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Abstract  Let us consider a service facility where a single server provides some service. It could be a plumber looking 
after repair and maintenance of the plumbing work in the apartment complexes situated near the shop or could be an 
electrician or a painter. Requests for service arrive in accordance with a Poisson process. When the server is away with the 
service of a customer, any other requests for service can be recorded and the customer cannot wait in a queue but has to leave 
and try for service after some t ime. The server after complet ion of the work on hand decides to take a break before attending 
to the next chore. Th is is an example of a retrial queue in which the server takes a vacation after the completion of each 
service. Motivated by this example, we have studied an M/G/1 retrial queue with server vacations. In this paper, we assume 
that the retrial t imes are generally distributed and that the retrial policy  is constant. We have derived probability generating 
functions of the system size and the orbit size. We have investigated the conditions under which the steady state exists. Some 
useful performance measures are also obtained. Numerical examples are provided to illustrate the sensitivity of the 
performance measures to changes in the parameters of the system. 
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1. Introduction 

In this paper, we consider a single-server retrial queue 
with server vacations. We have assumed that the inter-retrial 
times are generally d istributed with a constant retrial policy. 
After the complet ion of each service the server goes on a 
vacation of random length. After the completion of each 
vacation, the server waits for the next customer.  This could 
be either a primary arrival or the server could try to contact 
the first customer in the orbit. This is in contrast to the 
multip le vacation schemes, where the server could  take a 
vacation every time he finds no customers in the system. 

An example of such a retrial queuing system is as follows; 
a service provider (plumber, painter, electrician etc.,) is 
provided with some mechanism to record the details of the 
customers requesting service, when he is away attending to 
some job. After the complet ion of each service, the provider 
may take a break before going back to attend to the next 
customer. Customer requests which arrive during his 
absence do not wait in a queue but after recording their 
requirements go away to  come back after some t ime to repeat 
the request for service. 

Motivated by this example, we have therefore considered  
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a retrial queue with a limited single vacation scheme. This 
scheme is different from the one based on the Bernoulli 
schedule vacations and applied in the literature by authors 
like Wang and Li[15], Ebenesar Anna Bagyam and Udaya 
Chandrika[10].  

The rest of the paper is organized as follows: In section-2, 
we present a brief review of related works in the queueing 
theory literature. In Sec-3; we present the mathematical 
model of the system. In Sec-4, we present a steady state 
analysis of the system and we derive the joint probability 
generating functions (P.G.F’s) of the server state and orbit 
size and server state and system size. In Sec-5, we derive the 
necessary and sufficient condition for the existence of the 
steady state. In sec-6, we consider some useful performance 
measures of the system. In Sec-7, numerical results are used 
to compare numerically the system performance measures 
with respect to changes of parameters. 

2. Literature Review 
Retrial queueing systems form an active research area due 

to their wide applicability  in  telephone switching system, 
telecommunication networks and computer networks. 
Retrial queueing systems are those systems in which arriving 
customers, who find the server busy, jo in the retrial queue 
(orbit) to try again  for their requests after sometime.  

Retrial queues are useful in modeling many problems in  
telephone switching systems, computer and communication 



8 K. Lakshmi et al.:  An M/G/1 Retrial Queue with a Single Vacation Scheme and General Retrial Times  
 

 

systems. A review of the literature on retrial queues and their 
applications can be found in Falin[11] and Yang and 
Templeton[23], and Artalejo[6]. Two monographs entirely 
derived to the topic exist and are written by Falin and 
Templeton[12] and Artalejo and Gomez-Correl[5]. 

In retrial queueing literature, retrial customers are usually 
assumed to behave independently and return without regard 
to other retrial customers. However, Farahmand[13] 
proposed a special type of retrial system with FCFS retrial 
queue, that is, if a customer finds the server busy, he may 
join  the tail o f a  retrial queue in accordance with  a 
first-come-first-served (FCFS) discipline and the customer at 
the head of the retrial queue would then try again to enter the 
system, competing with new arrivals. Gomez-Corral[14] 
considered an M/G/1 retrial queue with a FCFS retrial queue 
and general retrial t imes. Single-server queues with 
vacations have been studied extensively in the past. 
Comprehensive surveys can be found in Doshi[9] and 
Takagi[22] and recent developments in vacation queueing 
Models was introduced by Ke et.al[16], Krishnakumar and 
Arivudainambi[17]. In our model the server takes a break 
every time he completes the service. Most of the analyses for 
retrial queues with vacations concern the exhaustive service 
schedule (Artalejo[1] and Artalejo and Rodrigo[4]) and the 
gated service policy (Langaris[20]). Recently, several 
authors considered retrial queues with Bernoulli schedule, as 
can be seen in Atencia and Moreno[7], Kumar et al.[18] and 
Zhou[24]. In th is paper we have considered a limited 
vacation policy. Kasturi Ramanath and K.Kalidass[19] have 
considered a two phase service M/G/1 vacation queue with 
general retrial times and non-persistent customers. 

In the context  of the service provider the limited vacation 
scheme wherein, the server takes the vacation after each 
service completion is appropriate. Also, the server cannot 
take a vacation each time he finds the system empty. The 
FCFS orbit also makes sense since the server has a record of 
all the requests that have arrived during his absence. With 
these ideas we have included a FCFS orbit, a limited single 
vacation scheme into our model. 

3. The Mathematical Model 
In this section, we consider a Single-server retrial queuing 

system with a non-exponential retrial time distribution and 
with server vacations. Arriving customers to the system are 
in accordance with a Po isson process with  a rate λ .The 
service time is generally distributed with a distribution 
function B(x), Laplace St ieljes transform (LST) 

( ) ( )*

0

sxB s e x dxµ
∞

−= ∫  and the hazard rate function

( ) ( )
( )

'

1
B x

x
B x

µ =
−

 . 

A customer upon arrival, who finds the server free, 

immediately p roceeds for service. Otherwise, the customer 
leaves the system and jo ins an orbit  from where he/she 
makes repeated attempts to gain service. The time intervals 
between two successive retrials are assumed to be generally 
distributed with a distribution function R(x), hazard  rate 
function ( )xη  and LST R*(s). 

We assume that only the customer at the head of the orbit  
is allowed to make repeated attempts. 

We also assume that the elapsed retrial time is measured 
from the moment the server becomes availab le fo r service. 

After completion of a service, the server is allowed to take 
a vacation. The duration of the server vacation is assumed to 
be generally distributed with a distribution function V(x), a 
LST V*(s) and a hazard rate function ( )xξ . 

We assume that the inter-arrival times, service times, 
inter-retrial t imes and the duration of the server vacation are 
all independent of each other. 

Let N (t) denote the number of customers in the orbit  at 
any instant of time t.  

Let C (t) denote the state of the server at time t: 

( )
0,  if the server is idle

 1,  if the server is busy
2,  if the server is on vacation

C t

= 



 

In order to make the stochastic process involve into a 
continuous time Markov process, we employ the 
supplementary variable technique. Th is was first introduced 
by Cox[7]. See Medhi[21] for a detailed exp lanation of the 
technique. 

We define the supplementary variable X (t) as follows: 
( )  

0,  C(t) = 0,N(t) = 0,
elapsed retrial time if C(t) = 0,N(t) = n 1,
elapsed service time if C(t) = 1,N(t) = n 0,
elapsed vacation time 
if C(t) = 2,N(t) = n 0.
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We define the following probability functions: 
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Then ( ) ( ) ( ){ }, ,C t N t X t  is a continuous time 
Markov process. 
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4. Steady State Analysis 
Now, analysis of our queueing model can be performed 

with the help of the following Kolmogorov forward 
equations: 
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The boundary conditions are as follows, for n 0≥ , 

( ) ( ) ( )0, 2,
0

0, ,n nP t P x t x dxξ
∞
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0
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0
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= ≥∫ (8) 

Assuming that the system reaches the steady state, the 
equations (1) to (8) become 
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0
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∞
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The boundary conditions are as follows for 0n ≥ , 
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The solution of equation (10) is given by 
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Theorem: 4.1 
In the steady state, the probability generating function of 

the orbit size is given by 
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where ( ) ( )* ' * '0  and V 0B µ β= − = −  and the 
probability generating function of the system size is given by 
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Proof: 
Multiplying equation (11) by z n and summing over n from 

0 to ∞ , the solution of the resulting equation is 

( ) ( ) ( ) ( )1
1 1P , = P 0,  e  1  z xx z z B xλ− −   −   (23) 
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Now, from (20),we get, 
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The PGF P (z) of the orbit size is given by 
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To obtain the value of 0,0P , we use the normalizing  

condition P (1) =1. 
Applying L’Hospital’s rule in an appropriate p lace we get 
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Hence ( ) ( ) ( ) ( )0,0 0 1 2P z P P z P z P z= + + +  
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Let K (z) be the PGF of the system size 
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5. The Embedded Markov Chain 

In this section, we derive the necessary and sufficient 
condition for stability of our system. We consider the 
embedded Markov chain of the process. 

Let ( )n nX N η= +  be the number of customers in the 

orbit immediately after the thn  service completion epoch 

nη .Then 1 1n nX X+ = − if the ( )1 thn +  customer is a 

retrial customer, otherwise 1n n n nX X A B+ = + + , where

nA is the number of arrivals into the orbit  during the 

vacation time of the server and nB is the number of 
customers arriving into the orbit during the service t ime of 

the ( )1 thn +  customer. 
By our assumption, the arrival process is independent of 

the service mechanism and of the vacations of the server and 
of the retrial processes initiated by the customers in the orbit. 
Therefore { }: 1nX n ≥ is a Markov chain. The system is 
ergodic if and only if the embedded Markov chain 

{ }: 1nX n ≥  is ergodic. To  prove  that the embedded 
Markov chain is ergodic,we employ Foster’s criterion whose 
statement is given below: 

Foster’s criterion: For an irreducible and aperiodic 
Markov chain  jξ with state space S, a sufficient condition 
for ergodocity is the existence of a non-negative function f(s),
s S∈  and 0ε >  such that the mean drift  

( ) ( )( )1 /s i i ix E f f sξ ξ ξ+= − =  is fin ite for all s S∈  and  

sx ε≤ −  for all s S∈  except perhaps a finite number. 
Theorem 5.1: The necessary and sufficient condition for 

the system considered in the previous section to be ergodic is 
given by ( ) ( )* Rλ β µ λ+ < . 

6. Performance Measures 
In this section, we examine some useful performance 

measures of the system. 
(a) The expected number of customers in the system 

is given by  

( ) ( )
1

lim
z

dE L K z
dz→

= =  

( ) ( )

( ) ( )

*

2 2 2

*

2 1

2

2

R

R

λ β µ λ

λ β µ βµ
λµ

λ λ β µ

 + − 
 + + +  +

 − + 
 

(b) The expected number of customers in the orbit  

( ) ( )
( ) ( )

( ) ( )( )
( ) ( )

'

*

2 22

*

1

2 1

2

2

qE L P

R

R

λ β µ λ

λ β µ βµ

λ λ β µ

= =

 + − 

+ + +

 − + 

 

The steady state distribution of the server state is given by 

0q =Prob {server is id le} =

( ) ( )0,0 0 1 1P P λ β µ+ = − + . 

1q =Prob {server is busy} = ( )1 1P = λµ . 

2q =Prob {server is on vacation} = ( )2 1P λβ= . 

7. Numerical Illustrations 
In order to verify the efficiency of our analytical results, 

we perform numerical experiments by using MAPLE. In this 
section, we present some numerical examples to illustrate the 
effect of varying the parameters on the following 
performance characteristics of our system. We consider the 
performance measures: the probabilities q0, q1, q2   are the 
probabilit ies of the server being id le, the busy and on 
vacation respectively. We also consider the expected number 
of customers in the orbit, expected number o f customers in 
the system and 0,0P . Moreover, for the purpose of numerical 
illustrations, we assume that the arrival process is Poisson 
with parameter λ varying from 0.1 to 0.7, the service time 
distribution function is exponential with mean µ = 0.3, the 
retrial times follow an exponential d istribution with LST 

( )*R φλ
λ φ

=
+

 with parameter φ =0.8.The vacation time 

is also exponentially distributed with mean β = 0.25. 
In all the cases, the parametric values are chosen to satisfy 

the stability condition. 
Example 1:  
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In this example, we study the effect of varying the arrival 
rate λ. 

From table 1, we observe that if the value of λ  increases, 
the probabilit ies of idle t ime- 0q  and 0,0P  decrease. The 
probabilit ies of busy time, expected no. of customers in the 
system and the expected no. of customers in the orb it also 
increase. 

The graph for the data given in table 1 is given below; 
 
 
 
 
 
 
 
 

Table 1.  Effect of varying λ on various performance measures 

λ  0,0P  0q  1q  2q  ( )' 1P  ( )' 1K  

0.1 0.938 0.945 0.03 0.025 0.068 0.086 

0.2 0.863 0.890 0.04 0.050 0.168 0.212 

0.3 0.773 0.835 0.05 0.075 0.318 0.398 

0.4 0.670 0.780 0.06 0.100 0.546 0.681 

0.5 0.553 0.725 0.07 0.125 0.920 0.975 

0.6 0.422 0.670 0.08 0.150 1.595 1.969 

0.7 0.278 0.615 0.09 0.175 3.102 3.812 

 

        
(1.1)                                         (1.2) 

    
(1.3)                                     (1.4) 
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(1.5)                                 (1.6) 

Figure 1.  Effect of varying λ on various performance measures 

Fig (1.1) shows how 0,0P  (i.e .) the probability of  no customers in the system and the server is idle decreases with 

increasing values of λ .Similarly, Fig(1.2) shows how  the proportion of idle time of the server decreases with increasing 
values of λ . Fig (1.3), Fig (1.4), Fig  (1.5) and Fig  (1.6) show how the server’s busy period and vacation period probabilities, 
the expected number of customers in the system and the expected number o f customers in the orb it increase with increasing 
values of λ. 

Next, we assume that the arrival process is exponentially d istributed with parameter λ =0.1, the service time distribution 
function is exponential with mean µ  varying from 0.3 to 0.9, the retrial times follow an exponential distribution with LST

( )*R φλ
λ φ

=
+

 with parameter φ =0.8.The vacation time is also exponentially d istributed with a mean β = 0.25. 

Example 2: 
In this example, we study the effect of varying the service rate µ . 

From the Table-2, we observe that if the value of µ  increases, the probabilities of idle time- 0q  and 0,0P  are decrease 

and the probabilities of busy time, expected no. of customers in the system and the ,expected no. of customers in the orbit 
increase. 

Fig(2.1) shows how 0,0P  (i.e.) the probability of  no customers in the system and the server is id le decreases with 
increasing values of µ .Similarly, Fig(2.2) shows how  the idle time probability of the server decreases with increasing 
values of µ . Fig (2.3), Fig (2.4), Fig (2.5) shows how the server’s busy period probability, vacation time probability and the 
expected number of customers in the orbit increases with increasing values of µ . Fig (2.6) shows how the expected numbers 
of customers in the system increases. 

Table 2.  Effect of varying µ  on various performance measures 

µ  
0,0P  0q  1q  2q  ( )' 1P  ( )' 1K  

0.3 0.938 0.945 0.03 0.025 0.068 0.086 
0.4 0.863 0.935 0.06 0.050 0.081 0.106 
0.5 0.773 0.925 0.09 0.075 0.096 0.126 

0.6 0.670 0.915 0.12 0.100 0.110 0.148 
0.7 0.553 0.905 0.15 0.125 0.125 0.176 
0.8 0.422 0.895 0.18 0.150 0.141 0.192 

0.9 0.278 0.885 0.21 0.175 0.157 0.215 
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(2.1)                                     (2.2) 

       

(2.3)                                         (2.4) 

   

(2.5)                                         (2.6) 
Figure 2.  Effect of varying µ  on various performance measures 



 American Journal of Operational Research 2013, 3(2A): 7-16 15 
 

 

8. Conclusions 
In this paper, we have studied an M/G/1 retrial queue with 

general retrial times and a constant retrial policy with server 
vacations under a limited vacation discipline and a single 
vacation scheme. Existing results in the literature on retrial 
queues with vacations are concerned either with the 
exhaustive discipline or the gated discipline. Our aim is to 
increase the scope for then by considering a limited vacation 
discipline, where the server takes a vacation after completion 
of k (≥1) services.  
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Appendix 
We first present the derivation of the equations (1) to (8). 
Equation (1):  

( ) ( ) ( ){ }
( )( )

( )
( )

( )

( )

( )( ) ( ) ( )

0

0

0

0 12
0

Prob 0, 0

                 = 1

2,

Prob 0,

vacation ends
Prob

 in ,

1 ,   

P t t C t t N t t

P t t

C t t

N t t

x X t x dx

t t t

P t t P x t dx x t

λ

λ ξ

∞

∞

+ ∆ = + ∆ = + ∆ =

− ∆

+ ∆ = 
 

+ + ∆ = 
 < ≤ + 

  
 + ∆  

= − ∆ + ∆

∫

∫

 

Dividing through out by Δt and taking limits as Δt→0, we 
get equation (1). 

Equation (2): 
( )

( ) ( )
( )

( )( )
( ){ }

( )
( )( ) ( )( )

0

0,

0

0

, .

0, ,
Prob 

2

= , 1 .

Prob  retrials in ,  

,

, 1 1

n

n

n

n

P x t t t t

C t t N t t n

x t X t x t

P x t t t

no t t t

P x t t t t

P x t t x t

λ

λ η

+ ∆ + ∆ ∆

+ ∆ = + ∆ =  =  
+ ∆ < ≤ + ∆  

− ∆ ∆

+ ∆

∴ +∆ + ∆ ∆

= − ∆ − ∆

 

Dividing through out by (Δt)2 and taking limits as Δt→0, 
we obtain equation (2).Equations (3) to (8) are obtained by 
using similar arguments to those given above. 

Proof of theorem 4.1: 
From the above equations (11) & (12)  

( ) ( ){ } ( )

( ) ( )

1, 1,

0, 1, 1

, ,0

             1 ,  ,n 0 

n n

n n

d P x t x P x
dx

P x t

λ µ

δ λ −

= − + +

− ≥
 

Proof of Theorem 5.1: 
In order to prove the sufficiency of the condition, we use 

the test function f(s) =s. The mean drift is then defined as 

( ) ( )( )1 /s i i ix E f f sξ ξ ξ+= − =  
For  

( )( )

( ) ( ) ( )( )

( )( )( )

*

0

* *

0 0

*

0

1, 1

1 1

1

m

k r m r
r

m

r m r
m r

m

r m r
r

k x f g R k m k

m R m R f g

R m k k f g

λ

λ λ

λ

−
=

∞

−
= =

−
=

 
≥ = + − − 

 
  + − + −   

+ − + −

∑

∑ ∑

∑

 

Where rf = Probability of r arrivals during the vacation 
time. 

( ) ( )
0 !

r
x

r

x
f e dV x

r
λ λ∞

−∴ = ∫  

m rg − = probability of m-r arrivals during the service of a 
customer. 

( )
( ) ( )

0 !

m r
x

m r

x
g e dB x

m r
λ λ −∞

−
−∴ =

−∫  

( ) ( )
( )( ) ( )( )
( ) ( )

*

*

*

1

1

       = 0.

kx R

R

R

λ λ µ β

λ λ µ β

λ µ β λ

∴ = + −  

+ − +

+ − <

 

If ( ) ( )* .Rλ µ β λ+ <  
Foster’s criterion, the embedded Markov chain and hence 

our process is stable if ( ) ( )*Rλ µ β λ+ < .The condition

( ) ( )*Rλ µ β λ+ < is also a necessary condition. This can 

be observed from equation (38), since, otherwise 0,0 0P ≤ . 
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