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Abstract  The main objective of the present study was to produce a landslide susceptibility map by applying a Logistic 
regression model in the watershed of Krathis River that is located in the Achaia County, North Peloponnese, Greece. Five 
parameters were analyzed, namely: engineering geological units, slope angle, slope aspect, distance from faults and distance 
from river network. Each parameter was classified into different classes and weighted according to their susceptibility to slide. 
It was evaluated that the developed model classified correctly over 80% of the validation data. The developed model could be 
considered as a useful tool for the national and local authorities in order to evaluate strategies to prevent and mitigate the 
impact of landslides. 
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1. Introduction 
Landslides are geological phenomena that are 

characterized by a wide range of soil, debris or rock mass 
movements that may occur in offshore, coastal and inland 
areas, driven by the force of gravity and the aid of water [1]. 
Landslides are the result of the progressive or extreme 
evolution of natural events that occur due to the action of 
geological, tectonic, geomorphological and climatic 
processes.  

The methods and techniques that are used in landslide 
susceptibility assessments, which are defined by the spatial 
component of landslide occurrence, could be classified into 
two main approaches; the data driven approach that is based 
on the exploration of data and the knowledge driven 
approach that is based on the assessment of knowledge [2]. 
The knowledge driven approach methods are based on the 
site specific experience of experts with the landslide 
susceptibility determined directly in the field or by 
combining different layered index maps, while the data 
driven approach methods perform statistical and 
probabilistic analysis or follow deterministic approaches 
[3]. 

Among the wide range of statistical methods proposed in 
the assessment of landslide susceptibility, logistic regression  
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analysis (LR) is one of the most reliable approaches [4-7]. 
LR is a statistical technique that involves one or more 
independent variables in order to predict the probability of a 
binary or categorical dichotomous dependent variable [8]. 
The objective of LR analysis is to identify the best predictive 
model which describes the relations between the dependent 
variable and multiple independent variables [9]. Thus, by 
utilizing LR it could be possible to model the probability of 
presence and absence of the dependent variable. The main 
advantage of LR model over linear and log-linear regression 
models is that it does not assume normality among variables. 

In this context, the present study utilizes the logistic 
regression method to establish a landslide susceptibility 
map. As a case study, Krathis water basin at North 
Peloponnesus, Greece has been selected.  

2. Study Area and Data 
The study area is located at the northern part of 

Peloponnesus, Greece. It concerns the Krathis watershed, 
approximately 145 km2 (Figure 1). Concerning the 
morphological settings, the relief of the wider area is 
influenced by the geological structure, the recent tectonic 
activity and the ongoing weathering and erosion mechanisms. 
The area is characterized as mountainous with strong relief, 
massive rocky limestone ridges and high peaks. In particular, 
the highest observed altitude is 2,310 m, with a mean 
elevation 985 m. Areas with slopes greater than 46° cover 
approximately 3.0% of the total area, while areas with slope 
angle less than 15° cover about 25%. 
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The climate type of the area is Mediterranean (Csa) with 
mild winters and dry and hot summers. The rainy season is 
from October to May, with December as the rainiest month 
(128.9 mm) followed by November (124.7 mm), while the 
driest month appears to be August (7.0mm) followed by July 
(8.8 mm). The climate data were obtained from the 
University of East Anglia Climate Research Unit (CRU) and 
referred to a period over 100 years between 1901 and 2008 
[10].  

A detail database concerning 36 rotational and 
translational slides, and rockfalls that also provided the date 
of slide, the type, the triggering factor and the severity of the 
phenomena was available. The geo-environmental 
conditions in those locations were analysed concerning five 
parameters: engineering geological units, slope angle, slope 
aspect, distance from faults, distance from river network. 

The geological formations that are present and cover the 
wider area are [11]: Quaternary formations (loose coarse 
grained deposits, loose deposits of mixed phases), 
Plio-Pleistocene deposits (coarse grained sediments, fine 

grained sediments), flysch formations, limestones and 
dolomites, shale and cherts formations and volcanic rocks 
(Figure 2).  

For the purpose of the present study the slope aspect layer 
was classified into eight classes (Figure 3). North 
(337.5-22.5), Northeast (22.5-67.5), East (67.5-112.5), 
Southeast (112.5-157.5), South (157.5-202.5), Southwest 
(202.5-247.5), West (247.5-292.5), Northwest (292.5-337.5). 
As for the slope angle layer it was also classified into four 
classes according to the local geological and geotechnical 
conditions. Class A (<15°), class B (16°-30°), class C 
(31°-45°) and class D (>46°) (Figure 4).  

The tectonic characteristics, mainly faults, thrusts and 
overthrusts were mapped based on an existing geological 
map, scale 1:50.000 [11]. The research area was classified 
into a three class layer, areas that cover zones that have 
distance less than 250 m from tectonic features, areas that 
cover zones that have distance between 251 and 500 m, and 
areas with distance greater than 501 m from tectonic 
characteristics (Figure 5). 

 

 

Figure 1.  Study area 
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Figure 2.  Engineering geology units  

 

Figure 3.  Slope aspect 

 

Figure 4.  Slope angle 

 

Figure 5.  Distance from faults 
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Figure 6.  Distance from river network 

Finally, the distance to the river network was classified 
into a three class layer using the Euclidean distance between 
the sample grid cell and the nearest hydrographic network 
(<150 m, 151 – 300 m, >301 m) (Figure 6). 

3. Methodology 
3.1. Data Preparation   

For the purpose of the study, the landslide dataset was 
randomly divided into two subsets: 80% of the landslide data 
were used for training and the remaining 20% for validating 
the developed model. Thirty six non-landslide areas were 
selected randomly within the research area and separated 
also into training and validating data.   

3.2. Logistic Regression  

When performing LR analysis the objective is to correlate 
the probability of landslide occurrence, that can take values 
from 0 to 1, to the “logit” Z (−∞ < Z <0 for higher odds of 
non - occurrence and 0 < Z < ∞ for higher odds of 
occurrence). The probability of landslide occurrence is 
expressed by the following equation: 

p = 1 / 1 + e-z             (1) 
The logit Z is assumed to express the independent 

parameters on which landslide occurrence may depend. The 

LR analysis assumes the term Z to be a product of the 
independent set of parameters Xi (i = 1,2,...,n) acting as 
potential causal factors of landslide phenomena. Z is 
expressed by the following linear equation: 

Z=β0+β1 x X1+β2 x X2+⋯+βn x Xn      (2) 
where coefficients βi (i = 1, 2, ..., n) are representative of the 
contribution of single independent variables Xi to the logit Z 
and β0 is the intercept of the regression function. The LR 
methodology does not imply linear dependencies between 
the dependent variable and the independent set of variables; 
instead an exponential function is involved. The coefficients 
β are calculated through the maximum likelihood criterion 
and correspond to the estimation of the more likely unknown 
factors.  

3.3. Landslide Susceptibility Mapping 

The produced map was classified into five categories of 
susceptibility, namely very high susceptibility (VHS), high 
susceptibility (HS), moderate susceptibility (MS), low 
susceptibility (LS) and very low susceptibility (VLS), using 
the natural break method for the determination of the class 
intervals [12]. The computation process was carried out 
using SPSS for applying logistic regression and ArcGIS 10.3 
was used for compiling and analysing the data and also for 
producing the landslide susceptibility maps. 

4. Results and Discussion  
The relative importance of the independent parameters 

was assessed using the coefficients of the logistic regression 
function (Table 1). According to the findings, the variables 
of engineering geology units, slope angle and distance from 
river network had a positive effect on the LR function. On 
the other hand, the slope aspect and distance from faults had 
a negative effect on landslide occurrence. Slope angle and 
engineering geologic units were found to be the most 
important variables that contribute to slope instability as they 
have the highest coefficients, 3.890 and 3.171 respectively. 
The outcomes of the present study is in agreement with the 
majority of the LS literature concerning landslide 
assessments [13-15], which have found that variations in 
landslide distribution are highly dependent on geological 
formations and slope angle. Concerning the research area, 
according to [16], fine grained Plio-Pleistocene sediments, 
which consist of alternations of clayey marls, marls, silty 
sands and weak sandstones, appear to be much more 
susceptible in rotational slides. Concerning, limestone 
formations, they appear susceptible to rockfalls, that are 
influenced by the degree of weathering and fragmentation, 
the orientation of the discontinuities surfaces and the intense 
morphological relief. 

The training dataset was evaluated using Cox and Snell R2 
(0.567) and Nagelkerke R2 tests (0.756) (Table 2) indicating 
a good performance.  
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Table 1.  Coefficients of independed variables in logistic regression  

Variables Coefficient 

Intercept (β0) -11.632 

Engineering geology units 3.171 

Slope aspect -1.123 

Slope angle 3.890 

Distance from faults -1.767 

Distance from river network 2.318 

Table 2.  Statistics 

-2log likelihood Cox and Snell R2 Nagelkerke R2 

31.844 0.567 0.756 

The outcomes of the experiment showed that 82.80% of 
the instances during the training phase were correctly 
classified. During the validation phase, the LR model 
achieved an accuracy of 85.70% (Table 3).  

Table 3.  Confusion matrix of the training and validating dataset 

Training 
dataset  Predicted  

Observed  non-landslide landslide % 

 non-landslide 22 6 78.60 

 landslide 4 26 86.70 

    82.80 

Validating 
dataset  Predicted  

Observed  non-landslide landslide % 

 non-landslide 7 1 87.50 

 landslide 1 5 83.30 

    85.70 
 

Figure 7.  Landslide susceptibility map  

 

Figure 8.  Study area 
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The logit of f(x) function was calculated for all of the grids 
of the research area, in which zero corresponds to no 
susceptibility and one to total susceptibility. Based on 
constant values that were calculated, the LR model was 
compiled according to equation 1, while the possibility of 
landslide occurrence in each grid was calculated from 
equation 1 the outcome of which produced the landslide 
susceptibility map (Figure 7). 

From the visual analysis of the landslide susceptibility 
map, high and very high susceptible zones are located at the 
central area of the research area with the spatial pattern of the 
landslide susceptibility following the distribution of the river 
network. The LR analysis revealed that several sections of 
the road network fall within the very high susceptibility zone, 
a finding that should concern the local and national 
authorities. Specifically, within the watershed of Krathis 
River, approximately 60 km of the road network (17.70% of 
a total of 343 km), was estimated to be classified as highly 
susceptible to landslide.   

Concerning the produced landslide susceptibility map, the 
very high and high susceptibility class was estimated to 
cover 19.64% and 16.89% respectively, of the total research 
area. The relative landslide density for the high and very high 
landslide susceptibility class was estimated to be 72.22% 
(Figure 8). 

5. Conclusions  
The presented study focused on the construction of a 

landslide susceptibility map in the watershed of Krathis 
River that is located in the Achaia County, North 
Peloponnese, Greece, through the implementation of logistic 
regression method. Five landslide conditioning varaibles 
were analyzed and included in the study, namely engineering 
geological units, slope angle, slope aspect, distance from 
faults and distance from river network. The landslide 
inventory data contained thirty six landslides that were 
divided into two subsets, one for training (80% of the total 
data) and one for estimating the prediction capabilities of the 
developed methodology. Slope angle and engineering 
geological unit and distance from river network were among 
the most susceptible parameters. The LR model achieved an 
accuracy of correctly predicting landslide occurrence that 
reached 85.70%, indicating a good predictive performance. 
The findings of the analysis revealed that several sections of 
the road network fall within the very high susceptibility zone, 
a finding that should concern the local and national 
authorities.      
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