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Abstract  Secondary users are considered for using the licensed spectrum without causing harmful interference to the 
primary users in cognitive radios, which results in a challenge for spectrum sensing. Spectrum sensing is an ability of 
secondary users to independently detect spectral opportunities without any assistance from primary users. The methods based 
on standard analog-to-digital converters could lead to unaffordable high sampling rate or implementations for wideband 
spectrum sensing. Based on the compressed sensing theory, a wideband spectrum sensing method is presented. Gabor 
functions are selected to build the atom dictionary for exploring the sparse representation of the wideband signal. Matching 
pursuit algorithm is introduced to select the optimal atoms that can result in the most sparsity of representation. Finally, 
Wigner-distribution is used to reconstruct the spectrum of the wideband spectrum on the sparse representation. Simulation 
results show that this method can greatly decrease the sampling rate of the wideband signal and sense the primary user’s 
existence successfully. 
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1. Introduction  
Since cognitive radios(CR) are considered secondary 

users for using the licensed spectrum, a crucial requirement 
of cognitive radio network is that they must efficiently 
exploit underutilized spectrum without causing harmful 
interference to the Pus (primary users). Furthermore, PUs 
have no obligation to share and change their operating 
parameter for sharing spectrum with cognitive radio 
networks. Hence, cognitive radios should be able to 
independently detect spectral opportunities without any 
assistance form PUs. CR has emerged as one of the most 
promising candidate solutions to improve spectrum 
utilization in next generation cellular networks [1]. Spectrum 
sensing encompasses a collection of procedures intending to 
determine the occupancy state of a particular frequency band 
which is of great importance for CR. From the bandwidth of 
the spectrum of interesting, sensing techniques can be 
classified into two categories: narrowband and wideband. 
Usually, there are three popular sensing techniques: energy 
detection [2, 3], cyclostationary feature detection [4, 5], and 
compressed sensing [6, 7]. Energy or cyclostationary 
detection is based on a set of observations sampled by ADC  
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(analog-to-digital converter) at Nyquist rate in the band of 
interest. Different from narrowband spectrum sensing, 
wideband spectrum sensing aims to find more spectral 
opportunities over a wide frequency range and achieve 
higher opportunistic aggregate throughput in cognitive radio 
networks. However, conventional wideband spectrum 
sensing techniques based on standard analog-to digital 
converters(ADCs) could lead to unaffordably high sampling 
rate or implementation complexity, thus revolutionary 
wideband spectrum sensing techniques become increasingly 
important. Due to hardware limitations on the sampling 
speed, these sensing techniques are primarily used to sense 
one band at a time. To sense multiple frequency bands, CR 
users may need to scan the spectrum or use multiple RF 
frontends for sensing multiple bands. However, using these 
approaches for wideband sensing either causes long sensing 
delay or incurs higher computational complexity and 
hardware cost. Compressed sensing (CS) is a new type of 
sampling theory, which predicts that sparse signals can be 
reconstructed from what is previously believed to be 
incomplete information. Report says that localized temporal 
and geographic spectrum utilization is extremely low [8], 
which means CS is a promising candidate to realize 
wideband spectrum sensing. Recent studies on compressed 
sensing have led to a significant amount of work on 
wideband spectrum sensing based on sub-Nyquist sampling 
[9-14]. These work focus on exactly reconstructing the 
primary signal. However, the assumptions in most of the 
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work need to be relaxed for building a practical sensing 
algorithm. According to the sparseness of the wideband 
spectrum, sub-Nyquist sampling can be introduced to extend 
these methods. What’s more, CS is a transformation which 
mapping the signal from one space to another space, and the 
basis functions for transformation are critical for finding all 
the PUs’ spectrum while putting these methods into practice. 

Against this background, the novel contribution of this 
paper is that a CS sensing algorithm is presented to sense 
wideband spectrum. Considering the translation invariance 
requirement for sensing spectrum, Gabor wavelet is 
introduced to construct the atoms dictionary which is the 
basis for signal transformation, and matching pursuit theory 
is used to exploiting the optimal atoms for signal 
representation. 

The rest of the paper is organized as follows. Section 2 
introduces the system model. Section 3 proposes a wideband 
spectrum sensing algorithm based on matching pursuit 
theory. Simulation results are presented in Section 4, and 
conclusions are given in Section 5. 

2. System Model 
Suppose that CRs aim to exploit spectral holes within 

frequency band 0 W (Hz). The received signal at the CRs 
is first down-converted to baseband before further signal 
processing and decision making. Without loss of generality, 
we consider only the equivalent baseband received signals 
( )x t  throughout the paper. The process of cooperative 

sensing starts with spectrum sensing performed individually 
at each CR user called local sensing. Typically, local sensing 
for primary signal detection can be formulated as a binary 
hypothesis problem as follows [15]: 

( )
( )
( ) ( ) ( )

0

1

                    

 

= 
⋅ +

n t , H
x t

h t s t n t , H
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where ( )x t  is the equivalent baseband signal received by 

secondary user during the sensing period, ( )s t  is the signal 

from the primary user, ( )n t  is stochastic noise, and ( )h t  

is the temporary amplitude gain of the channel. 0H  and 

1H  denote as the hypotheses of the absence and the 
presence of the primary user. By using sampling rate Nf  
over the observation time τ, we could obtain a discrete time 

sequence [ ]  0 1 1
 

= = − 
 



N

nx n x , n , , ,N
f

, in a vector 

form 1×∈Nx . Here, = NN fτ  is chosen to be a natural 
number. 

Document [8] reports that localized temporal and 
geographic spectrum utilization are extremely low. What’s 
more, compressive theory indicates that, if a signal is sparse 
in some basis, it can be reconstructed by using signal 
sampled with a sub-Nyquist sampling rate. Mathematically, 

by using sub-Nyquist sampling rate ( )2s sf f W , the 

compressed samples ( )1×∈ = 

M
sy y ,M f Nτ  can be 

written as 
= Φy x                    (2) 

where Φ  denotes an ×M N  measurement matrix. For 
spectrum sensing system, the goal is to reconstruct x  or its 
discrete Fourier transform (DFT) spectrum = xX F ( F
denotes a DFT matrix ) from y  [16]. 

3. Wideband Spectrum Sensing 
Algorithm Based on Matching Pursuit   

3.1. Compressed Sampling 

Let H  be a Hilbert space, we define a dictionary as a 
family ( ) ∈Γ= r rgD  of vectors in H , such that 1=rg , 

rg  are called time-frequency atoms. Depending upon the 
choice of time-frequency atoms, the decomposition might 
have very different properties.  

Let V  be the closed linear span of the dictionary vectors. 
Finite linear expansions of vectors in D  are dense in the 
space V . We say that the dictionary is complete if and only if 

=V H . When the signal space H  has a finite dimension 
N , the dictionary D  may have an infinite number of 
elements and it is supposed to be complete. Document [17] 
gives an efficient implementation of matching pursuit 
algorithm and prove that the norm of residues decays 
exponentially, which is very important for sparse 
representation. 

Suppose Γα  is a finite index set included in Γ  such that 
for any ∈x H   

∈Γ ∈Γ
≥

a
r rsup x,g sup x,g

γ γ
α            (3) 

Depending upon α  and the dictionary redundancy, set 
Γα  can be much smaller than Γ . The matching pursuit is 

initialized by computing the inner products ( ) =Γr r
x,g

α
. 

Let 0R x  be the residual vector after approximating x  in 
the direction of 

0rg , the vector x  can be decomposed into 

0 0
0= +r rx x,g g R x             (4) 

To minimize 0R x , such 
0rg is chosen that 

0
x,gγ  

is maximum 

0
∈Γ

≥rx,g sup x,g
α

γ
γ

α           (5) 

Let 0 =R x x , and the n th order residue ( )0≥nR x n  is 
sub decomposed into  
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1+= +
n n

n n nR x R x,g g R xγ γ           (6) 

where ∈
n

gγ D , which closely matches the residue nR x . 

After thm  iteration, the original signal can be represented 
as 

[ ] [ ]
1

0

−

=
= +∑ n n

m
n m

n
x n R x,g g R x nγ γ        (7) 

Once the vector 
n

gγ is selected, we compute the inner 

product of the new residue 1+nR x  with any ∈rg D , and 
an updating formula can be derived 

1+ = −
n n

n n nR x,g R x,g R f ,g g ,gγ γ γ γ γ   (8) 

The number of sub-decomposing times depends on the 
desired precision ε . The number of iterations is the 
minimum M  such that 
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The number M  depends upon the decay rate of nR x , 

and it is much smaller that N in most applications. There 
exists 
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and x  can be represented as 
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The compressed samples ( )1×∈ = 

M
sy y ,M f Nτ  

can be written as 

1 1
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where Ψ  is an observing matrix, and G  is a matrix 
constructed by M  optimal atoms. Assume 0g  and M
corresponding to the atoms and the indices that maximum 

0
∈Γ

≥x,g sup x,g
α

γ
γ

α , respectively, xR  and pR  

corresponding to the residual and the projection of the signal. 

kpR is the kth 
=Γ

 
 n n

a
x r rR ,g g

γ
, ε is the desired 

precision, and x  is the approximation of x . The main steps 
of compressed sampling algorithm are summarized below. 

 
 

Initialization: 

=xR x ,ε , { }=M empty , { }0 =g empty ,

{ }=pR empty  

Loop: 

when 
=Γ

 =  k n n
a

p x r rR maximum R ,g g
γ

  

Then add k  into M  set; add 
k

gγ into 0g  set; 

add 
kpR to pR  set; = −

kx x pR R R   

If ≥xR xε , return loop 

 =∑ k kpx R gγ   

 

3.2. Wideband Spectrum Reconstruction 
The next step is to reconstruct wideband spectrum. First, 

the Wigner distribution of signal x  is introduced, which is 
defined as 

( ) ( ) ( ) 22 2
∞ −
−∞

= + −∫ * j f
xW t, f x t x t e dπττ τ τ   (13) 

For a discrete signal ( )x n , defined over 0 ≤ <n N , the 
integral is replaced by a discrete sum 

( )
21
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The Wigner distribution of (14) is quadratic. Based on (11) 
and (14), we can get 
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The later item of (15) corresponds to the cross terms of the Wigner distribution. It regroups the terms that one usually tries 
to remove. The spectrum energy can be reconstructed by using 
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3.3. Construction of Atom Dictionary 
Now the key issue is how to select atoms and how to 

construct dictionaries with these atoms adapted to signal 
properties. To analyze signal structures of different sizes, it 
is necessary to use time-frequency atoms with different time 
supports. A time-frequency atom dictionary is complete, and 
a general family of time-frequency atoms can be generated 
by scaling. Wavelet is a good choice for time-frequency 
atoms because it can reveal many signal properties and it can 
lead to a fast computational algorithm. A wavelet is a 

function ( ) ( )2∈ g t L  with a zero average 

( ) 0
+∞

−∞
=∫ g t dt               (17) 

It is normalized ( ) 1=g t  and centered in the 

neighborhood of 0=t . A dictionary of time-frequency 
atoms is obtained by scaling ( )g t  by s  and translating it 
by u  

( ) 1
+∈ ∈

 − = =  
  

 

u,s
u ,s

t ug t g
ss

D      (18) 

These atoms remain normalized: 1=u,sg . 
Wideband spectrums are signals that have properties that 

rapidly change in time and frequency. The properties of a 
wideband spectrum are revealed by transforms that 
decompose signals over elementary wavelet atoms. 
Representing a wideband spectrum with its independent 
factors is a form of translation invariance that is important 
for spectrum sensing. Decomposition in orthonormal bases 
lack this translation invariance. Matching pursuits are 
translation invariance if calculated in translation-invariant 
dictionaries. An atoms dictionary D  is translation invariant 
if for any ∈gγ D , [ ]− ∈g mγ γ D  for 0 ≤ < Nγ . From 
the formula (7), it can be concluded that the matching pursuit 
of [ ] [ ]= −x m x mγ γ  selects a translation by γ  of the 

same vectors mgγ  with the same decomposition 
coefficients: 

[ ] [ ] [ ]
1

0

−

=
= − +∑

m
n m

n n
n

x n R x,g g m R x nγ γ γ γγ    (19) 

Thus, spectrums identification can be characterized 
independently of their position. Translation invariance is 
generalized as an invariance with respect to any group action 
[17]. Wideband spectrum sensing can be viewed as a 
frequency translation which is an example of a group 
operation. If the dictionary is invariant under the action of a 
group, the pursuit remains invariant under the action of the 
same group. Among various wavelet bases, Gabor functions 
provide the optimal resolution in both the time and frequency 
energy concentration. More important, Gabor dictionary is 
translation invariant in time and frequency domain. Thus, 
Gabor wavelet transform seems to be the optimal basis to 
extract local features [18, 19]. Gabor wavelet has been used 
in many applications, such as face recognition [19, 20], 
texture classification [21, 22], facial expression 
classification and some other researches. A time and 
frequency translation-invariant Gabor function is 
constructed in [9] and [23] by scaling, modulating and 
translating a Gaussian window on the signal-sampling grid. 
For each scale 2 j , a discrete Gaussian window is defined 
by 

[ ] ( )22 1 42 2− + − = − 
 

j j
j jg n K exp nπ     (20) 

where the constant 1≈jK  is adjusted so that 1=jg . A 

Gabor time-frequency frame is derived with time intervals 
12 −= ∆j

ju  and frequency intervals 12 2− −= ∆ j
jξ π : 

[ ] ( ){ }0 2 0 2−

∆

≤ <∆ ≤ <∆

=

 = −  j j

j ,

p j j j q N , k
n g n qu exp i knφ ξ

D

(21) 

It includes 2= ∆P N  vectors. Theorem 5.19 in [24] 
proves that a necessary condition to obtain a frame is that 

22 2−= ∆ <j ju ξ π π , and thus 1∆ > . Table 5.3 in [24] 

shows that for 2∆ ≥ , the Gabor dictionary is nearly a tight 
frame. 
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A multiscale Gabor dictionary is a union of such tight 
frames 

2 −

∆ ∆
=

=


log N k

j ,
j k

D D                (22) 

with 2≥k  typically to avoid having too-small or too-large 

windows. Its size is thus 2
2≤ ∆P N log N , and for 2∆ ≥ , 

it is nearly a tight frame with frame bounds 2
2∆ log N . A 

translation-invariant dictionary is a much larger dictionary 
obtained by setting 1=ju  and 2=j Nξ π  in (21), and it 

thus includes 2
2≈P N log N  vectors. A smaller size 

dictionary ∆D with 24≤P N log N  for 2∆ =  is 
selected in this paper. The position and frequency of this 
atom are refined with formula (5). It finds a close 
time-frequency atom rmg  in the larger translation-invariant 

dictionary, which has a better correlation with mR x .  

4. Simulation Results 
In simulation, we consider the wideband signals are 

subject to additive white Gaussian noise(AWGN) across 
channels, which is motivated in communication scenarios for 
several reasons [25]: First, widespread is approximately 
Gaussian distributed since they are generated as linear 
combinations of many independent (or nearly independent) 
subcarriers. Second, the Gaussian distribution is the 
distribution that achieves the capacity of an additive white 
Gaussian noise channel. Third, it is a working assumption 
very common in signal processing and statistics since it leads 
to tractable models and since many methods designed for 
Gaussian distributions also work even when there exist 
considerable departure from Gaussianity. The wideband 
signal used in this paper has the same style as the signal in 
[16] 

( )

( )( ) ( )( ) ( )
1

2
=

− − +∑
b

c
N

j j j j
j

x t

= E B sinc B t cos f t z tα π α
 

where ( ) ( )
=

sin x
sinc x

x
π

π
, α  is a random time offset, 

( )z t  is AWGN with zero mean and unit variance, jE  is 
the receive power at CR. The overall bandwidth 
W 2GHz= . The signal-to-noise ratios (SNRs) are natural 
numbers between 7dB and 27 dB.  

The integer undersampling scheme in [26] is used to 
sample the entire bandwidth all at once, in which the 
sampling rate is an integer fraction of the wideband Nyquist 
rate. And the relationship between the frequency samples 

[ ]Y k  for integer undersampling and the frequency samples 

[ ]X k  for wideband Nyquist sampling is [26] 

[ ]
1

0

−

=

 
= + 

 
∑
l

MY k X k lN
ρ

ρ
 

where ρ  is the sub-sampling factor, which is defined as the 
ratio of the Nyquist rate to the actual sampling rate, M  is 
the number of narrow-band frequency channels. Each 
channel has equal bandwidth 0B  and the entire wideband 
width is 0=B MB . N  is the number of wideband Nyquist 
samples per channel in a sensing window. Thus the entire 
sensing window duration for wideband Nyquist sampling is 
MN  samples. jf is the central frequency of the jth PU 

signal, 0 10 30MHz= = jB B . The spectrum sensing 

length is 20= usτ . Rather than using the Nyquist sampling 
rate 4GHz, 1GHz=sf  is adopted. The total samples are 
20000. According to the construction of the Gabor atoms in 
formula (21), the parameters of the Gabor atom are set as: 

1=jK , 2∆ = , 1 12 2− −= ∆ =j j
ju , 

12 2 2− − −= ∆ = ⋅j j
jξ π π , 1=q     
According to the analysis in Section 3, the atoms number 

in a dictionary is 24≤P N log N  for 2∆ = , here N is the 
dimension of the vectors. In this simulation, the maximum 
atom number is set to 8.   

The simulation results in Fig.1 show the PU’s 
reconstruction when 8 times are run to select the optimal 
atoms. Fig.1(a) is the original signal of wideband and Fig.1(c) 
is the reconstructed signal using Gabor atoms based on 
compressive sensing, which shows that the PU’s spectrum 
can be reconstructed correctly. Fig.1(b) is the relationship 
between selected atom index and the run sequence. Fig.2 
illustrates the coefficients of the selected atoms and the atom 
index, which shows that most of the coefficients are zero. 
Thus, the coefficients vector is sparse, and we should only 
save those nonzero coefficients and their indexes, which can 
decrease the memory cost greatly. Fig.3 shows the 
relationship between the normalized reconstructed error and 
the number of selected atoms, which illustrated that 
normalized reconstructed error is fluctuant and the local 
minimum error can be obtained when 2 atoms are selected. 

Compared with [16], the method presented remains the 
high throughput gain for its sampling scheme. The minimum 
recovery error in [16] is close to 10-2 when system parameter 
meets some requirement. However, the recovery error of the 
method in this paper is much lower than that in [16]. What’s 
more, the atoms coefficients are sparse, which infers that the 
sampling rate can be decreased further if needed, and this can 
be used to settle the bottleneck of ADC. 
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Figure 1.  Simulation Results of Wideband Spectrum Sensing Algorithm 

 

Figure 2.  Coefficients of the selected atoms 

 

Figure 3.  Reconstruction error with the number of atoms 
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5. Conclusions 
The challenges in the spectrum sensing for wideband are 

presented. Then based on the fact that wideband spectrum 
sensing is critical for reliably finding spectral opportunities 
and achieving opportunistic spectrum access for next 
generation networks, a compressed sensing method is 
presented to solve the unaffordable sampling rate for 
wideband spectrum sensing. Finally, a computer simulation 
is done to verify the feasibility of the wideband spectrum 
sensing method, which shows that the method presented can 
greatly decrease the dimension of the signal under 
sub-Nyquist sampling theory. 
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