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Abstract  We propose a simple quality control procedure for micrometeorological datasets focused on removing the most 
common problems known to affect them using only raw data (i.e., without calculating fluxes) and simple tests. Given that 
this quality control was motivated by the need to process large amounts of data produced by the Amazon Tall Tower 
Observatory (ATTO) project, we opted to implement fast-to-execute tests over computationally costly ones. This 
characteristic, which is often overlooked by quality control procedures, is important in some cases since runtime can be an 
issue when dealing with very large datasets. As an example, we applied our proposed quality control to a 10-month period 
ATTO dataset. The procedure implemented successfully flagged all situations where a subjective analysis would have 
detected the usual errors and problems in the dataset. Our results suggest that the most frequent issue with this dataset is the 
fact that sensor resolution is insufficient to measure fluctuations under low turbulence conditions, more specifically the 
virtual temperature. This issue was responsible for excluding roughly 66% of our data. 
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1. Introduction 
Quality assurance and quality control are fundamental 

procedures when dealing with data analysis. This is 
particularly true in meteorological observations, where the 
measured variables are almost always hampered by 
imprecision and errors. In micrometeorological 
observations, in addition to that, the high-quality data 
necessary due to the small differences and gradients 
involved are especially troubling [1]. 

According to [2], time series can be influenced by 
instrumentation problems, like malfunctioning or external 
influences on the sensor, flux sampling problems, and 
physically plausible —but unusual— situations. In that way, 
quality control procedures must identify and correct these 
data when possible. However, methods specifically 
designed for micrometeorological conditions and high 
temporal resolution of the data are rare [1]: correspondingly, 
in most cases the steps of the quality control procedures are 
subjective and chosen according to the researcher. 

The increasing use of electronic sensors and 
computerized storage has introduced an abundance of new 
problems [1], of which the most common is the presence  
of spikes in time series.  Spikes can be caused by random   
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electronic peaks in monitoring systems or by physical 
alteration of the measuring conditions, such as water 
collecting on the sonic anemometer's transducers during 
precipitation [2], and are typically characterized as short 
duration and large amplitude fluctuations [3]. If not 
removed from the original series, spikes can contaminate 
turbulent flux calculations and data statistics. 

Other types of effects that can negatively alter data are 
missing values in the time series, dropouts (abrupt and large 
changes resembling discontinuities), and “freezing” or 
“sticky” values, all of which are cases of sensor or logger 
malfunction [2]. 

Besides detecting errors in high frequency data, quality 
control is essential to indicate when the time series is in 
accordance with the assumptions of the micrometeorological 
theories. One of the most important of these is stationarity, 
which is one of the conditions for Monin-Obukhov 
Similarity Theory (MOST) and the Eddy Covariance method 
(EC) to be valid [4]. In complement, the EC method also 
requires fully developed turbulence. For [5] and [3], quality 
control of eddy covariances should include not only tests for 
instrument errors and problems with the sensors, but also 
evaluate how closely conditions fulfill the theoretical 
assumptions underlying the method. Because the latter 
depends on meteorological conditions, eddy covariance 
quality control tools must be a combination of typical tests 
for high-resolution time series and criteria that allow 
examination of the turbulent conditions. According to [1], it 
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is important to minimize all errors of the EC measuring 
system and to try to exclude all other erroneous influences 
(e.g., bad weather conditions, unsuitable underlying surface, 
etc.) for which the method is not defined. 

Unfortunately, as mentioned before, widely accepted 
standardized methods for data screening do not exist yet, and 
these procedures are usually left for the analyst to choose. 
Still, in a recognition by the micrometeorological 
community of the importance of the issue, there are now 
works dealing specifically with quality control of high 
frequency data [1, 2, 6] and with quality control of EC 
measurements [3, 5-9]. These works, albeit still few in 
number, have now formed a basis for progress towards a 
more unified and more widely accepted approach to data 
quality control in micrometeorology. 

The present work was motivated by the need to process 
large amounts of micrometeorological data now being 
produced within the context of the ATTO project [10]. While 
following the guidelines set forth by the aforementioned 
works on data quality control, we have found the need to at 
times expand, or adapt, those existing methodologies. 
Specifically, given the abundance of data produced at the 
ATTO site, we choose fast-to-execute tests over tests that are 
more elaborate but tend to have a larger runtime. This 
characteristic is often overlooked by quality control 
procedures, but is important in some cases when large 
amounts of data have to be processed. 

In this context, the goal of this paper is to propose a set of 
simple data quality procedures aimed to process high 
frequency micrometeorological data, while introducing a 
few new approaches that we have found particularly useful; 
in addition, to validate our quality control, we apply it to a 
large set of experimental data measured at the ATTO site as 
an example. Part of these procedures were previously 
reported in [11] as research-in-progress, and many of the 
steps of the quality control reported here were applied in [12], 
where they were briefly summarized. 

The paper is divided as follows. In Section 2 we describe 
the experimental site and the dataset; in Section 3 the 
procedures for quality control are explained in detail. Results 
and examples are given in Section 4. We conclude briefly in 
Section 5. 

2. Site and Data Description 
The experimental site is that of the Amazon Tall Tower 

Observatory (ATTO) project, located in the Amazon rain 
forest, approximately 150 km Northeast of the city of 
Manaus, Amazonas State, Brazil. The latitude and longitude 
coordinates are 2.144°S, 59.002°W. A detailed description 
of the project and the experimental site can be found in [10]. 

The data were measured at height of 46.46 meters during a 
10-month period between March 1st and December 19th, 
2013. The variables used in this analysis were the three 
velocity components (u, v and w in ms−1) measured by a 
WindMaster 3D Anemometer (Gill), the virtual temperature, 

θv (°C), also measured by the WindMaster 3D Anemometer, 
and the CO2 and H2O molar densities ρc and ρv  (mmol m−3) 
measured by a LI7500 (LI-COR). The acquisition frequency 
was 10 Hz, and the data were separated in 30-min runs, or 
blocks, of 18000 lines. The word ‘line’ should be understood 
here as a record of six simultaneous measurements of u, v, w, 
θv , ρv and ρc, but it is also a convenient reference to the text 
files where the data resided. A total of 13281 runs were 
analysed in this work. 

3. Quality Control Procedures 
In this section we describe each of the steps of the 

proposed quality control in detail. Although some steps may 
be well known, they have been included for completeness. 
Furthermore, it is important to mention that the order in 
which the tests are applied respects the order in which they 
are described here. Figure 1 presents a flowchart 
summarizing the steps for the quality control. 

3.1. Complete Record Test 

First, we check if each of the runs has the correct number 
of lines. This test is characteristic of micrometeorological 
processing, since it is common for each data file to 
correspond to one averaging period and, ultimately, to one 
set of fluxes. The correct number of lines in the file depends 
on the total time duration of the run and on the logging 
frequency. In our case the number of lines (18000) 
corresponds to a 30-minute run with a measurement 
frequency of 10 Hz. Runs with different number of lines than 
expected may be the result of problems with the logging of 
data, and are discarded. 

Admittedly, this may eliminate good data, and in some 
circumstances it might well be worth trying to recover valid 
data in these situations. On the other hand, as massive 
amounts of data need to be screened and then processed, 
such attention to detail quickly becomes counter-productive. 
This procedure, although not usually reported in the 
literature, is quite common. It is mentioned here for the sake 
of completeness. 

3.2. Missing Values Test  

In this test we check the presence of error flags in the data. 
These flags generally appear as a “NAN” flag (acronym for 
Not a Number) or a specific impossible or implausible value, 
such as −9999. In the interest of simplicity, we call them all 
NAN's. Whenever the number of NAN's in the series is 
higher than 1% of the total number of points (or 180 values), 
the entire run is discarded. Notice that it suffices for this to 
happen to a single variable in the run; again, it is possible to 
recover data from the other variables, but again, as the 
volume of data processing increases, this becomes more 
cumbersome. If the number is below this level, they are filled 
in by linear interpolation of the existent adjacent points (end 
points are extrapolated). 
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Figure 1.  Flowchart of the proposed quality control. Note that when any variable of the run fails a test, the entire run is discarded 

Although the accepted percentage of NAN flags is open to 
debate, this test is crucial for any type of dataset, since it is 
not uncommon for a logging system to malfunction and 
output data that consist mostly of error flags. Again, 
although this test is not often documented, it is common in 
practice and is included here for completeness. 

3.3. Bounds Test  

This test is well documented among quality control 
procedures [2, 6] and it identifies values above and below 
pre-defined upper and lower bounds, respectively. Detected 
points are replaced by linear interpolation if they are 1% or 
less of the total. If the number of points flagged by this test is 
higher than 1% the run is discarded. We define bounds for 
the velocity components u, v and w, the virtual temperature 
θv and molecular densities of CO2 (ρc) and H2O (ρv ), which 
are given in Table 1. 

The bounds can and should vary from one site to another. 
As an example, values below 0°C are likely to be 
measurement errors if the sensor is placed in a tropical 
low-altitude environment, but are considered normal values 
for high latitudes. The opposite goes for high temperatures 
such as 40°C. 

The values of the bounds have to be chosen according to 
the number of false positives and false negatives the 

researcher is willing to accept. Narrower limits have a 
greater chance of discarding runs with properly-measured 
variables (false negatives). However, it is recommended that 
the bounds be set at least to flag impossible values, such as 
negative concentrations, relative humidities greater than  
100% and so on. Applying this very-conservative set of 
limits increases the chance of not flagging 
improperly-measured runs (false positives). 

Table 1.  Threshold values used in the proposed tests. The upper and lower 
boundaries refer to the Bounds test, the standard deviation (STD) threshold 
refers to the STD test and the maximum difference thresholds refer to the 
Maximum difference test 

Variable Upper 
boundaries 

Lower 
boundaries 

STD 
thresholds 

Max. diff. 
thresholds 

θv  (°C) 50 0 0.100 1.7 

ρc  (mmol m−3) 0 50 0.002 3 

ρv  (mmol m−3) 0 2000 0.018 200 

u (ms−1) ― ― 0.030 ― 

v (ms−1) ― ― 0.030 ― 

w (ms−1) ― ― 0.010 ― 

 
It is worth noting that we focus this analysis on cases 

where sensor diagnostic flags are not available, which are the 
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result of internal quality tests provided by modern 
micrometeorological sensors [6]. However, for cases where 
diagnostic sensor flags are available, this test may (and 
should) also be applied using them to detect and replace poor 
quality data [6]. 

3.4. Spikes Test 

This test is traditionally applied using a moving average 
across the complete run [2], while recent studies have 
proposed a single median over the 30-minute window 
alongside calculations of the median absolute deviation [6]. 
We propose a method that we found to be a good 
compromise between both, since it is considerably faster 
than applying a moving window with almost the same results. 
It is applied according to the following steps. 

Initially, (i) the time series is de-trended with a linear  
fit and then divided into windows of 2 minutes each   
(1200 points in our case). Next, (ii) we calculate the  
median absolute deviation (MADn) and median (⟨𝑎𝑎𝑛𝑛⟩) for 
each 2-minute window, where n=1,2,…15. Running 
point-by-point within the 2-minute window, the point is 
flagged if it satisfies the condition 

|𝑎𝑎𝑖𝑖 − ⟨𝑎𝑎𝑛𝑛⟩| > 𝜆𝜆 𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛
0.6745

            (1) 

where the ai’s are each point in the 2-min window 
(i=1,2,…,1200) and λ is a constant found by trial and error; 
an optimum value for our dataset is λ = 7, which is also 
used by [6]. The factor 0.6745 is a constant that relates the 
median absolute deviation to one standard deviation, 
assuming a gaussian distribution [6]. Moreover, (iii) if there 
are four or more consecutive flagged points, then they are 
not considered spikes and are not modified. If they appear 
in a maximum of three consecutive values, they are 
considered spikes and are linearly interpolated. Finally, (iv) 
if the total number of spikes after this procedure is greater 
than 1% (considering the complete 30-minute run), the run 
is discarded. 

3.5. Replacement Count Test 

After the three previous tests which effectively replace 
values and correct the data are applied (namely the Complete 
record, Missing values and Spikes test), we check if the sum 
of the total replacements made in those tests exceeds 1% of 
the total values in the time series. If this occurs for any 
variable, then the entire run is discarded. 

This step makes sure that runs that passed the Complete 
record, Missing values and Spikes test do not have a 
combined number of replaced data points large enough to 
potentially alter significantly the statistics derived from them. 
Versions of this test are already used in the literature, with 
values of accepted percentage ranging up to 10% [6]. 

3.6. STD Test 

According to [2], for some records with low variance 
(weak winds and stable conditions), the resolution of the 
sensor may not be fine enough to capture the fluctuations, 

leading to a step-ladder appearance in the data. Resolution 
problems also might result from a faulty instrument or data 
recording and processing systems [2]. Although other 
approaches to identify such conditions exist [2], we propose 
a simpler and faster approach which is done by comparing 
the standard deviation (STD) of each variable with 
pre-stipulated calibrated values (near the resolution of the 
sensors) in order to check the reliability of the 
measurements. 

In this test, first (i) the trend should be removed for all 
variables using a two-sided moving average with a 900-point 
window, creating a fluctuation series (notice that the 
objective here is not to “extract” the turbulent fluctuations 
which will be used, eventually, to calculate the turbulent 
statistics; these fluctuations are specific to the test at hand). 
Next, (ii) these new series are divided in windows of 2 
minutes and the standard deviation of each window is 
computed. Finally, (iii) the standard deviation of each 
window is compared to threshold values previously 
stipulated, whereas runs that have any 2-minute window 
with a standard deviation smaller than the threshold for any 
variable are discarded. 

Although the thresholds for each variable have to be 
carefully chosen by trial and error, given that they are 
sensitive to small changes, it is reassuring that the thresholds 
which are eventually obtained are often close to the nominal 
sensor resolution. The values used in this work are presented 
in Table 1. 

3.7. Maximum Difference Test 

We propose this test to remove runs that remain 
non-stationary even after linear detrending. It is applied by (i) 
taking the fluctuations of each variable using a linear 
detrending procedure. Next, (ii) the absolute difference 
between the highest and lowest values in the moving-median 
of this 30-minute fluctuation is computed using a 1-minute 
window. Finally, (iii) runs for which this “maximum 
difference” is greater than a pre-defined threshold for any 
variable are excluded. 

Threshold values were chosen empirically using visual 
inspection of some time series as an essential procedure. 
This test is applied only for the virtual temperature, ρc, ρv, 
and the values adopted here are presented in Table 1. 

3.8. Reverse Arrangement Test 

The Reverse arrangement test (RAT) is included to detect 
trends in data and exclude non-stationary time series that 
were not detected by the Maximum Difference test. 
According to its definition [13], from the number of 
observations in the series (N), the RAT calculates the number 
of reverse arrangements, denoted by A. Then, given a 
significance level (α), the acceptance range stipulated for this 
test is [AN;1−α/2 < A ≤ AN;α/2], whose values are tabulated and 
can be found in [13, p. 97]. 

To apply the RAT we divide the 18000-point time series 
in 50 intervals, and the mean of each of those intervals is 
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used in the test, representing an “independent” point in the 
sample, for a total sample size N = 50. A 5% significance 
level is adopted. In terms of the RAT statistic A, the 
acceptance range is [495 < A ≤ 729]: for this level of 
significance the number of reverse arrangements A of the 
50-points averaged series has to be in the range (495, 729] 
in order for the run to pass. 

The RAT is applied after linear detrending; in fact, in our 
experience, only then is the RAT is effective. If the 
fluctuations are extracted with a block average, then it flags 
almost every run (because a net trend remains in the 
fluctuations); on the other hand, if the fluctuations are 
extracted with a moving mean/median, then almost no run 
is flagged by the RAT. 

4. Results and Discussion 
In this section we show the results for the application of 

the quality control procedures to our dataset along with 
some general remarks on its application.  Although each 
dataset should be evaluated independently, we believe that 
the application of the quality control to the data obtained in 
our site could illustrate and serve as an example to other 
applications. 

First of all it is important to perform a visual inspection 
on some of the runs of the dataset. Depending on the size of 
the dataset, it is impractical to view more than a small 
fraction of the total; however, viewing a set of runs that 
include both daytime and nighttime runs under different 
stability conditions is usually a helpful procedure. This can 
aid the analyst to develop a feeling about what to pay most 
attention to in the quality control and later to check, to the 
best of his/her judgement, if the discarded runs were 
flagged correctly. 

As described in the previous sections, the parameters of 
each test are dependent on the experimental site and dataset, 
and should be found by trial and error. In our case, as 
already mentioned, the quality-control parameters thus 
found are listed in Table 1. 

In order to better understand and exemplify each test, we 
performed two applications of our quality control procedure. 
The first application is designed for the illustrative purposes 
of this work only, while the second is the real intended 
application of the procedure described here. 

In the first case we initially removed the runs that failed 
the Missing values and Complete record test, which totaled 
47 runs, leaving 13234 runs. This has to be done since runs 
with less lines than what is expected or with too many 
NAN's may incorrectly fail tests such as the STD and 
Spikes test, producing a false count for them. Next, all runs 
were submitted to all remaining tests of the quality control 
independently. By this approach, every run passes through 
the Bounds, Spikes, STD, Maximum difference and 
Reverse arrangement test. The Replacement test was not 
applied in this approach because for this test to make sense, 

by its definition, the Missing values, Bounds and Spikes test 
have to be applied together, and not independently. 

The results of this exercise can be seen in Table 2, where 
the first column shows the number of excluded runs by each 
method and second column shows the respective percentage 
of the total of runs (13281). For our dataset the standard 
deviation test, by itself, was responsible to exclude the 
majority of the original runs (almost 68%), with the variable 
most responsible for failing the STD test being θv, measured 
by the sonic anemometer. 

Table 2.  Summary of discarded runs for each test of the quality control 
when applied individually 

Test Number of 
discarded runs 

Percentage of 
discarded runs 

Percentage of 
runs with 

replaced points 

Bounds test 320 2.41 8.18 

Spikes test 34 0.26 40.32 

STD test 9005 67.80 ― 

Max diff test 2287 17.22 ― 

RAT 1773 13.35 ― 

After inspection, we found that the resolution of the 
sensor was in fact close to what is described in the 
manufacturer's manual. Furthermore, from all the runs 
discarded by this test, 61% were between 6 pm and 6 am of 
the following day, which indicates a low-turbulence 
scenario. An example of series detected by this test is 
shown in Figure 2-b. 

Moreover, the Maximum difference and Reverse 
arrangement tests are responsible for the second and third 
most discarded runs (17.22 and 13.35%, respectively). 
However, as we will explain next in the second application 
of the quality control, most of these runs overlap and are 
discarded by both of them. Furthermore, although the 
number of runs that failed the Spikes test is small, we see 
that this test is important since it replaced spikes in 40.21% 
(5355 runs) of the original runs. Examples of runs that 
failed the Maximum difference and Reverse arrangement 
tests (respectively) are shown in Figure 2-a and 2-c. 

In the second case all tests were applied to the dataset 
sequentially. Therefore, if a run fails one test, it will not be 
tested for the others, which is how this quality control 
procedure should in fact be used. The results for this 
application can be found in Table 3, whose rows follow the 
order in which the tests were applied, which can also be 
seen in Figure 1. 

To begin our analysis for the sequential application, we 
note the fact that although no run was discarded by the 
Missing values test, such a test is still important for datasets 
in general, since it is a simple test that can quickly detect 
data logger errors. Furthermore, although it did not exclude 
any run, 0.38% of runs had NAN’s that were interpolated 
and which could possibly alter results for other tests. It goes 
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without saying that this percentage could be larger for other 
datasets. 

The Bounds test, which is applied before the Spikes test, 
effectively removes many spikes already. This is an 
argument for applying the Bounds test before the Spikes 

test, since the Bounds test is simpler and far less 
computationally costly, which may make a significant 
difference in the run-time required to screen large datasets. 
An example of a run that fails the Bounds test is shown in 
Figure 2-d. 

 

 

Figure 2.  Examples of some runs that were discarded by some tests. In panel (a) we show the fluctuations of a run that failed the Maximum difference test, 
along with the moving median used in the test. In (b) we show an example of a run that failed the standard deviation test. In (c) we present a run that failed the 
Reverse arrangement test, along with the 50-points array used for the actual application of the test. Lastly, in (d) we have a run which clearly fails the Bounds 
test because of the negative concentrations 

Table 3.  Summary of the quality control steps when applied sequentially 

Test Number of 
discarded runs 

Percentage of 
discarded runs 

Number of 
remaing runs 

Percentage of runs 
with replaced points 

Complete record test 47 0.35 13234 ― 

Missing values test 0 0 13234 0.38 

Bounds test 320 2.41 12914 8.18 

Spikes test 0 0 12914 40.42 

Replacement test 29 0.22 12885 ― 

Standard deviation test 8825 66.45 4060 ― 

Maximum difference test 896 6.75 3164 ― 

Reverse arrangement test 121 0.91 3043 ― 
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Still, the Spikes test removed spikes from approximately 
40% of runs, without however being responsible for 
discarding any run (which means that spikes were not 
particularly abundant in any run). The Spikes test was also 
important preventing those relatively few spikes from 
“contaminating” the next tests in the order of application. 

The STD test, when applied in sequence to the previous 
tests, still discards the majority of our runs. Although the 
discarded count for this test is high and in the majority of 
these cases the variable responsible for failing this run is the 
virtual temperature, we found by thorough visual inspection 
that our calibration of the STD limit for this case is accurate. 
Thus, for this dataset this test was crucial to identify 
low-turbulence runs, whose measurement suffers from 
insufficient sensor resolution, from passing to possible 
further analysis. It is outside our scope to undertake a more 
detailed analysis of such runs. There is an abundance of 
advanced techniques to deal with these situations [14-19], 
in which case it may well be needed to reconsider the 
elimination of all these runs, without further analysis, from 
the final dataset. 

The Maximum difference test had a drop from 17.22% 
(when it was applied independently for all runs) to 6.75% of 
failed runs (when applied in sequence). Such drop is 
expected for tests placed last in the order of application. 
The Reverse arrangement test, however, decreased from 
excluding 13.35% of runs to only 0.91%. Since the Reverse 
arrangement test and the Maximum different both aim at 
excluding non-stationary runs, it is likely that for this test 
the great majority of non-stationary runs are already 
identified and discarded by the Maximum difference test, 
leaving a small number of runs that fit into the RAT 
characteristics. 

We suggest that this analysis be done for other datasets to 
find whether this redundancy between the STD and RAT 
continues. If so, then we recommend that only one of those 
tests be used. According to the discard count in Table 2, the 
Maximum difference test is more rigorous than the RAT. 
However, on average, the RAT is 15% faster to run than the 
Maximum difference test. Thus, if the quality control has to 
be extremely focused on small runtimes, it should be better 
to use the RAT. On the other hand, if some speed can be 
given up for accuracy, it may be preferrable to use the 
Maximum difference test. 

The Replacement test excluded a total of 0.22% of the 
runs. This count is low when compared to other tests, but 
may be larger for other datasets. Finally, when the quality 
control was applied sequentially, the number of remaining 
runs was 3043, corresponding to roughly 22.91% of the 
original number of runs. This percentage is low, with most 
of the runs excluded being night runs with low turbulence. 

5. Conclusions
In this paper we proposed a simple quality control 

procedure for high frequency micrometeorological datasets. 
Although there exist other proposed procedures for quality 
control of environmental data in general [1, 2, 6], we focused 
on tests that can be applied fairly easily to high-frequency 
data, and that are computationally efficient, rather than tests 
that have a large runtime. 

Furthermore, since our methods are specifically tailored 
for micrometeorological datasets, they aim mostly at 
improving the quality of the fluctuations. Although some of 
our tests may be useful for other types of applications, in that 
case other methods of quality control should be considered, 
such as a detection of non-stationarity in the means of time 
series and an analysis of sensor accuracy as opposed to 
resolution. 

Our proposed procedure was applied to data collected over 
a tropical forest in the Amazon basin. First we applied each 
test independently in order to check what were the most 
common issues of the time series and to exemplify each test. 
Next we applied all tests in sequence, where runs that fail one 
test were excluded and not tested again. 

Overall, we found that the proposed quality control was 
successful in removing the majority of errors and 
non-conformities with the micrometeorological theory that 
may affect datasets, such as unrealistic data values, 
insufficient sensor resolution and non-stationarity. 

We found that in both applications the STD test was 
responsible for excluding the majority of runs, which can be 
attributed to low-turbulence periods in which the sensor is 
unable to properly measure because of insufficient resolution. 
The second most frequent problem with our dataset was 
non-stationarity of the time series, for which the Maximum 
difference test seems to be enough, although another test is 
proposed (namely the Reverse arrangement test) to discard 
runs that eventually pass the former. 

The tests described here (along with additional options) 
were included in the quality control function of the Python 
tool for Micrometeorological Analysis (Pymicra), which is 
available at Github (https://github.com/tomchor/pymicra). 
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