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Abstract  In this paper, a new method for constructing bivariate distributions with given marginals is proposed, based on 

a mixing two bivariate distributions. A new bivariate distribution family is introduced by adding an appropriate term with 

independence class of distribution. During this construction process, the model is not complicated. By choosing a base 

distribution from the same marginals we derive a new distribution around the independent class. We note that the new 

distribution has additional parameter which would provide additional flexibility in applications. The joint probability density, 

joint reliability and reversed hazard rate functions of the new bivariate distribution are obtained. Furthermore, it is established 

that construction of bivariate distributions by this method allows for some flexibility in the values of Spearman’s correlation 

coefficient. 
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1. Introduction 

Univariate models are insufficient to explain random 

phenomena. Today, data such as drought, wind speed and 

rainfall are measured together with the variables that may 

affect them. With the development of technology, the 

construction of continuous bivariate distribution functions 

with given marginals has become an importance. When 

creating new bivariate distributions, models that can express 

high correlation are generally tried to be obtained. [2] 

introduced a method which based on the choice of pairs of 

order statistics of the marginal distributions. [8] studied on 

construction of continuous bivariate distributions that 

possesses the Positive Quadrant Dependence property. [13] 

introduced a generalization of Farlie-Gumbel-Morgentern 

(FGM) distribution family. They extend the maximal 

correlation coefficient for FGM family. Furthermore, [14] 

introduced bivariate and multivariate generalization of 

quadratic transmutation distribution family. Proposal of [14] 

draws our attention in particular. Because the transition 

from univariate case to bivariate or multivariate cases is not 

so easy. While in univariate case the real line is the 

complement of  the probabilities,  at least in the bivariate  
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case these supplements are on the quadrant. There are some 

issues to overcome for the case of positive values of the 

transmutation parameter. However, marginals of this model 

are univariate transmuted distributions and it cannot detect 

independency. They proposed quadratic rank transmuted 

bivariate distribution as 𝐻 𝑥, 𝑦 =  1 + 𝜆 𝐹 𝑥, 𝑦 −
𝜆𝐹 𝑥, 𝑦 2 , where 𝜆 ∈ [−1,1] . Here, for 𝜆 = 0 , 𝐻 𝑥, 𝑦  

gives the base distribution 𝐹(𝑥, 𝑦). However, if the base 

distribution is taken from independency case, i.e., 

𝐹(𝑥, 𝑦) = 𝐹(𝑥)𝐺(𝑦), then 𝐻(𝑥, 𝑦) can be written as in the 

eq. (2) of [8] follows: 𝐻 𝑥, 𝑦 = 𝐹 𝑥 𝐺 𝑦   

+𝜆𝐹 𝑥 𝐺 𝑦  1 − 𝐹 𝑥 𝐺 𝑦  . For 𝜆 > 0 , 𝑤 𝑥, 𝑦 =

𝜆𝐹 𝑥 𝐺 𝑦  1 − 𝐹 𝑥 𝐺 𝑦   cannot meet the conditions (4) 

and (5) proposed by [8]. Inspired by these studies, the 

contribution of the article is to propose a simpler but more 

useful model than the model introduced by [14]. Proposed 

model also includes both positive and negative values of the 

parameter as in FGM. Thus, the model gains some 

flexibility in modeling both positive and negative 

dependence. Furthermore, proposed model can detect 

independency. After giving the necessary conditions to 

construct a new distribution, Spearman's rank correlation 

coefficient is calculated on two illustrative examples and 

the usefulness of this family is discussed. Furthermore, 

some reliability properties are studied for this family. 

Let 𝐻(𝑥, 𝑦) denote the bivariate distribution function of 

(𝑋, 𝑌) having continuous marginal cdfs 𝐹(𝑥) and 𝐺(𝑦). 

Also, let ℱ 𝐹, 𝐺  be the distribution family where the 

respective marginal are 𝐹 and 𝐺. Then, according to the 

eq. (2) and the condition (3) of [8], we have the function 
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𝑤 𝑥, 𝑦 = 𝐹 𝑥 𝐺 𝑦 𝐻  𝑥, 𝑦  where 𝐻  denotes survival 

function. This function meets the conditions (3)-(5) given 

by [8]. Hence, first mixture component distribution is 

𝐻1 𝑥, 𝑦 = 𝐹 𝑥 𝐺 𝑦 + 𝐹 𝑥 𝐺(𝑦)𝐻  𝑥, 𝑦 . Similar work  

of [8] given by [15] introduces some conditions for 

negatively dependent families. According to the eq. (2.1) 

and the condition (2.1) of [15], we have 𝑤 𝑥, 𝑦 =
−𝐹 𝑥 𝐺(𝑦)𝐻  𝑥, 𝑦 . Except for the condition (2.3) of [15], 

this function meets the conditions (2.2) and (2.4) given   

by [15]. Distribution properties for the second mixture 

component 𝐹 𝑥 𝐺 𝑦 − 𝐹 𝑥 𝐺(𝑦)𝐻  𝑥, 𝑦  have not yet 

been provided. To overcome this issue, we have the 

following theorem.  

Theorem 1. Let 𝐻(𝑥, 𝑦)  be a distribution function 

belongs to the distribution family ℱ 𝐹, 𝐺  which is 

differentiable on ℝ2  and ℎ 𝑥, 𝑦 =
𝜕2𝐻(𝑥,𝑦)

𝜕𝑥𝜕𝑦
 denote the 

joint probability density function. Then  

(i)  𝐹 𝑥, 𝑦 = 𝐹 𝑥 𝐺 𝑦  2 − 𝐹 𝑥 − 𝐺 𝑦 + 𝐻 𝑥, 𝑦   

is a distribution function, 

(ii)  𝐹 𝑥, 𝑦 = 𝐹 𝑥 𝐺 𝑦  𝐹 𝑥 + 𝐺 𝑦 − 𝐻 𝑥, 𝑦   is a 

distribution function if 𝐻 𝑥, 𝑦 ≤ 𝐹 𝑥 𝐺(𝑦) , for  

all  𝑥, 𝑦 ∈ ℝ2  (or 𝐻 𝑥, 𝑦 = 𝐹 𝑥 𝐺(𝑦) , for all 
 𝑡, 𝑣 ∈ ℝ2). 

Proof. (i) Multivariate distribution function must satisfy 

following properties:  

(P1)  

lim
𝑥→∞

𝐹 𝑥, 𝑦 = lim
𝑥→∞

𝐹 𝑥 𝐺 𝑦  1 + 𝐻  𝑥, 𝑦  = 𝐺(𝑦) 

lim
𝑦→∞

𝐹 𝑥, 𝑦 = lim
𝑦→∞

𝐹 𝑥 𝐺 𝑦  1 + 𝐻  𝑥, 𝑦  = 𝐹 𝑥  

lim
𝑥∧𝑦→∞

𝐹 𝑥, 𝑦 = lim
𝑥∧𝑦→∞

𝐹 𝑥 𝐺 𝑦  1 + 𝐻  𝑥, 𝑦  = 1. 

 

 

(P2) 
𝜕𝐹 𝑥,𝑦 

𝜕𝑥
≥ 0 and 

𝜕𝐹 𝑥,𝑦 

𝜕𝑦
≥ 0. For the simplicity 𝑓𝑥  =

𝑑𝐹(𝑥)

𝑑𝑥
 and 𝑔𝑦 =

𝑑𝐺(𝑦)

𝑑𝑦
. 

𝜕𝐹 𝑥, 𝑦 

𝜕𝑥
= 𝑓𝑥𝐺 𝑦  1 + 𝐻  𝑥, 𝑦  + 𝐹 𝑥 𝐺 𝑦 

𝜕𝐻  𝑥, 𝑦 

𝜕𝑥
 

≥  𝑓𝑥𝐺 𝑦  1 − 𝐹 𝑥 + 𝐻  𝑥, 𝑦   
≥ 0. 

Obviously, 
𝜕𝐹 𝑥,𝑦 

𝜕𝑦
≥ 0. 

(P3) 
𝜕2𝐹 𝑥,𝑦 

𝜕𝑥𝜕𝑦
≥ 0. For the simplicity, let 𝑓0 = 𝑓 𝑥 𝑔(𝑦), 𝐻0 = 𝐹 𝑥 𝐺(𝑦) and ℎ𝑥𝑦 =

𝜕2𝐻 𝑥,𝑦 

𝜕𝑥𝜕𝑦
. Then 

𝜕2𝐹 𝑥, 𝑦 

𝜕𝑥𝜕𝑦
= 𝑓0 1 + 𝐻  𝑥, 𝑦  + 𝑓𝑥𝐺 𝑦 

𝜕𝐻  𝑥, 𝑦 

𝜕𝑦
+ 𝑔𝑦𝐹 𝑥 

𝜕𝐻  𝑥, 𝑦 

𝜕𝑥
+ 𝐻0ℎ𝑥𝑦  

= 𝑓0 1 + 𝐻  𝑥, 𝑦  − 𝑓0𝐺 𝑦 𝑃𝑟  𝑋 > 𝑥 𝑌 = 𝑦 − 𝑓0𝐹 𝑥 𝑃𝑟  𝑌 > 𝑦 𝑋 = 𝑥 + 𝐻0ℎ𝑥𝑦  

≥  𝑓0 1 − 𝐹 𝑥 − 𝐺 𝑦 + 𝐻  𝑥, 𝑦  +𝐻0ℎ𝑥𝑦 .  

Now, by noting that positively dependence implies ℎ𝑥𝑦 ≥ 𝑓0, then we have 
𝜕2𝐹 𝑥,𝑦 

𝜕𝑥𝜕𝑦
≥ 𝑓0 𝐻 0 𝑥, 𝑦 + 𝐻  𝑥, 𝑦  ≥ 0. 

Also, negatively dependence implies both 𝑃𝑟  𝑋 > 𝑥 𝑌 = 𝑦 ≤ 𝐹 (𝑥) and 𝑃𝑟  𝑌 > 𝑦 𝑋 = 𝑥 ≤ 𝐺 (𝑦). Hence, we have  

𝜕2𝐹 𝑥, 𝑦 

𝜕𝑥𝜕𝑦
≥ 𝑓0 1 − 𝐹 𝑥 𝐺  𝑦 − 𝐺 𝑦 𝐹  𝑥 + 𝐻  𝑥, 𝑦  +𝐻0ℎ𝑥𝑦  

= 𝑓0 1 − 𝐹 𝑥 𝐺  𝑦 − 𝐺 𝑦 𝐹  𝑥 + 𝐻  𝑥, 𝑦  +𝐻0ℎ𝑥𝑦  

= 𝑓0 𝐻 0 𝑥, 𝑦 + 𝐻0 𝑥, 𝑦 + 𝐻  𝑥, 𝑦  +𝐻0ℎ𝑥𝑦  

≥ 0. 

(ii) According to [4], Additionally to the properties (P1)-(P3), to determine bivariate distribution uniquely by its 

marginals bivariate distribution must lie upper and lower Fréchet bounds. Therefore, this idea explains why we need 

negative dependence for the construction of distribution given in (ii). 

(P1)  

lim
𝑥→∞

𝐹 𝑥, 𝑦 = lim
𝑥→∞

𝐹 𝑥 𝐺 𝑦  1 − 𝐻  𝑥, 𝑦  = 𝐺(𝑦) 

lim
𝑦→∞

𝐹 𝑥, 𝑦 = lim
𝑦→∞

𝐹 𝑥 𝐺 𝑦  1 − 𝐻  𝑥, 𝑦  = 𝐹 𝑥  

lim
𝑥∧𝑦→∞

𝐹 𝑥, 𝑦 = lim
𝑥∧𝑦→∞

𝐹 𝑥 𝐺 𝑦  1 − 𝐻  𝑥, 𝑦  = 1. 

(P2) 
𝜕𝐹 𝑥,𝑦 

𝜕𝑥
≥ 0 and 

𝜕𝐹 𝑥,𝑦 

𝜕𝑦
≥ 0.  

𝜕𝐹 𝑥, 𝑦 

𝜕𝑥
= 𝑓𝑥𝐺 𝑦  1 − 𝐻  𝑥, 𝑦  − 𝐹 𝑥 𝐺 𝑦 

𝜕𝐻  𝑥, 𝑦 

𝜕𝑥
 

≥  0. 
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Obviously, 
𝜕𝐹 𝑥,𝑦 

𝜕𝑦
≥ 0. 

(P3) 
𝜕2𝐹 𝑥,𝑦 

𝜕𝑥𝜕𝑦
≥ 0.  

𝜕2𝐹 𝑥, 𝑦 

𝜕𝑥𝜕𝑦
= 𝑓0 1 − 𝐻  𝑥, 𝑦  − 𝑓𝑥𝐺 𝑦 

𝜕𝐻  𝑥, 𝑦 

𝜕𝑦
− 𝑔𝑦𝐹 𝑥 

𝜕𝐻  𝑥, 𝑦 

𝜕𝑥
− 𝐻0ℎ𝑥𝑦  

= 𝑓0 𝐹 𝑥 + 𝐺 𝑦 − 𝐻 𝑥, 𝑦  − 𝑓𝑥𝐺 𝑦 
𝜕𝐻  𝑥, 𝑦 

𝜕𝑦
− 𝑔𝑦𝐹 𝑥 

𝜕𝐻  𝑥, 𝑦 

𝜕𝑥
− 𝐻0ℎ𝑥𝑦 . 

Negatively dependence implies ℎ𝑥𝑦 ≤ 𝑓0. Hence, we have  

𝜕2𝐹 𝑥, 𝑦 

𝜕𝑥𝜕𝑦
≥ 𝑓0 𝐹 𝑥 − 𝐻0 + 𝐺 𝑦 − 𝐻 𝑥, 𝑦  − 𝑓𝑥𝐺 𝑦 

𝜕𝐻  𝑥, 𝑦 

𝜕𝑦
− 𝑔𝑦𝐹 𝑥 

𝜕𝐻  𝑥, 𝑦 

𝜕𝑥
 

≥ 0. 

However, if 𝑋 and 𝑌 are positively dependent, 𝐹(𝑥, 𝑦) can not bigger than Fréchet lower bound. Therefore, the 

assumption of negative dependence is needed. To show this situation, we assume 𝐹 𝑥 + 𝐺 𝑦 > 1. Then we have 

𝐹 𝑥, 𝑦 − max 𝐹 𝑥 + 𝐹 𝑦 − 1,0 = (𝐹0 − 𝐻(𝑥, 𝑦))(1 − 𝐻  𝑥, 𝑦 ) + (1 − 𝐻(𝑥, 𝑦))𝐻  𝑥, 𝑦  

≥  𝐹0 − 𝐻 𝑥, 𝑦   𝐹 𝑥 + 𝐺 𝑦 − 1 . 

As it can be seen that positivity of the above statement depends on 𝐹0 ≥ 𝐻(𝑥, 𝑦). 

According to Theorem 1, first mixture component distribution can be positively, negatively dependent or independent. 

But the second component distribution must be negatively dependent or independent. Thus, for the base distribution 

𝐻(𝑥, 𝑦), in order to be same structure for both mixture components, the random variables 𝑋 and 𝑌 must be negatively 

dependent or independent. After this motivation, we can now propose the mixing of these two distributions as follows:  

Let 𝑇 and 𝑉 be negatively dependent (or independent) continuous random variables. Then their joint distribution 

function denoted as 𝐻(𝑡, 𝑣) belongs to the distribution family ℱ 𝐹, 𝐺  where 𝐹 and 𝐺 denote respectively marginals of 

𝑇 and 𝑉. Let 𝐻1(𝑥, 𝑦) and 𝐻2(𝑡2, 𝑣2) respectively denote the distribution functions of (𝑇1, 𝑉1) and (𝑇2, 𝑉2) having the 

same marginals as 𝐻. The distribution functions of (𝑇1, 𝑉1) and (𝑇2, 𝑉2) are respectively defined by 

𝐻1 𝑡1, 𝑣1 = 𝑃𝑟 𝑇1 ≤ 𝑡1, 𝑉1 ≤ 𝑣1 = 𝐹 𝑡1 𝐺 𝑣1  1 + 𝐻  𝑡1, 𝑣1                   (1) 

and 

𝐻2 𝑡2, 𝑣2 = 𝑃𝑟 𝑇2 ≤ 𝑡2, 𝑉2 ≤ 𝑣2 = 𝐹 𝑡2 𝐺 𝑣2  1 − 𝐻  𝑡2, 𝑣2                 (2) 

where 𝐻  𝑡, 𝑣  denotes survival function of (𝑇, 𝑉) i.e., 𝑃𝑟 𝑇 > 𝑡, 𝑉 > 𝑣 . As can be seen immediately from equations (1) 

and (2), 𝑇1 and 𝑉1 are positively dependent random pairs, and 𝑇2 and 𝑉2 are negatively dependent random pairs. 

According to Therorem1, we can define a new pairs of random variables X and Y as below: 

 𝑋, 𝑌 =  
 𝑇1, 𝑉1  , with probability  𝛼
 𝑇2, 𝑉2  , with probability  1 − 𝛼.

  

Hence, the distribution of (𝑋, 𝑌) obtained by mixing (1) and (2) which is given by 

𝐹 𝑥, 𝑦 = 𝑃𝑟 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦  = 𝛼𝐻1 𝑥, 𝑦 +  1 − 𝛼 𝐻2 𝑥, 𝑦  

= 𝐹 𝑥 𝐺 𝑦 +  2𝛼 − 1 𝐹 𝑥 𝐺 𝑦 𝐻  𝑥, 𝑦 .                               (3) 

By letting 𝜆 = 2𝛼 − 1, where 𝜆 ∈ [−1,1], eq. (3) can be rewritten as 

𝐹 𝑥, 𝑦 = 𝐻0 𝑥, 𝑦  1 + 𝜆𝐻  𝑥, 𝑦   

=  1 + 𝜆 𝐻0 𝑥, 𝑦 − 𝜆𝐻0 𝑥, 𝑦  1 − 𝐻  𝑥, 𝑦  .                 (4) 

𝜆 = 0 indicates 𝐹 = 𝐻0  = 𝐹0 = 𝐹𝐺  i.e., independence of 𝑋  and 𝑌 , 𝜆 = −1 indicates that 𝑋  and 𝑌  negatively 

dependent, and 𝜆 = 1 indicates positive dependence between 𝑋 and 𝑌. Note that 𝑋 and 𝑌 are independent from each 

other, 𝐹 indicates well-known bivariate distribution which is Farlie-Gumbel-Morgenstern distribution (see, [3] and [5]). 

We need the survival and probability density function for subsequent discussions. These functions are respectively given 

by 

𝐹  𝑥, 𝑦 = 𝐻 0 𝑥, 𝑦 + 𝜆𝐻0 𝑥, 𝑦 𝐻  𝑥, 𝑦  

= 𝐻 0 𝑥, 𝑦  1 + 𝜆𝐻0 𝑥, 𝑦  + 𝜆𝐻0 𝑥, 𝑦  𝐻 𝑥, 𝑦 − 𝐻0 𝑥, 𝑦  , 

and 

𝑓 𝑥, 𝑦 = ℎ0 𝑥, 𝑦  1 + 𝜆𝑘 𝑥, 𝑦  + λ𝐻0 𝑥, 𝑦 ℎ 𝑥, 𝑦  

where 𝑘 𝑥, 𝑦 = 𝐻  𝑥, 𝑦 − 𝐺 𝑦 𝑃𝑟  𝑋 > 𝑥 𝑌 = 𝑦 − 𝐹 𝑥 𝑃𝑟  𝑌 > 𝑦 𝑋 = 𝑥 . 
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2. Reversed Hazard Rate of the New Family of Bivariate Distribution 

The bivariate reversed hazard is defined by [1] as 𝑟(𝑥, 𝑦) = 𝑓( 𝑥, 𝑦)/𝐹(𝑥, 𝑦). Analogously to the hazard gradient by [7], 

[11] defined the bivariate reversed hazard rate as follows: 𝒓1,2 𝑥, 𝑦 =  𝑟1 𝑥, 𝑦 , 𝑟2(𝑥, 𝑦) , where 

𝑟1 𝑥, 𝑦 =
𝜕𝑙𝑜𝑔𝐹(𝑥, 𝑦)

𝜕𝑥
, 𝑟2 𝑥, 𝑦 =

𝜕𝑙𝑜𝑔𝐹(𝑥, 𝑦)

𝜕𝑦
. 

Reversed hazard rate gradients of 𝐹(𝑥, 𝑦) given by eq. (4) are as follows: 

𝑟1 𝑥, 𝑦 = 𝑟1 𝑥, ∞ − 𝜆
𝐹 𝑥 𝑟1 𝑥, ∞ − 𝐻 𝑥, 𝑦 𝑟1𝐻

 𝑥, 𝑦 

1 + 𝜆𝐻  𝑥, 𝑦 
 

𝑟2 𝑥, 𝑦 = 𝑟2 ∞, 𝑦 − 𝜆
𝐺 𝑦 𝑟2 ∞, 𝑦 − 𝐻 𝑥, 𝑦 𝑟2𝐻

 𝑥, 𝑦 

1 + 𝜆𝐻  𝑥, 𝑦 
 . 

Accordingly, after some simplifications, bivariate reversed hazard rate can be given by 

𝑟 𝑥, 𝑦 =
𝜆𝐻 𝑥,𝑦 

1+𝜆𝐻  𝑥,𝑦 
 𝑟1 𝑥, ∞ 𝑟1𝐻

 𝑥, 𝑦 + 𝑟2 ∞, 𝑦 𝑟2𝐻
 𝑥, 𝑦  + 𝑟1 𝑥, ∞ 𝑟2 ∞, 𝑦  

1−𝜆+2𝜆𝐻  𝑥,𝑦 

1+𝜆𝐻  𝑥,𝑦 
 . 

3. Lower and Upper Bounds on Spearman’s Rho Measure for the New Family of 
Bivariate Distribution 

This section deals with obtaining bounds for the bivariate distribution family given by the eq. (4). According to [6] and 

[4], for any bivariate distribution belonging to ℱ 𝐹, 𝐺  contains Fréchet a lower bound and an upper bound. These bounds 

are respectively defined as  

𝐹− 𝑥, 𝑦 = max 𝐹 𝑥 + 𝐺 𝑦 − 1,0                                (5) 

𝐹+ 𝑥, 𝑦 = min 𝐹 𝑥 , 𝐺 𝑦  .                                      (6) 

For 𝐹 ∈ ℱ 𝐹, 𝐺 , Spearman’s rho can be expressed as 

𝜌𝑠 𝑋, 𝑌 = 12    𝐹 𝑥, 𝑦 − 𝐹 𝑥 𝐺 𝑦  𝑑𝐺 𝑦 𝑑𝐹 𝑥 

ℝℝ

                                                (7) 

(see, [12]). The coefficient of Spearman’s rho for the new family can be obtained by 

𝜌𝑠 = 12𝜆   𝐹 𝑥 𝐺 𝑦 𝐻  𝑥, 𝑦 𝑑𝐺 𝑦 𝑑𝐹 𝑥 

ℝℝ

  

= 12𝜆  𝑢𝑣𝐻  𝐹−1 𝑢 , 𝐺−1 𝑣  𝑑𝑣𝑑𝑢

1

0

1

0

 

= 12𝜆  𝑢𝑣 1 − 𝑢 − 𝑣 + 𝐻 𝐹−1 𝑢 , 𝐺−1 𝑣   𝑑𝑣𝑑𝑢

1

0

1

0

.                                        (8) 

Hence, by using the eq. (5) for 𝜆 > 0, we have the lower bound as  

𝜌𝑠 ≥ −𝜆 + 12𝜆  𝑢𝑣 𝑢 + 𝑣 − 1 𝑑𝑣𝑑𝑢

𝑢+𝑣−1>0

=
−𝜆

12
. 

To obtain the upper bound, we use the eq. (6), then 

𝜌𝑠 ≤ −𝜆 + 12𝜆  𝑢2𝑣𝑑𝑣𝑑𝑢

𝑣>𝑢

+  𝑢𝑣2𝑑𝑣𝑑𝑢

𝑢>𝑣

=
3𝜆

5
. 

According to sign of 𝜆, we achieve the bounds as below: 

𝜌𝑠 ∈  
 
3𝜆

5
,
−𝜆

12
  , 𝑓𝑜𝑟 𝜆 < 0

 
−𝜆

12
,
3𝜆

5
  , 𝑓𝑜𝑟 𝜆 ≥ 0.
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We have two example to illustrate this family. 

Example 1. The Farlie-Gumbel-Morgenstern (FGM) family of bivariate distributions are given by 𝐻 𝑥, 𝑦 =

𝐹 𝑥 𝐺(𝑦) 1 + 𝜃 𝐹 (𝑥)𝐺 (𝑦) , for 𝜃 ∈  [−1,1] . By taking 𝜃 ≥ −1 , the distribution 𝐹(𝑥, 𝑦)  is given by 𝐹 𝑥, 𝑦 =

𝐹 𝑥 𝐺 𝑦  1 + 𝜆 𝐹  𝑥 𝐺  𝑦  1 + 𝜃 𝐹 𝑥 𝐺 𝑦    ,  where 𝜆 ∈ [−1, 1] and 𝜃 ∈ [−1,0] . Hence, 𝜌𝑠 =
𝜆

12
 𝜃 + 4 . Since 

𝜃 ∈ [−1,0], 
𝜆

4
≤ 𝜌𝑠 ≤

𝜆

3
. One can conclude that this family model weak dependence as FGM does. 

Example 2. The bivariate Gumbel- Exponential (BGE) distribution is given by 𝐻 𝑥, 𝑦 = 1 − 𝑒−𝑥 − 𝑒−𝑦 + 𝑒−𝑥−𝑦−𝜃𝑥𝑦 , 

for 𝜃 ∈   0,1 . The distribution 𝐹 𝑥, 𝑦  is given by 𝐹 𝑥, 𝑦 = 1 − 𝑒−𝑥 − 𝑒−𝑦 + 𝑒−𝑥−𝑦 + 𝜆(𝑒−𝑥−𝑦−𝜃𝑥𝑦 − 𝑒−2𝑥−𝑦−𝜃𝑥𝑦    

−𝑒−𝑥−2𝑦−𝜃𝑥𝑦 + 𝑒−2𝑥−2𝑦−𝜃𝑥𝑦 ), where 𝜆 ∈ [−1, 1]  and 𝜃 ∈ [0,1]. According to [9], the Spearman’s rho coefficient of 

BGE distribution is 𝜌𝑠
𝐵𝐺𝐸 = 12  −

𝑒
4
𝜃

𝜃
𝐸𝑖  −

4

𝜃
 −

1

4
 , where 𝐸𝑖(·) is the exponential integral function. After some algebraic 

manipulation, 𝜌𝑠 can be obtained as 

𝜌𝑠 = 12𝜆
𝑒

4

𝜃

𝜃
 −𝐸𝑖  −

4

𝜃
 + 2𝑒

2

𝜃𝐸𝑖  −
6

𝜃
 − 𝑒

5

𝜃𝐸𝑖  −
9

𝜃
  . 

 

We calculate approximates values of 𝜌𝑠
𝐵𝐺𝐸  and 𝜌𝑠  by 

using Maple with respect to some values of 𝜃. Tabulated 

values are given as Table 1 below: 

Table 1.  Approximate Values of Spearman's Rho for BGE and F 

 
𝜃 

2/10 4/10 6/10 8/10 

𝜌𝑠
𝐵𝐺𝐸  −0.1369 −0.2531 −0.3542 −0.4437 

𝜌𝑠  0.2933 𝜆  0.2624 𝜆  0.2377 𝜆  0.2173 𝜆 

For the proposed bivariate distribution families, it is 

generally expected to model a stronger correlation structure 

between two random variables. The distribution derived 

from the base of FGM can only reach the correlation 

structure that FGM can model. But, unlike in Example 1, as 

can be seen from the Table 1, it can be said that 𝐹 can 

model negative dependence slightly better than BGE in 

small theta values. Then, we can choose this distribution as 

an alternative to BGE to provide a correlation structure 

between random variables. 

4. Conclusions 

In this study, we proposed a new bivariate distribution 

using a base distribution from the negative dependency 

class which is in ℱ 𝐹, 𝐺 . Thus, this new distribution can 

reveal both negative dependence, positive dependence and 

independence between the random variables 𝑋 and 𝑌. The 

upper and lower bounds show that the values of the 

correlation coefficient for this family lies in the interval 

[−.80, .80]. Besides, as a result of illustrative examples, it 

can be said that distributions can be derived for pairs of 

random variables with higher correlations considering  

some base distributions. For further discussion, focusing on 

the negative dependence condition on 𝐻(𝑥, 𝑦) , a new 

distribution family can be derived with any distribution 

function from ℱ 𝐹, 𝐺 . 
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