 

 
38 Nitrogen (%) 0.10 0.38 0.23±0.06 25.84 

38 Carbon (%) 44.71 50.00 47.24±1.42 2.99 

KEY: Std = standard deviation, CV = coeffi cient of variation, N=Number of samples  
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Table 2.  Calibration and Validation indices for Prediction of Carbon-Nitrogen andWood densityusing MIR and NIR spectra 

Dataset N Property R2 RMSE RPD PCs Regions (cm-1) 
NIR spectra       

Calibration 44 

Density(gcm-3) 0.67 0.21 0.67 3 11000-4000 
 0.61 0.21 0.67 3 8000-4000 

Carbon (%) 0.42 0.02 68.50 3 11000-4000 
 0.29 0.02 68.50 3 8000-4000 

Nitrogen (%) 0.29 0.39 0.18 3 11000-4000 
 0.19 0.41 0.17 3 8000-4000 

Validation 38 

Density(gcm-3) 0.69 0.17 0.76 3 11000-4000 
 0.68 0.17 0.76 3 8000-4000 

Carbon (%) 0.50 0.02 71.00 3 11000-4000 
 0.47 0.02 71.00 3 8000-4000 

Nitrogen (%) 0.48 0.24 0.25 3 11000-4000 
 0.33 0.25 0.24 3 8000-4000 

MIR spectra       

Calibration 44 
Density(gcm-3) 0.66 0.2 0.70 3 4000-600 

Carbon (%) 0.47 0.02 68.50 3 4000-600 
Nitrogen (%) 0.44 0.38 0.18 3 4000-600 

Validation 
38 

Density(gcm-3) 0.79 0.14 0.93 3 4000-600 

 Carbon (%) 0.59 0.02 71.00 3 4000-600 
Nitrogen (%) 0.54 0.21 0.29 3 4000-600 

 

 
Figure 1.  Raw (a) and derivative (b) Mid-infrared spectra of wood cores samples.Spectra were pre-treated with 1st derivative 
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3.2. IR Prediction of Carbon-Nitrogen and Wood 
Density  

The optimal models developed using PLS and 
11000-4000 cm-1 spectral range gave fair performance in 
the calibrat ion set for wood density with R2 = 0.67, RMSEP 
=0.21 gcm-3, RPD= 0.67 and R2= 0.69, RMSEP =0.17 
gcm-3 and RPD=0.76 for validation set (Tab le 2). The 
validation set for carbon was R2 = 0.50, RMSE = 0.02%, 
RPD = 71.00. While for n itrogen, R2 = 0.48, RMSE = 
0.24%, RPD = 0.25 in validation set (Table 2). On  changing 
the NIR spectral range to 8000-4000 cm-1, the p rediction 
statistics of carbon and nitrogen were R2 = 0.29, RMSE = 
0.02% and RPD = 68.50;  R2= 0.19, RMSE = 0.41%, RPD = 
0.17 and R2 = 0.33, RMSE = 0.25%, RPD = 0.24 
respectively for calib ration. Wood density in calibration set 
had R2 = 0.61, RMSEP =0.21 gcm-3 and RPD= 0.67 (Tab le 
2). For MIR region, the validation dataset for wood density 
was good with R2 = 0.79, RMSEP =0.14 gcm-3 and RPD= 
0.93. While the calibration dataset had R2 = 0.66, RMSEP 
=0.20 gcm-3 and RPD= 0.70. The validation dataset of 
carbon and nitrogen had R2 = 0.59, RMSE = 0.02%, RPD = 
71.00 and R2 = 0.54, RMSE = 0.21%, RPD = 0.29 
respectively (Table 2). For wood density predictions using 
NIR spectra, several wavelengths were found to be 
associated with the models; these wavelengths were 
primarily around 5700-5630 cm-1 and 5650-5600 cm-1, 
4850-4780 cm-1, 4400-4380 cm-1 and 4220-4180 cm-1 at 
7168, 7143, 5935, 5797, 4545 and 4280 cm–1 associated 
with C–H stretching and/or deformat ion of CH, CH2, CH3, 
aromat ic groups in lignin, –CHO and cellu lose. The region 
around 7000 to 6000 cm-1is dominated by the 1st overtone 
of O–H stretching vibrations arising main ly from 
carbohydrates[24]. Better predict ions were found on 
extending the spectral region  to 11000 cm-1, within this 
region notable wavelengths  were found at 8230 cm-1, 
8650 cm-1and 8450 cm–1 these bands are associated with 
2nd over-tone of C–H stretching vibrations from –CH3 
groups[24]. 4296-4288 cm-1was proposed to be for 
hemicellulose[24]. 

In MIR region, calculated principle components (PCs) 
were affected by absorption at 1890 and 700 cm-1, which 
may be attributed to COOH groups (Figure 2). PC2 was 
affected mainly by absorption between 3,500 and 2,500 
cm-1 (attributable to CH3 groups) and PC3 by absorption at 
3,670, 3,300, and 2,350 cm-1 (attributable to CH2 and CH3 
groups). The h igh peak around 1350 cm-1 is due to C–H and 
O–H bending vibrations[23]. The sharp band intensity at 
1739 cm-1 (Figure 2)is attributed to the stretching of the free 
carbonyl groups (cellulose, hemicellulose, and lignin[25]. 
Both carbon and nitrogen had specific absorption 
bands/relevant wavelength that were important in their 
predictions. For carbon, these wavelengths were 7353, 7168, 
7143, 5935, 5797, 4545 and 4280 cm–1 primarily  associated 
with –CH3[26]. Wavelengths range of 8230 cm–1 has been 
associated with cellulose[26]. O–H stretching and 
deformation of ROH at 7092 and 4807 cm-1 were also 

useful. 
These wavelengths were also reported by Fagan et al.[26].  

The wavelengths used in nitrogen calibration were 5263, 
5208 and 4926 cm-1which are associated with C-O 
stretching (2nd overtone) of –CO2H, CONH, and CONH[26]. 
However, Mclellan et al.[27]reported 7849, 4205, 4785 and 
8130 cm–1 wavelengths in nitrogen determination of 
decomposing leaf material. Additional loadings were 
observed at around 6993 cm–1 attributed to N–H stretching 
(1st overtone) of CONH2. MIR spectra for carbon and 
nitrogen were predicted with regions around 1595, 
1510/1507, 1270 and 1230 cm-1 and are assigned to 
characteristic bending or stretching of different groups of 
lignin [25]. Slopes for the PLS using the validation and 
calibrat ion datasets results of the measured carbon and 
nitrogen versus the predicted values showed poor 
distributed along the 1:1 line. However, the use of 
11000-4000 cm-1  spectral range d id not improve the 
distribution resulting in over pred iction of both carbon and 
nitrogen (Figure 3a). Whereas, the slopes for the 
PLSR-MIR wood density using the validation dataset were 
found to be close to the 1:1 line of the calibrat ion models  
indicating good validations (Figure 3b). 

The results from this study shows that MIR spectra 
performed slightly better than NIR spectra but could meet 
the minimum threshold to recommend for predict ion of 
wood density, carbon and nitrogen contents. However, the 
performance of NIR in pred icting carbon and n itrogen were 
poor compared  to fair predict ions obtained using MIR. This 
was despite the fact that RPD was very large for carbon 
content (68.50-71.00) and low RMSEP (0.02%). The RPD 
value was used to evaluate the quality of the validation and 
the higher the RPD value, the better the pred ictive power of 
the calibrat ion model[28],while low RMSEP suggested the 
accuracy of the model. Superiority of the MIR region could 
be due to more detailed chemical information from the MIR 
spectra. 

Improved performances of NIR models were obtained 
while using 11000-4000 cm-1 spectra range instead of 
8000-4000 cm-1 fo r the NIR reg ion. This could be due to 
wavelengths range of 8230cm–1 associated with 
cellu lose[26]. Mathematical processing of the raw spectra 
using Savitzky–Golay first derivative algorithm enhanced 
both MIR and NIR spectral features and prepared the data 
for chemometrics modelling by removing the same signal 
between the two variables.  

Fujimoto et al.[29]used second derivative spectral 
pre-treatment in  predicting wood density of oven dried 
Larix kaempferi and foundR2=0.79-0.89, SEP=24-26 kg/m3. 
However, for heterogeneous material such as wood, R2 
values of 0.75 and above are considered good[30], thus our 
results are unsatisfactory for wood density, carbon and 
nitrogen. 

3.3. Limitations to Use of Infrared Spectroscopy  

Infrared spectroscopy continues to be a vital technique 
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for tree analysis for over years. Each  IR spectrum of a plant 
sample contains a considerable amount of information and 
represents fingerprint of a sample[31].  

The absorption peaks corresponds to the frequencies of 
vibrations between the bonds of the atoms making up the 
material[31].Different materials have unique combination 
of atoms, with no two compounds producing similar 
infrared spectrum[31]. 

As a result, infrared spectra plus modern software 
algorithms can result in a positive identificat ion (qualitative 
analysis) of different kind of material. In addit ion, the size 
of the peaks in the spectrum direct ly indicates the amount of 
material present[31]. One key advantage of IR is that 
acquisition of the spectra can be done to any sample in any 
state within a short time and data obtained.  

The potential of IR spectroscopy to predict the 
concentrations of various constituents or functional 
properties of plant materials more rapidly  and at a  lower 
cost also adds to its advantage. However, the technique has 

had limited  applicat ions in integrative fields such as 
agroforestry, ecoagriculture and landscape ecology[2]. 
These fields include study of tree, crop and livestock 
production in farms and landscapes and their interactions 
with ecosystems and the general environment[2]. 

Every step in the procedure of IR calibration can generate 
errors, from sample collection, to analysis, to spectral 
preprocessing and interpretation. Plant-to-plant variation 
can contribute to considerably high variation in sample 
data[32]. Samples drying and drying conditions contribute 
to the loss of non-structural carbohydrates[33]. Sample size 
reduction by milling or grinding reduces particle size and 
enables weighing of a homogeneous sample, but not all 
grinders reduce samples to the same particle size and there 
can be loss of as much as 27% of the samples[32]. 

Each of steps undertaken would, if not controlled result 
in errors in analyt ical procedures and are therefore, 
potential sources of errors in IR predictions. 

 

 
Figure 2.  Plot of factor loading values for the principal components used to predict wood density from MIR spectra  

 

Figure 3.  Near-infrared (a) and Mid-infrared (b) predictions of wood density using calibration and validation datasets. The dash-dot lines represent 
regression lines for the calibration dataset and the solid straight lines represent regression lines for the validating dataset. The lines indicate 1:1 
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4. Conclusions 
The obtained models showed fair predictive ability for 

wood density, and poor predictions for carbon and nitrogen 
contents. Our results suggested that IR techniques coupled 
with part ial least squares method holds promise for rapid 
and cost effective method to predict both physical and 
chemical properties of wood as alternative to the chemical 
analysis.However, d ifferent spectral pre-t reatments can be 
further tried toimprove the calib ration models. 
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