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Abstract  The carrier frequency offset (CFO) severely degrades the bit error rate (BER) performance of orthogonal 

frequency division multiple (OFDM) systems. In this paper, our aim is to develop a robust adaptive CFO estimation 

algorithm for OFDM system which is able to provide accurate estimate of CFO even in the presence of impulsive noise. To 

this end, we formulate the CFO estimation in terms of the maximum correntropy criterion (MCC) which is a robust 

optimality criterion for impulsive noise. Then, we utilize the gradient-ascent method and also apply instantaneous 

approximation to derive the robust adaptive algorithm. The proposed algorithm has computational complexity similar to the 

popular least mean-square (LMS), while it is robust against the impulsive signal because of using higher order moments 

beyond just second order moments. The performance of the proposed algorithm is evaluated under different conditions, 

including the Gaussian noise, impulsive noise, and time-varying CFO, where simulation results reveal the effectiveness of 

the proposed algorithm. 
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1. Introduction 

The orthogonal frequency division multiplexing (OFDM) 

enables high data rate transmissions in wireless 

communication systems. It has been chosen as the standards 

for the European digital and video broadcasting, 

IEEE802.11a and HIPERLAN/2 [1]. However, the OFDM 

system is very sensitive to the carrier frequency offset 

(CFO). CFO is mainly caused by two sources [2]. The first 

one is the mismatch of carrier frequencies between 

oscillators in transmitter and receiver, and the other one is 

due to the Doppler shift, which may change from time to 

time. Unfortunately CFO destroys the orthogonality among 

subcarriers, which in turn causes inter-carrier interference 

(ICI) and degrades the bit error rate (BER) performance 

severely [2]. This issue motivated the development of CFO 

estimation algorithms.  

So far several schemes have been proposed in the 

literature to estimate the CFO of OFDM systems [3-8]. In [4] 

a CFO estimation scheme has been developed which uses a 

training symbol with two identical halves. The given 

algorithm in [5] utilizes a training symbol with more than 

two identical halves which increases the estimation range 

twice that of the scheme in [4]. The algorithm in [6] relies on 

the maximum-likelihood (ML) criterion and same training  
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symbol as in [5]. A periodogram-based CFO estimation 

scheme has been proposed in [6], whose estimation range is 

as large as the bandwidth of the OFDM signal while 

maintaining the same level of the estimation performance as 

those of [4, 5].  

Most of available works assume CFO as a stationary 

parameter and do not consider the variation of the offset 

caused by the Doppler shift. Thus these types of algorithms 

fail when frequency offset changes from time to time. In [8] 

an adaptive LMS-based filter has been proposed to estimate 

CFO, which can track the variation of the offset caused by 

the Doppler shift. The proposed algorithm in [8] works well 

under the assumption of the Gaussian distributed noise. 

However, in many wireless channels, it has been observed 

that the noise often follows non-Gaussian distribution [9]. 

Thus, the conventional estimators could suffer from 

performance degradation in the non-Gaussian noise 

environments.  

To address this issue, in this paper our aim is to develop a 

robust and adaptive algorithm to estimate the CFO which is 

robust in presence of impulsive noise. To this end we need to 

go beyond mean squared error to exploit higher order 

moments of the error. Information theoretic quantities have 

also been proposed as cost functions in adaptive filters 

(algorithms). For example a family of Minimum Error 

Entropy (MEE) based adaptive filters has been proposed [10], 

[11], wherein the weights are adapted such that the entropy 

or the information content of the error signal is minimized. 

Although MEE based algorithm shows robustness in 

presence of non-Gaussian and impulsive noise, however, it 
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has high computational complexity. The use of Correntropy 

as a cost function in order to train the filter weights has been 

proposed in [12]. The given algorithm in [12] which uses 

maximum correntropy as the cost function has lower 

computational complexity than MEE, while its robustness is 

similar to the MEE based algorithm. Thus, in this paper we 

develop a MCC based adaptive algorithm for CFO 

estimation. To derive the proposed algorithm, we firstly 

formulate the CFO estimation according to the MCC, and 

then we utilize the gradient-ascent method with suitable 

instantaneous approximations to solve it. We compare the 

performance of the proposed algorithm with the LMS-based 

algorithm in [8] in different conditions including the 

Gaussian noise, impulsive noise, and time varying CFO, 

where the results show the superior performance of the 

proposed algorithm. 

Notation: Through the paper we use lower case bold 

letters to denote vectors, capital bold letters for matrices. We 

also use ( )T  to denote transposition, and ()H  to denote 

Hermitian transpose. Moreover Im{}  denotes the 

imaginary part of its argument and E  stands for the 

statistical expectation. 

The rest of this paper is organized as follows: In section 2, 

we present some background on CFO estimation problem 

and also introduce the MCC. The proposed algorithm is 

presented in section 3. Simulation results are presented in 

section 4. Section 5 concludes the paper. 

2. Background 

2.1. CFO Estimation Problem 

Let us define 0 1 1( ) [ ( ), ( ),..., ( )]TNn s n s n s ns
as the nth OFDM data block to be transmitted, where N is the 

number of subcarriers in the OFDM system. The data are 

used to modulate orthogonal subcarriers and this modulation 

can be implemented by inverse discrete Fourier transform 

(IDFT). Using the matrix representation, the nth block of the 

modulated signal is [14] 

0 1 1( ) [ ( ), ( ),..., ( )] ( )T
Nn d n d n d n n d Ws  (1) 

where W  is the N N  IDFT matrix which is given by 
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where in (2) 2 / N  . Then, a cyclic prefix (CP) is 

inserted where it is assumed that the length of CP is longer 

than the maximum delay spread of the channel to avoid 

intersymbol interference (ISI). Finally, the resultant 

baseband signal is up-converted to the radio frequency (RF) 

before transmission. At the receiver side, the signal is firstly 

down-converted and demodulated using discrete Fourier 

transform (DFT) to recover the desired signal. Without CFO, 

the received signal can be expressed by 

 ( ) ( ) ( )n n n r WCs q         (3) 

where ( )nq  denotes the additive white Gaussian noise 

(AWGN) and 

0 1 1diag{ ( ), ( ),..., ( )}NC n C n C nC    (4) 

represents the channel characteristics in the frequency 

domain. In this paper, we assume AWGN channel which 

means we have diag{1,1, ..., 1}C . In the presence of 

CFO the received signal, after the removal of the CP, is given 
as 

 ( ) ( ) ( )n n n r WCs q       (5) 

where 
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represents the CFO matrix and is the frequency offset 

normalized to subcarrier spacing. To guarantee the system 

performance, the CFO must be estimated and compensated 

before the DFT demodulation. In the presence of the CFO, 

the received signal, after DFT demodulation, is given by 

( ) ( ) ( ) ( )H Hn n n n  x W Cr W WCs q  (7) 

where HW  represents the DFT demodulation matrix. 

2.2. Maximum Correntropy Criterion 

Given two random variable X  and Y , the correntropy 

is defined as follows 

,( ,

( , ) ( , )

( , ) ( )) ,X YV X Y

V X Y X Y

x y dF x y
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where (  , )   is a shift-invariant Mercer kernel, and 

, ( , )X YF x y denotes the joint distribution function of 

( , )X Y . The Gaussian kernel is the most widely used 

kernel in correntropy 
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Where x y   , and 0   is the kernel width. The 

maximum correntropy cost function is given by 
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In the sequel, we will use this cost function to derive the 

proposed algorithm. 

3. Proposed CFO Estimation Algorithm 

In this section, we present our adaptive CFO estimation 

algorithm. To this end, let us denote ith sample of recovered 

signal on subcarrier k as ix  (we ignore the subcarrier index 

for the sake of simplicity). We also use the training symbols 

in id  where every ( )is n  in (2) is a quadrature amplitude 

modulation (QAM) or phase-shift-keying (PSK) symbol. 

Then, by comparing the estimation with the training symbols

id , we define the error signal as 

 
2 /ij w i N

i i id e x            (11) 

where iw is a real-valued. We now define the cost function 

in terms of the error signal as 
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we have 
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To find the optimum weight that maximizes the cost 

function in (12), we can use iterative gradient ascent 

approach as 

1 ( )
ii i ww w J i               (14) 

where   is the step-size parameter and 
iw

  denotes the 

gradient with respect tow . By computing the gradient ( )J i  

with respect iw  to we obtain 
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Substituting ( )
iw
J i  from (15) in (14) gives 
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Then, the proposed algorithm can be obtained by 

replacing the statistical moment in (16) by instantaneous 

approximation as 
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The estimate of CFO is given in terms of iw  as

iv w 


, where the number of iterations equals the 

number of pilot symbols. 

4. Simulation Results 

In this section, we evaluate the performance of the 

proposed algorithm and compare it with the given 

LMS-based algorithm in [8]. We consider the number of 

subcarriers in the OFDM system as 1024N  . We 

consider the mean-square-error (MSE) as the performance 

metric which is defined as 
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where P  is the number of Monte Carlo runs, which in our 

simulations was 1000P  . The CFO is assumed as

0.2v   in the following set of simulations. In the first set 

of simulation we consider Gaussian noise condition where

0/ 20dBbE N  . Fig. 1 shows the learning curves of 

the proposed algorithm and the LMS-based algorithm for

0.005  , 2  . We can see that the proposed 

algorithm exhibits a better performance than the algorithm 

LMS algorithm since it has smaller estimation variance. Fig. 

2 presents the MSE versus Eb/N0 for various step-size 

parameters. It is observed that for both algorithms, the MSE 

decreases as 0/bE N increases or when the step size 

parameter decreases.  
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Figure 1.  The learning curves of the proposed algorithm and the 

LMS-based algorithm for Eb/N0=20 dB 

 

Figure 2.  The MSE performance of both algorithms in terms of the Eb/N0 

for different step size parameters 

For small 0/bE N  values, the proposed algorithm 

performs better than the LMS- based algorithm for all 

step-size values. As 0/bE N
 

increases, the performance 

of both algorithms becomes similar, specially for small 

step-size values. 

In the next simulation setup, we assume again an OFDM 

system described above but with impulsive noise. To model 

the impulsive noise we add a zero-mean complex-valued 

doubly white Gaussian noise at 0.2dB SNR with probability 

Pr = 0.03, where Pr denotes the probability that the impulsive 

noise occurs. The learning curves of the proposed algorithm 

and the LMS-based algorithm is shown in Fig. 3. The MSE 

versus Eb/N0 for various step-size parameters indifferent 

ranges of Eb/N0  are shown in Fig. 4 and Fig. 5. We can see 

that in the presence of impulsive noise, the performance of 

LMS-based algorithm decreases, while the proposed 

algorithm works well in this condition. In Fig. 6, we compare 

the estimation range of both the proposed LMS-based 

algorithm and the proposed algorithm under the Gaussian 

noise and impulsive noise conditions. It is clear that the 

proposed algorithm has better performance for the whole 

range of CFO than the LMS-based algorithm.  

 

Figure 3.  The MSE performance of both algorithms in terms of the Eb/N0 

for different step size parameters 

 

Figure 4.  The MSE versus Eb/N0 for various step size parameters under 

impulsive noise condition 

 

Figure 5.  The MSE versus Eb/N0 for various step size parameters under 

impulsive noise condition 

In Fig. 7, we compare the tracking performance of both 

algorithms in the presence of impulsive noise. In this case we 

assume that the normalized frequency offset changes in time 

according to the following model 

 1i i iv v z                (19) 
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where iz  is a zero-mean Gaussian noise with variance 

0.005. As we can see the proposed algorithm can track the 

variation of the CFO and the estimation accuracy is not 

affected by the impulsive noise 

 

 

Figure 6. The estimation range of the proposed LMS-based algorithm and 

the proposed algorithm under the Gaussian noise (top) and impulsive noise 

(bottom) conditions 

 

Figure 7.  Tracking performance of both algorithms in the presence of 

impulsive noise 

5. Conclusions 

The carrier frequency offset degrades the performance of 

OFDM systems. In this paper, we have proposed a 

correntropy-based adaptive algorithm to estimate the CFO 

simultaneously in OFDM systems. The proposed algorithm 

achieves comparable performance and a wider estimation 

range in comparison with the LMS-based algorithm. The 

time-varying nature of Doppler shift causes the frequency 

offset to change from time to time, which affects the 

estimation accuracy of many existing estimators. The 

proposed algorithm can track the variation of the Doppler 

shift well and the estimation accuracy is not affected in the 

presence of impulsive noise. 
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