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Abstract  The stability and electronic structure of a single monatomic Silicon nanowire has been studied using density 
functional theory. The Si nanowire undergoes two structural rearrangements when it  undergoes compression, i.e., zigzag 
configurations. Cohesive energy and bond length of Si nanostructures (chains and monolayers) are examined by using 
Generalized geometry approximation and Local density approximation. The relation between low dimensional 1D structure 
(chain) to high dimensional 3D bulk Si is estimated.  
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1. Introduction 
Nanowire-based photovoltaic structures are currently of 

great interest due to their potential to reduce manufacturing 
costs while allowing keeping good efficiencies and device 
li fet imes .  Nanowires  have two  quan tum-confined 
dimensions and one unconfined dimension. Hence, the 
electrical conduction of nanowires is different from their 
bulk counterpart. In nanowires, electronic conduction takes 
place due to bulk conduction and tunneling mechanism. 
However, due to their high density of electron ic state, 
dependency of band gap on  diameter, enhanced surface 
scattering of phonons s and electron, increased excitation 
binding energy, h igh surface to  volume ratio  and large 
aspect ratio, nanowires of metals and semiconductor exhib it 
unique elect rical, magnet ic, opt ical, thermoelect ric and 
chemica l  p ropert ies  in  co mpar is on  to  thei r  bu lk 
counterparts[2]. Due to interesting properties of nanowires 
it has lot of applications in the fields of electronics, optics, 
magnetic medium, thermo electronic, sensor devices etc 
(Tonucci et al 1992; Whitney et al 1993). The fundamental 
issues in building a nanowires are ability to control the scale 
(s ize) o f the s ystem, ab il ity  to  ob tain  the requ ired 
composition (not just the average composition - but details  

 
* Corresponding author: 
sana.husain78@gmail.com (Sana Kausar) 
Published online at http://journal.sapub.org/scit 
Copyright © 2013 Scientific & Academic Publishing. All Rights Reserved 

such as defects, concentration gradients, etc), ability to 
control the modulation dimensionality and during the 
assembly of the nano-sized  build ing blocks, one should be 
able to control the extent of the interaction between the 
layers as well as the architecture of the material 
itself[1].Many theoretical and experimental studied has 
already been carried out to study the structural and electronic 
properties of nanaowires and their application. Erik C. 
Garnett et.al studied Nanowire So lar Cells[3] .B.Lassen et.al 
studied the Electronic structure of free-standing InP and 
InAs nanowires[4]. Jaya Sarkar et al.[2] studied the 
properties, applications and synthesis of nanowire via porous 
anodic alumin ium oxide template. Sánchez-Portal et al.[5] 
predicted the spinning zigzag  shape of monatomic gold  wires, 
and explained current transmission electron microscopy 
(TEM) results[6]. Relatively a few studies have focused on 
other metal nanowires. The expectation that Si nanowires 
should also have unique properties is the motivation of this 
work. Rubio  et.al[7] took the first step to simulate the one 
dimensional Al atoms chains in BN nanotubes and showed 
interaction effects.  Jin -Cheng Zheng et al.[11] perform first 
principles calculations to address the questions of structure 
and stability, as well as the evolution of electronic structure 
of an infinite A l monatomic wire under compression. In 
present study the effects of density functional on cohesive 
energy and bond length of Si nanowires along[1 1 1] 
direction is analyzed and discuss the link from low 
dimensional 1D structure (chain) to high dimensional 3D 
bulk structure of Si metal. 

Table 1.  the cohensive energy, ecoh (ev/atom), and bond length ofsiatoms, d(al-al) (in å) obtained by total energy package, castep, with generalized 
geometry approximation -pw91 and local density approximation using an ultrasoft pseudopotential 

Systems Dimension Ecoh (eV/atom) d(Al-Al) (Å) Bulk Modulus 
(GPa) Enthalpy (eV) Pressure GGA LDA GGA LDA 

Zigzag chain (A) 1D (CN=2) 3.38 3.38 2.34702 2.34881 14.9163945 -1.19129920E+003 0.303 
Zigzag chain (B) 1D (CN=4) 3.50 3.57 2.42133 2.42581 14.0061717 -2.12690127E+003 0.0430 

[111] 2D (CN=6) 3.51 3.60 2.35953 2.38928 32.74494 -5.95856231E+003 0.0229 
[110] 2D (CN=2) 3.59 4.62 2.374 2.417 38.58832 -2.82426536E+003 0.0140 
[100]  3.37 4.01 2.37147 2.3812 19.90139 -1.15311773E+003 eV 0.0104 

Bulk Si 3D -5.461 2.35156 97.8[20] 4.14eV[21]  
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2. Method of Computations 
Total energy package, CASTEP[9,10], has been used to 

carry out the calcu lations of band structure and examine the 
density functional effect of the binding energy and bond 
length of Si nanowires. We performed systematic studies on 
Si nanostructures ranging from  atomic chains (1D), 
monolayers (2D) to bulk Si(3D) with generalized geometry 
approximation pw91[11] and local density approximation 
using an ultrasoft pseudopotential[12]. Special k points are 
generated by the Monkhorst-Pack scheme[13]. The  
(1x1x40) k points are used for atomic chains, and 
Monkhorst-Pack  k point with spacing of 0.05Å-1 are 
generated for monolayers and bulk Si.The wire calcu lations 
were performed by apply ing generalized geometry 
approximation  method within the local density functional 
theory. The exchange correlation potential has been 
approximated by Generalized Geometry Approximation 
using Perdew Burke Ernzerhof exchange correlation 
functional both for spin-polarized  and spin-unpolarized 
cases. For part ial occupancies, we use Gaussian smearing 
method. The adopted smearing width is 0.1 eV for the atomic 
relaxation and 0.05 fo r the accurate band structure analysis 
and density of states calculations, here total energy / atom 
convergence tolerance is 0.1000E-05 eV. During the 
self-consistent iterations, 40 special k-points in the Brillouin 
zone are used to calculate the screen potential and charge 
density. The chain configurations of Si atoms studied are the 
monoatomic zigzag chain and di-atomic chain, as shown in 
Fig. 1(A) and Fig.1(B). We have performed first-principles 
plane wave calculations[11,12] with in DFT[13] using 
ultrasoft pseudopotentials[12,14]. The supercell concept is 
used to generate a three-dimensional periodic tetragonal 
lattice with chains along the z axis separated in the x and y 
directions. These separations between the chains are as wide 
as 4Å, which is found to be large enough to separate the 
chains, thereby effectively  removing inter-chain interactions. 
The lattice constants of the tetragonal super cell in the x-y 

plane are taken as asc=bsc=26 Å and csc=9.406 Å along the z 
axis.  

For the double unit cell calculations, the lattice constant is 
taken as csc=2co to prevent the interactions between the 
nearest neighbor impurity atoms located in ad jacent cells. A 
plane wave basis set with kinetic energy 230 eV has been 
used. All atomic positions and lattice parameters are 
optimized by using the BFGS where total energy and atomic 
forces are minimized. The convergence or energy is chosen 
as 10-4 eV between  two ionic steps, and the maximum force 
allowed on each atom is 0.3000E-01eV/A. The band 
structures around the Fermi energy levels are displayed in 
Fig.3 (a), Fig.3 (b) and Fig.3(c) fo r[111],[110] and[100] 
rectangular cross sectional Si nanowires. Note that for[111] 
rectangular cross sectional nanowire band gap is 3.229 eV, 
for[1 1 0] and[1 0 0] rectangular cross sectional nanowire 
band gaps are 3.910eV and 3.893eV respectively. 

3. Results and Discussions 
Structural optimization for the free-standing Si atoms 

zigzag chain is performed by using DFT using generalized 
geometry optimization, as shown in  Fig. 1(A). The 
calculated bond length of the Si chain by using GGA is 
2.34702. This value is less than the standard bond length of 
bulk Si of 2.3516 Å due to a reduction in the coordination 
number going from the bulk system to the linear chain[8]. In 
agreement with the result in ref.[15], It is found that the 
linear go ld wire have tendency to dimerize[16]. surprisingly, 
such  tendency is also noticed in Al(110) and Au (110) 
surfaces[8]. The former stabilizes at the (1x1) phase, while 
the later reconstructs into a (2x1) surface structure with 
dimerization[17]. When we move alternate Si atoms slightly 
away from their original linear positions and then perform 
full optimization, the Si chain reaches an optimized zigzag 
geometry, as shown in Fig. 1 (A), similar to the Au chain[18]. 
It is observed that the planar zigzag structure is more stable 
than the linear structure. 
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Figure 1.  Geometrical configuration of Al chains:  (A) first zigzag energy minimum structure with angle=140o, (B) transition zigzag chain with 
angle=100o, (C) global energy minimum structure, di-atomic chain (triangle) with angle=60o.stretched, and the bond length increases in the zigzag 
geometry compared to the linear structure 

This behavior is similar to  that of Au[18] and A l[11], but 
is different from that of K and Ca wires[19]. Sanchez-Portal 
et al.[19] observed that the differences between Cu ,Au and 
K, Ca might be related to the presence of d bands at the 
Fermi level fo r the linear conformat ion of Au and Cu wires. 
on the other hand, only s and p bands are there in the 
electronic structure of Si nanowire and there is no d  band in 
the band structure of Si nanowire, in p resent study it is 
observed that the zigzag geometry does not always occur in  d 
bands metal wires it may also occur in metal wires without d 
bands such as Si. Jin-Cheng Zheng et al.[15] observed the 
same result in which they found that the zigzag geometry 
occur in  Al chain. In ref.[19], only Au  is found to present two 
zigzag  energy minima whilst K, Ca and Cu  only stabilize in  a 
single zigzag minimum as a function of the wire length. 
Surprisingly, it is found that Si nanowire stabilize initially 
into a global minimum of zigzag structure which have 
coordination number =4, as shown in Fig. 1(B). Therefore Si 
represents a system without d bands that displays two zigzag 
energy minima in  a metal nanowire. The reason behind such 
anomalous behavior might be related to its band structure. It 
can be seen in Fig. 2(a) that the bond length first decreases 
and then increases when the wire is contracted to the second 
zigzag energy minimum (di-atom chain). The later can be 
understood in terms of the change in coordination number of 
the nanowire. In the first zigzag energy min imum A, 
coordination number = 2 and the bond length = 2.44027 Å, 
which is slightly larger than the linear equilibrium bond 

length. At the second zigzag energy min imum C, the 
coordination number increases from 2 to 4, causing the bond 
length to are listed in Table 1. It is observed that the cohesive 
energies and bond length calculated by generalized geometry 
approximation are smaller than those calculated by local 
density approximation. The effect of density functional 
(generalized geometry approximat ion and local density 
approximation) on cohesive energies is more significant than 
bond length. The fact that the cohesive energies obtained 
from generalized geometry approximation are more closer to 
experimental value than the cohesive energies obtained from 
LDA, which  shows that the density functional is improved 
form local density approximat ion to generalized geometry 
approximation in Si. We compare the energy and bond 
length of zigzag chains (A, B, and C), and three monolayers 
in[100],[110] and[111] orientations (as shown in Fig. 3), as 
well as bulk Si to study the relation between the atomic chain 
and bulk Si. The dimensions of these systems range from 1D 
to 3D. It is interesting to observe the energy and bond length 
change as a function of dimension. The cohesive energies 
and bond length of Si generally increase from 1D to 3D 
(bulk). The[1 1 1] monolayer is an exception due to its larger 
geometrical relaxation and its significant change in size. The 
data for monolayers presented in Table 1, is obtained from 
optimized structures with fixed angles, i.e ., the geometry of 
the nanowire is fixed. Performing the full optimizat ion both 
variable cell size and shape, the structures of monolayers 
along[111] orientations change a little. 
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Figure 2.  variation of total energies, bond length, and bond angle of monoatomic Si nanowire as a function of its length per atom 
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CASTEP Band Structure  

Band gap is 3.910eV 
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CASTEP Band Structure  

Band gap is 3.893eV 



 Science and Technology March 2013, Special Issue: 32-40 39 
 

 

 
 (c) 

Figure 3.  Top view of (a) (111) Si nanowire, (b) (110) silicon nanowire and (c)[100] Si nanowire with their density of states 

4. Conclusions 
Present study reveals that Si nanowire,  shows two  

energy minima as a function of wire length, like Au and 
Al[11] but quite different from another transition metal Cu 
and simple metals K and Ca. The stability of a structure is 
explained by its electronic structure. The 3p bands in Si 
nanowire p lay important ro le in its stability. The effects of 
generalized geometry approximation and local density 
approximation on cohesive energy and bond length of Si 
nanostructures are also analyzed and it is observed that that 
the cohesive energies obtained from generalized geometry 
approximation are more closer to experimental value than 
the cohesive energies obtained from LDA, which shows that 
the density functional is improved form local density 
approximation  to generalized geometry approximation  in  Si.. 
The link from low dimensional 1D structure to high 
dimensional 3D bulk Si is estimated and the d imensional 
effect is discussed. 

 

REFERENCES 
[1] H.Hofmann, Nanomaterials, Powder Technology 

LaboratoryVersion 1 Sept 2009 

[2] Jaya Sarkar, Gobinda Gopal Khan† and A Basumallick, Bull.  
Mater. Sci., Vol. 30, No. 3, June 2007, pp. 271–290. 

[3] Erik C. Garnett, Mark L. Brongersma, Yi Cui, and Michael 
D. McGehee Annual . Rev. Mater. Res. 2011. 41:269–95 

[4] B. Lassen, M. Willatzen, R. Melnik, L.C. Lew Yan Voon, J. 
Mater. Res., Vol. 21, No. 11, Nov 2006 

[5] D. Sánchez-Portal, E. Artacho, J. Junquera, P. Ordejón, A. 
García, and J. M. Soler, Phys. Rev. Lett. 83, 3884 (1999). 

[6] H. Ohnishi, Y. Kondo, and K. Takayanagi, Nature (London) 
395, 780 (1998). 

[7] A. Rubio, Y. Miyamoto, X. Blasé, M. L. Cohen, and S. G. 
Louie, Phys. Rev. B. 53, 4023 (1996)  

[8] L. Pauling, The Nature of the Chemical Bond (Cornell 
University Press, Ithaca, 1948), Chap. XI. 

[9] M. C. Payne, et al., Rev. Mod. Phys. 64, 1045 (1992). 

[10] V. Milman, et al., Int. J. Quant. Chem. 77, 895(2000) 

[11] M. C. Payne, M. P. Teter, D. C. Allen, T. A. Arias, and J. D. 
Joannopoulos, Rev. Mod. Phys.  64, 1045 (1992). 

[12] G. Kresse and J. Hafner Numerical computations have been 
carried out using VASP software., Phys. Rev. B 47, R558 
(1993); G. Kresse and J. Furthmuller, ibid. 54, 11169 (1996). 

[13] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965); P. 
Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). 

[14] D. Vanderbilt, Phys. Rev. B 41, R7892 (1990). 

[15] Jin-Cheng Zheng, Hui-Qiong Wang, A. T. S. Wee and C. H. 
A. Huan, International Journal of Nanoscience 1(2): 159-169 
(2002). 

[16] N. Y. Skorodumova, S. I. Simak, Computational Materials 
Science 17, 178-181 (2000) 

[17] K.P. Bohnen and K.M. Ho, Surf. Sci. Rep. 19, 99-120 (1993). 



40 Sana Kausar et al.:  Structural and Electronic Properties of Si Nanostructures   
 

 

[18] D. Sánchez-Portal, E. Artacho, J. Junquera, P. Ordejón, A. 
García, and J. M. Soler, Phys. Rev. Lett. 83, 3884 (1999). 

[19] D. Sánchez-Portal, C. Untiedt, J. M. Soler, J. J. Sáenz, and N. 
Agraït, Phys. Rev. Lett. 79, 4198 (1997). 

[20] M. A. Hopcroft, W. D. Nix, and T. W. Kenny, "What is the 
Young's Modulus of Silicon?", IEEE Journal of 

Microelectromechanical Systems, vol. 19, Issue 2, pp. 
229-238, 2010. 

[21] Silicon Self-Diffusion in Isotope Heterostructures H.Bracht, 
E.E.Haller, R.Clark-Phelps: Physical Review Letters, 1998, 
81[2], 393-6 

 


