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Abstract  The aim of our study is to select the best method for overcoming partial and full multicollinearity in binary 

logistic model for different sample sizes. Logistic ridge regression (LRR), least absolute shrinkage and selection operator 

(LASSO) and principal component logistic regression (PCLR) compared to maximum likelihood estimator (MLE) using 

simulation data with different level of multicollinearity and different sample sizes (n=20, 50, 100, 200). The best method is 

chosen based on mean square error (MSE) values and the best model is characterized by AIC value. The results show that 

LRR, LASSO and PCLR surpass MLE in overcoming partial and full multicollinearity in binary logistic model. PCLR 

exceeds LRR and LASSO when full multicollinearity occurs in binary logistic model but LASSO and LRR are better used 

when partial multicollinearity exists in the model. 
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1. Introduction 

Consider that the model has the form 𝑦𝑖 = 𝒙𝒊
′𝜷 + 𝜀𝑖  

where  𝒙𝒊
′ =  1 𝑥𝑖1 𝑥2𝑖 …𝑥𝑖𝑘  ,  𝜷′ =  𝛽0 𝛽1  … 𝛽𝑘  and 

dependent variables 𝑦𝑖  has value either 0 or 1. Estimating 

parameters in this model where the response variable is 

binary or multinomial is not appropriate when using the 

linear regression model estimation method. The linear 

regression model is based on a ratio scale measurement 

[1,2,3]. In this case logistic regression model is more 

suitable. 

Logistic regression model is based on a logistic function to 

model binary dependent variables. It is a classification of 

individuals in different groups. Unlike multiple regression, 

logistic regression is much more flexible in terms of basic 

assumptions to be met. Logistic regression model as one   

of nonlinear regression model does not require liner 

relationship between independent and dependent variables, 

assumption of normal distribution and homoscedasticity in 

the error terms. Despite all the flexibility, the logistic 

regression model still requires no correlation between 

independent variables [4,5]. When there is a correlation 

between the independent variable, logistic model becomes 

unstable. This can cause errors in the interpretation of the 

relationship between the dependent and each independent 

variable in terms of odds ratios [6,7]. 
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There are several methods for overcoming the problem  

of multicollinearity in the logistic models and have been 

examined by several researchers [8,9,10,11,12]. In this 

research, a selection of LRR, LASSO and PCLR methods 

was conducted in logistic model with binary responses and a 

set of continuous predictor variables. Each method was 

compared using simulation data that contains partial and  

full multicollinearity with different sample sizes. The best 

method was examined based on the minimum value of MSE 

and the best model is characterized by AIC value.  

2. Logistic Regression Model 

Suppose the response variable of regression application of 

interest has two possible outcomes or Yi is a Bernoulli 

random variable with the probability distribution 𝑃(𝑦𝑖 =
0) =  1 − 𝜋𝑖  and 𝑃(𝑦𝑖 = 1) = 𝜋𝑖  The probability function 

for each observation is 𝑓 𝑦𝑖 =  𝜋𝑖
𝑦𝑖(1 − 𝜋𝑖)

1−𝑦𝑖 , 

i=1,2,…,n [4,5,6,7]. The multiple logistic regression model 

of the response variable 𝒀 = 𝜋 𝑿 + 𝜀, with 𝜋 (X) is an n x 

1 vector and 

𝜋𝑖 𝑥 =  𝐸 𝑌|𝑋 = 𝑥𝑖 = 𝑃 𝑌𝑖 = 1 =
exp  𝛽0+𝑥𝑖𝛽 

1+𝑒𝑥𝑝  𝛽0+𝑥𝑖𝛽 
 (1) 

where 𝜷 is a k x 1 vector of estimated parameters. The logit 

function of π𝑖(𝑥) is 𝑙𝑜𝑔𝑖𝑡 π𝑖(𝑥) = ln  
π𝑖(𝑥)

1−π𝑖(𝑥)
  or in linear 

form can be written as [3,13]: 

𝐿 𝑿 =X𝜷               (2) 

The parameters were estimated by maximizing likelihood 

function 𝐿(𝜷) =   𝜋𝑖(𝑥𝑖)
𝑦𝑖𝑁

𝑖=1  1 − 𝜋𝑖 
𝑛𝑖− 𝑦𝑖 . When the 

log-likelihood is differentiated with respect to 𝜷 equal to 

zero, we get 
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𝜷 ML =   𝐗′𝐖 𝐗 
−1
𝐗′𝐖 𝐙         (3) 

where Z is a nx1 column vector with elements 𝑧𝑖 = 

logit 𝜋 𝑖 + 
𝑦𝑖𝜋 𝑖

𝜋 𝑖(1−𝜋 𝑖)
 and 𝐖  = diag 𝜋 𝑖(1 − 𝜋 𝑖)  [7].  

2.1. Logistic Ridge Regression (LRR) 

When multicollinearity exist between independent 

variables in the logistic model, the matrix X’WX is (near) 

singular. Using maximum likelihood method to estimate the 

parameters in the model is not suitable because we cannot get 

the inversion of the matrix. As a result, the estimation of the 

parameters in the logistic model using maximum likelihood 

method is being unstable and cannot be uniquely estimated. 

In this situation, the ridge regression method can be applied 

by using a penalty to the diagonal matrix of X’WX to 

stabilize the coefficients estimates [14,15,16]. Although  

this method will produce a bias in the coefficient estimates of 

the model, it provides a lower variance of the coefficient 

estimates than the unpenalized model. Ridge likelihood 

estimator of the logistic model is done by maximize the ridge 

penalized loglikelihood [17,18,19,20,21]: 

𝐿𝐿𝑅𝑅 𝜷, 𝝀 = 𝐿 𝜷 − 𝝀𝜷′𝜷 

=   𝑦𝑖 log 𝜋𝑖 + (1 − 𝑦𝑖) log(1 + 𝜋𝑖) 
𝑛
𝑖=1 −  𝝀𝜷′𝜷 (4) 

where the ridge penalty is the second summand (the sum of 

the square of the elements of 𝜷)  with 𝝀  as penalty 

parameter. Because the value of the 𝜷 equation is not linear, 

Newton-Raphson method is used to solve it. The solution 

uses and follows the iterative weighted least square 

algorithm to obtained the 𝜷 estimates. The logistic ridge 

regression (LRR) model following [17] is: 

𝜷 𝑳𝑹𝑹 = (𝑿′𝑾 𝑿 + 𝑘𝑰)−1𝑿′𝑾 𝑿 𝜷 𝑳𝑴𝑳𝑬     (5) 

with 𝑘 =
1

𝜷 𝟐
 5 and 𝑾  as in equation (3) [17].  

2.2. Least Absolute Shrinkage and Selection Operator 

(LASSO) 

LASSO method can be used to overcome problems     

in multicollinearity [22]. LASSO shrinks the coefficient 

parameter β which correlates to exactly zero or close to zero 

[23]. Lagrangian constraint (L1-norm) can be combined in a 

log-likelihood parameter estimation in logistic regression 

[24,25]. The estimation of parameters in LASSO in 

combining log-likelihood and Lagrangian constraints 

produces: 

𝑙 𝛽 =  −   1 − 𝑦𝑖 𝛽
′𝑥𝑖

′ +  ln(1 + 𝑒𝑥𝑝 −𝛽′𝑥𝑖
′ ) 𝑛

𝑖=1   

− 𝜆  𝛽𝑗  
𝑝
𝑘=1               (6) 

So we get a logistic regression parameter estimates with 

LASSO: 

𝜷 𝝀
𝑳𝑨𝑺𝑺𝑶 = 𝑎𝑟𝑔𝑚𝑎𝑥  𝑙 𝛽 −  𝜆   𝛽𝑗  

𝑝
𝑗=1       (7) 

λ > 0 is the tuning parameter that control the strength of 

penalty in the LASSO method and can be obtained using 

generalized cross validation [22]. 

2.3. Principal Component Logistic Regression (PCLR) 

In linear regression analysis, principal component 

regression (PCR) is one of the methods that has been 

confirmed to be able to overcome the problem of 

multicollinearity [1,11,26,27]. PCR aims to simplify the 

observed variables by reducing the dimensions, where the 

chosen principal components must maintain as much 

diversity as possible. This is done by eliminating the 

correlation between the independent variables through the 

transformation of the original independent variable into a 

new variable that does not correlate at all. In terms of the 

principal component (PC) of the predictor variables, the logit 

transformation (2) can be written as principal component 

regression form as: 

𝐿 𝑿 = 𝑿𝜷 = 𝒁𝑽′𝜷 = 𝒁𝜸         (8) 

where 𝒁 = 𝑿𝑽 as an n x k matrix whose columns are the 

PCs of X with V is a k x k matrix whose columns are the 

eigenvectors of the of the matrix X’X denoted by 𝒗𝒋 with 

𝑗 = 1,… , 𝑝. It is obvious that 𝜸 = 𝑽𝑻𝜷 can be estimated by 

𝜸 = 𝑽′𝜷                   (9) 

The prediction equation of MLE is 𝑌  𝑥 = 𝜋  𝑥  with 

𝜋  𝑥 = 

exp(𝛽0
 +  𝑧𝑗 (𝑥)𝛾𝑗 )/(1 + exp(𝛽0

 +  𝑧𝑗 (𝑥)𝛾𝑗 ))𝑘
𝑗=1

𝑘
𝑗=1   

where 𝑧𝑗  𝒙 = 𝒙′𝒗𝒋 is the j-th PC value for a point x. The 

logit model (8) can be expressed as 

𝐿 𝑿 = 𝛽01+𝒁𝒔𝜸
𝒔 + 𝒁𝒓𝜸

𝒓        (10) 

The principal component logistic regression (PCLR) 

model in terms of the first PC is 𝑌 = 𝜋𝑠 𝑿 + 𝜀𝑠  and    

the logit transformation, 𝐿𝑠(𝑿)  has components 𝐿𝑖
𝑠 =

ln([𝜋𝑖
𝑠/(1 − 𝜋𝑖

𝑠)]  is defined as 𝐿𝑠 𝑿 = 𝑾𝑠𝜸
𝒔 . The 

parameter estimate of the PCLR [9] is:  

𝜷 𝒔 = 𝑽𝒔𝜸 
𝒔               (11) 

where the subscript (s) indicates number of PCs were used in 

the PCLR model.  

This method was introduced by Aguilera et al. [10] for 

solving the problem of high-dimensional multicollinear   

data in logistic regression of binary response variable and  

a set of continuous predictor variables. They showed that 

the PCLR model provides better estimation of model 

parameters compared to partial least square (PLS) logistic 

regression. 

3. Methods 

Illustration of the performance of LRR, LASSO PCLR 

methods used in this study was carried out using a simulation 

study to show how these methods can improve the estimation 

of parameters of the binary logistic model contains partial 

and full multicollinearity using R. Six independent  

variables (p=6) were generated using the formula 𝑋𝑝 =

   1 − 𝜌2 𝑧𝑖𝑗 +  𝜌𝑧𝑖 𝑝+1 ; 𝑖 = 1,2, … , 𝑛  and 𝑗 = 1,2, … , 6 

with 𝑧𝑖𝑗 ~N(0,1) and 𝜌 = 0,99. The dependent variable Y is 
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generated by the binary logistic regression probability  

𝑃 𝑦𝑖 = 1 = 𝜋𝑖 𝑥 =  
𝑒𝑥𝑝 ( 𝛽0+ 𝛽1𝑥1+ 𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝 )

1+𝑒𝑥𝑝 ( 𝛽0+ 𝛽1𝑥1+ 𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝 )
 with 

𝛽0 = 0  and 𝛽1 =  𝛽2 = ⋯ =  𝛽𝑝 = 1  respectively. Partial 

and full multicollinearity between independent variables 

were applied in the model with different sample sizes   

(n=20, 40, 60, 100, 200) and replicated 1000 times. 

Multicollinearity of the independent variables is   

measured by 𝑉𝐼𝐹 =  
1

(1−𝑅𝑗
2)

 with 𝑅𝑗
2  is the coefficient of 

determination. The best method in estimating the parameters 

is evaluated using MSE with formula: 

𝑀𝑆𝐸 𝜷  =
1

𝑛
  𝜷 (𝑙) − 𝜷 

2
𝑚

𝑙=1

, 

and the best model is characterized by 𝐴𝐼𝐶𝑐 = 2𝑘 − 2ln(𝐿 ) 

where 𝐿 = 𝑝(𝜃  ,𝑀) , 𝜃  is the value that maximize the 

likelihood function, n is the number of recorded 

measurements and k is the number of parameters estimated 

[28,29]. 

4. Results and Discussion 

The partial and full multicollinearity of the independent 

variables applied in this study is shown in Table 1. First, 

partial multicollinearity in which correlation only applies 

between X1 and X2; second, partial multicollinearity where 

correlation occurs only between X1, X2, and X3; third, full 

multicollinearity in all independent variables. This condition 

is applied to all sample sizes that are being studied. 

Table 1.  Multicollinearity in independent variables for all sample sizes studied 

Independent 

Variables 

VIF 

Partial multicollinearity 

in X1, X2 

Partial multicollinearity 

in X1, X2, X3, X4 

Full 

multi-collinearity 

X1 20.35 20.35 20.35 

X2 20.68 20.68 20.68 

X3 1.62 23.17 23.17 

X4 1.65 30.33 30.33 

X5 1.48 1.28 31.28 

X6 1.58 1.14 41.14 

 

From Table 1, we can see that the VIF values are greater 

than 10 for all given cases in this study. It means that the 

independent variables seem to correlate to each other and 

indicate there is a multicollinearity between these variables. 

To select the method that is considered the best in 

overcoming the multicollinearity problems in this study, 

MSE value is used. The best method is determined from an 

MSE value that close to zero. The MSE values of MLE, LRR, 

LASSO, PCLR for partial and full multicollinearity in the 

model at different sample sizes are shown in Table 2. 

From Table 2 where partial multicollinearity in X1 and X2 

occurs in the model, MLE gives MSE =35608.77 for n=20, 

MSE= 1112.951, for n=50, MSE= 0.0820, for n=100, 

respectively. These values are far above the MSE of LRR, 

LASSO and PCLR which give MSE = 0.0857, 0.0170, 

0.0207 for n=20, MSE =0.0506, 0.0085, 0.0175 for n=50, 

and MSE =0.0385, 0.0026, 0.0126 for n=100, respectively. 

Similar results are obtained when partial multicollinearity 

exists in X1, X1, X3, X4 and when the model contains     

full multicollinearity. It is obvious that MLE is unable     

to overcome partial and full multicollinearity between 

independent variables very well in logistic regression with 

binary responses when sample sizes are small enough. In a 

larger sample size (n=200) the MSE of MLE seems to 

decrease significantly, but its value still above the MSE of 

LRR, LASSO and PCLR. This suggests that MLE should not 

be used in estimating the parameters of logistic models with 

binary responses that have partial and full multicollinearity 

on small and large sample sizes. 

Table 2.  MSE of MLE, LRR, LASSO, PCLR 

Multicolli- 

nearity in 

MSE 

 MLE LRR LASSO PCLR 

X1, X2 n=20 35608.77 0.0857 0.0170 0.0207 

 n=50 1112.951 0.0506 0.0085 0.0175 

 n=100 0.0820 0.0385 0.0026 0.0126 

 n=200 0.0064 0.0054 0.0017 0.0057 

      

X1, X2, X3, X4 n=20 1.03E+27 0.0572 0.0495 0.0216 

 n=50 2.53E+25 0.0536 0.0291 0.0194 

 n=100 47.6825 0.0435 0.0078 0.0161 

 n=200 0.0162 0.0051 0.0052 0.0084 

      

X1, X2, X3, X4, 

X5, X6 
n=20 3.77E+26 0.0668 0.1452 0.0182 

 n=50 2.66E+25 0.0528 0.0664 0.0089 

 n=100 16867.23 0.0114 0.0149 0.0049 

 n=200 0.0336 0.0062 0.0092 0.0006 

To provide clearer results from the LRR, LASSO     

and PCLR methods in overcoming partial and full 

multicollinearity for all sample sizes (n=20, 40, 60, 100, 200), 

we compared the MSE of the three methods separately from 

MLE as shown in Figure 1-3.  
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Figure 1.  MSE of partial multicollinearity in X1, X2 

 

Figure 2.  MSE of Partial multicollinearity in X1, X2, X3, X4 

 

Figure 3.  MSE of full multicollinearity 

Figures 1-3 shows MSE of LRR, LASSO and PCLR in 

conditions where the binary logistic model contains partial 

and full multicollinearity at different sample sizes (n=20, 50, 

100, 200. It can be seen that MSE values of LRR, LASSO 

and PCLR vary depending on the number of correlated 

variables and sample sizes. If partial multicollinearity occurs 

between X1 and X2 in the model, LASSO gives MSE= 

0.0170, 0.0085, 0.0025, and 0.0017 for n=20, 50, 100, and 

200, respectively. These values are much lower than    

MSE value of LRR and PCLR. However, when partial 

multicollinearity occurs among X1, X2, X3 and X4 in the 

model, the results vary. For n = 20 and 50, LASSO and LRR 

gives lower MSE than PCLR. Conversely, for n= 100 and 

n=200, PCLR has the lowest MSE compared to LASSO and 

LRR. This suggests that when partial multicollinearity exists 

in the binary logistic model, LASSO, LRR, and PCLR can be 

used depending on the amount of multicollinearity and 

sample sizes. 

In situation where there is full multicollinearity between 

the independent variables in the model, we can see from 

Figure 3 that PCLR has the lowest MSE value than LRR and 

LASSO with MSE= 0.0182, 0.0089, 0.0049, and 0.0006  

for n=20, 50, 100, 200, respectively. Obviously, LRR and 

LASSO appear unable to overcome full multicollinearity in 

logistic regression with binary responses. In this case PCLR 

exceeds LRR and LASSO for each sample size studied 

(n=20, 50. 100, 200). This indicates that PCLR is the best 

method for overcoming full multicollinearity in binary 

logistic model for all sample sizes being studied. 

To determine the best model, we examine the AIC values 

of LRR, LASSO and PCLR as shown in Table 3. 

Table 3.  AIC of LRR, LASSO and PCLR 

Multicollinearity in 
Method 

 
LRR LASSO PCLR 

X1, X2 

n=20 23.7817 22.2384 23.3529 

n=50 23.9976 23.4506 23.9840 

n=100 24.8375 24.1487 24.6437 

n=200 25.6043 25.2272 25.3984 

X1, X2, X3, X4 

n=20 21.9677 21.2499 19.6000 

n=50 21.9843 21.7072 19.8603 

n=100 22.8726 20.1575 22.5838 

n=200 21.6062 23.1186 23.5904 

X1, X2, X3, X4, X5, X6 

n=20 20.4921 19.6963 19.5883 

n=50 20.7754 20.2561 19.8593 

n=100 21.8765 21.3905 20.1537 

n=200 22.3716 21.9450 21.2761 

Based on the AIC values from Table 3 it was found that 

the best model depends on the number of correlated variables 

in the binary logistics model and sample size. This supports 

the results obtained based on the MSE value. 

5. Conclusions 

We conclude from the results of this study that LRR, 

LASSO and PCLR surpass MLE in overcoming partial 

multicollinearity and full multicollinearity occur in binary 

logistic model. PCLR exceeds LRR and LASSO when full 

multicollinearity occurs in binary logistic model but LASSO 

and LRR are better used when partial multicollinearity exists 

in the model. 
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