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Abstract  Android is one of the mobile operating system. Rapidly increasing of devices which used android as platform, 
make the Android is the best target to cybercriminal. Besides, Android offers many applications and these applications can 
get from other than Google Play. This make the cybercriminal easier develop malware and easily spread the malware to user. 
Malware can be made by injecting the malicious code into benign applications. Therefore, this research will use static 
analysis technique. Static analysis technique will extracted the benign and malware application to get their source code. The 
source code in benign and malware will be compared and categorized into API and manager classes. Then the most frequent 
API and manager class used in malware will be detected. 
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1. Introduction 
Mobile devices such as smartphone and tablet computer 

gained popularity among users nowadays. Users use their 
mobile device for many of the same purpose as desktop 
which to browse the Internet, make the online banking, 
update status in social networks, search location and others.  

Android is one of the mobile operating system. Android is 
an open source mobile operating system developed by Open 
Handset Alliance (OHA) which led by Google. Android is 
based on a modified Linux 2.6 kernel [1]. Android is 
designed primarily for touch screen mobile devices. 

 

Figure 1.  Distribution of Mobile Malware in 2013 by Platform [11] 

In figure 1, it shows the distribution graph of mobile  
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malware detected in 2013 by platform. The graph shows that 
the most infected platform is Android. 

There are three factors needed before an increase of 
mobile malware will occur, which are, an open platform, a 
ubiquitous platform and the cybercriminal motivations [13]. 

Android is an open source mobile platform. Besides, 
Android allows users to develop Android application and the 
application can be published without review by third party 
[5]. Therefore, the cybercriminal take this opportunity to 
develop malware in Android platform.  

Other than that, Android capability to run on different 
devices with different version exposes to varied security 
issues since the customization of Android security is done by 
device manufacturer [5]. Therefore, Android become target 
for cybercriminal because of Android is widely use by many 
products and make the Android is a ubiquitous platform.  

Google Play, Android official market share, offers 
thousands of applications to users either the applications is 
free or paid. These applications including games, social 
networking, multimedia and etc. However, Android follows 
a laissez-faire philosophy, which means users can get 
Android applications from variety of source beyond the 
Google Play [2]. Because of this, cybercriminal can develop 
malware and distribute it to users easily. 

Cybercriminal can easily develop a malware by injecting 
the malicious code in benign Android application. For this 
reason, this research will be conducted using static analysis 
technique.  

Static analysis technique is using the reverse engineering 
method where the source code of application is extracted. 
This technique involves the automatic application code 
lookup which means, the required content is detect without 
running or testing the applications [3]. This makes the 
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technique faster in detection of malware. Other than that, 
static analysis technique can get high detection rate and 
consume fewer resources [3]. 

This research will focus on Android Package Index (API) 
and manager classes. Android contains of 238 of APIs [4]. 
Under all these 238 APIs, there are many classes which rich 
of framework to help developers develop their application. 
But this research will focus on manager classes of APIs. The 
managers are provided in application framework layer [10]. 
Figure 2 shows the Android application framework layer and 
its blocks which contain managers. 

Application framework layer is the most vulnerable layer 
in Android architecture as stated in figure 3. The 
vulnerability of application framework layer makes the layer 
is easier for cybercriminal to inject malicious code on it. 

Besides application framework layer of Android contains 
most of users’ sensitive information. Therefore, 
cybercriminal will used malware on this layer in order to get 
the user’s information.  

As example, Android.Tapsnake which pretending to be 
just a game of snake while at the background, the application 
is uploading the GPS (Global Positioning System) 
coordinates of the device every 15 minutes [13]. The 
coordinate is send back to criminal to locate the user’s 
location.  

Android device is allowed to determine current location 
via GPS, cell tower or wifi network [18]. The 
android.location is API used to determine current location 
[18]. In the Android.Tapsnake, the android.location API is 
used to activate the GPS. 

Android.FakePlayer is another example of malware. This 
malware sends multiple messages to two short-codes, 
premium rate number [13]. This malware sends two 
messages at premium rate to two numbers which, the first 
number rate is approximately $3.50 and the second number 
rate is at $6 and makes it $13 each time the application is 
executed [13]. Once the messages are sent, user is billed but 
not realize about the sent messages since the messages are 
sent in the background without prompting the user [13]. 

In this scenario, the android.telephony API is called in the 
source code of the malware. In the android.telephony, there 
are SmsManager class which manage SMS (Short Message 
Service) operation such as sending data, text and pdu SMS 
messages [17]. In this malware, the SmsManager is used to 
send the messages to the two short-codes, premium rate 
number.  

This paper is aim to perform static analysis in both 
malware and benign Android application. Then, from the 
extracted file, the source code of malware and benign will be 
compared and categorized. There are two categories, which 
are API and manager classes. The most API and manager 
class used in malware and benign will determine at the end of 
this research.   

This paper is organized as follows: in section 2, the related 
works is discussed; in section 3, the methodology of this 
research is presented; in section 4 the result for this research 
is discussed; and finally in section 5, the conclusion of this 
research and the future work is presented. 

2. Related Works 
Android applications malware detection can be analyze by 

using two techniques which are static analysis technique and 
dynamic analysis technique. There are many researches 
about malware detection in Android applications using either 
dynamic analysis or static analysis technique or both. 

In [6], [7] and [8], the dynamic analysis technique is used. 
Meanwhile in [3], [14] and [15] the static analysis technique 
is used. 

In [6], permissions in manifest file are used. These 
permissions are then categorized into two groups, standard 
built-in permissions and non-standard built-in permissions. 
The Control Flow Graph (CFG) is then used to detect the 
malware.  

In [7], some Android applications which suspected to be in 
Command and Control (C&C) Server are downloaded. Then 
a relationship graph using Gephi is constructed. Sensitive 
API invoking and declares Intent-filter are searched within 
the graph. A* algorithm is used to find a least-cost path in 
benign and malware from graph. 

In [8], the flow of system calls of applications is 
monitored. The flow of applications system calls is 
monitored across the layer of Android architecture. The 
malicious flow is monitored to compare with the normal 
flow of Android applications.   

In [3], Intents in Android applications are used to 
categorize the application either benign or malware. These 
Intents are got by extracting the Android application .apk file 
using APKTool to get the byte code. The custom C++ is then 
used to tag the feature. After that, another custom C++ is 
used to categorize. The tagged feature and categorization 
used to point out the features of malicious applications. 

 

 

Figure 2.  Android Application Framework Layer [1] 
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Figure 3.  Vulnerabilities of Android Architecture Layer [5] 

[14] is a research where to compare the 10-Fold Cross 
Validation Scheme, which often use in malware detection, 
with reality. The dataset used in this research were 
applications from Android Market, collecting known 
malware from Genome project and malware labelling from 
VirusTotal. The applications from dataset are extracted using 
static analysis. After that, the model is classified into known 
malware and testing set. Then, the classification validation 
scenario is done and grouped into 2 (two) scenarios which 
are: 10-Fold Cross validation and Validation in Wild. 

In [15], machine learning is used to classify the malware 
applications. The .apk file of Android application is 
extracted to get the real permission required by application, 
and adopted the features for malware detection. A few 
sample features are used as train dataset by using K-Means 
clustering algorithm. After the train data is developed, the 
decision tree is used to each cluster to classify the malware 
applications. 

Both dynamic and static analysis techniques are used in 
[16]. The static analysis is used by extracting the manifest 
file to get the permission source code used on applications. 
The manifest file was extracted and decrypted by using 
Android Asset Packaging Tool (aapt). Dynamic analysis is 
used in [16] to monitor the topology of input space of 
application. Self-Organization Map (SAM) is used in order 
to monitor the application input space. The input space then 
calculated using the Euclidean distance criterion. The results 
in [16] are based on Permission Protection Level: Normal, 
Dangerous, Signature and SignatureOrSystem. 

DroidAPIMiner [12], used static analysis technique by 
analyze benign and malware using Androguard. 
DroidAPIMiner mining the API level features to detect the 
critical API calls, their package level information and their 
parameter. DroidAPIMiner used large of dataset of malware 
and benign. DroidAPIMiner identified the most frequently 
used APIs in malware.   

The most frequently APIs used in benign and malware 
from dataset will identified. After that, the API calls that are 
exclusively invoked by third-party packages like 
advertisement is removed. If the API is frequently in both 
malware and benign, the data flow analysis is conducted. 
This data flow is used to recover the API parameter value 
and selected only the APIs that invoke dangerous values. 
Then, the most frequently APIs in malware is detected.  

This research focused on APIs and manager classes. 
DroidAPIMiner went through every class and parameter of 
the APIs, but this research only focus on manager classes. 

Rather than collected random malware and benign 
applications, this research compared the APIs used in the 
identical malware and benign applications. This comparison 
will gathered the most frequently used APIs in malware and 
benign applications. Then the APIs with manager classes 
will be further compared in both malware and benign 
applications. 

3. Methodology  

Figure 4 shows the methodology used in this research. 
This research compare the malware and benign applications 
which identically to each others. This means, both malware 
and benign applications in this research are identical but the 
malware applications were already injected by malicious 
code. 

This methodology has two (2) phases which are feature 
extraction phase and feature comparison phase.  
-Feature Extraction 

In this phase, both malware and benign applications will 
be extracted by using Androguard, a reserve engineering tool. 
The antivirus will be injected to the benign applications 
before they are extracted. This is done to make sure the 
benign applications are really clean from the malware. The 
AVG antivirus is used since it is the most popular antivirus 
detector in [9].  
-Feature Comparison 

After the malware and benign applications are extracted, 
the source code between malware and benign applications 
will be compared. Then the differentiation of source code 
between malware and benign applications will be detected.  

Then, the parameter is categorized into two categories. 
The categories are APIs and manager classes. There are 238 
APIs in Android from level 1 API to level 22 API. The first 
categorization will detect all of the APIs involved in both 
malware and benign applications.  

After that, the APIs classes which involved with manager 
classes will detect. The examples of API with manager 
classes are Telephony Manager, SmsManager, Power 
Manager, Connectivity Manager, and Notification Manager. 

The results of malware and benign applications from both 
categories will be drawn using graphs. The frequency of 
APIs and manager classes categories will be compare from 
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benign and malware applications to detect the most frequently used API and manager classes by malware. 

 

Figure 4.  Research Methodology 

 

Figure 5.  Result of APIs Used in Benign Applications 
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Figure 6.  Result of APIs Used in Malware Applications 

 

Figure 7.  Result of Manager Classes Used in Benign Applications 
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Figure 8.  Result of Manager Classes Used in Malware Applications 

4. Results  
As the preliminary test, 7 benign and 7 malware 

applications are tested. The benign and malware used in this 
test are identical.  

Table 1.  Top 3 APIs Obtained From Result 

API Category 

No. Benign (%) Malware (%) 

1st java.lang 20.28 java.lang 28.5 

2nd 
android.content 12.39 android.content 14.25 

java.net 12.39 android.telephony 14.25 

Table 1 shows the top 3 APIs used by benign and malware 
applications from result. The java.lang API is the most 
frequently used API in both benign and malware applications. 
The android.content is also the second most API used for 
both benign and malware applications. However, the android. 
telephony is the second most used API in malware while in 
benign the second most API used is java.net (second place 
share the same percentage). 

Table 2.  Top 3 Manager Classes Obtained from Result 

Manager Classes Category 

No. Benign (%) Malware (%) 

1st PowerManager 39.34 SmsManager 32.97 

2nd ConnectivityManager 29.51 TelephonyManager 26.37 

3rd 
LocationManager 

9.84 ConnectivityManager 15.38 
PackageManager 

Table 2 shows the top 3 manager classes used by benign 
and malware applications from result. Power Manager is the 
most used manager class in benign applications while 
SmsManager is the most manager class used in malware 
applications. 

From the result, the SmsManager and the Telephony 
Manager is the first and second top manager class used in 
malware. Both of these manager classes are the manager 
class of the android.telephony API. Although the 
android.telephony is the second most used API in malware, 
but its manager classes is the first and second manager class 
used by malware. Therefore, the android.telephony can be 
said as the API which often used by malware.  

5. Conclusions and Future Work 
From the results, it shown that, the SmsManager and 

Telephony Manager are the top two most manager classes 
used by malware. Both of these manager classes are the 
manager class in android.telephony API [17].  

As conclusion, android.telephony with manager classes of 
SmsManager and Telephony Manager are the most used 
APIs and manager classes in malware applications. 

Therefore, when used identical benign and malware 
applications, the difference of frequency of APIs and 
manager classes for both benign and malware can be 
detected. Besides, the most frequently used API and manager 
class too will be detected. The result in this research shows 
the relationship between the most used API and manager 
classes in malware. 
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As implication, the result from this research is very useful 
especially for Android applications developers to take some 
awareness when using the Android APIs and manager 
classes. Besides, the vulnerable of some APIs and manager 
classes can be determine since those APIs and manager 
classes are easily exploit by cybercriminal. Therefore, some 
security features can be enhanced in those APIs and manager 
classes.  

As the future work, there will be more identical malware 
and benign applications will be used in this research. The 
machine learning tool will be used in this research to classify 
the APIs and manager classes of benign and malware. 
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