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Abstract  Orthogonal arrays such as factorial and fractional factorial designs of experimental plans are used for 

identifying important factors to improve quality of an experiment. Super Saturated designs are very cost-effective in the stage 

of scientific investigations. Nearly-Orthogonal arrays that can construct a variety of small-run designs with different levels 

have good statistical properties. In the present paper Super Saturated design and Nearly Orthogonal design are constructed 

with Orthogonal design. It is a great deal of interest in the development of factor screening experiments that are optimal or 

highly efficient under the E (s2) and J2 criterion. 
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1. Introduction 

The field, statistical design of experiments (DoE) was 

born in the 1920‟s by the pioneering work of Fisher (2000) in 

the agriculture arena. A design for a two-level factor 

screening experiment constructed saturated design (SD) 

from orthogonal design if the number of factors, „p‟ is equal 

to „n – 1‟, where n is the number of runs. Some examples of 

saturated design are Plackett–Burman designs (Plackett and 

Burman 1946) [1] and p- efficient designs (Lin 1993) [2]. 

When p > n − 1, the design is called a supersaturated design 

(SSD). Supersaturated designs were introduced by Booth 

and Cox (1962) [3] and were not studied further until the 

important work of Lin (1993a) [4] and Wu (1993) [5]. Since 

then, much work has been done on this subject, recently by 

Bulutoglu and Cheng (2004) [6], Jones, Lin, and Nachtsheim 

(2008) [7], Bulutoglu (2007) [8] and Ryan and Bulutoglu 

(2007) [9]. A commonly used criterion defined by Booth and 

Cox (1962) [3] for choosing an SSD is the E(s2) criterion, 

including minimization of E(s2) or ave(s2) and minimization 

of maximum column correlation for evaluating and 

comparing designs. Nguyen (1996) [10] constructing two 

level supersaturated design from incomplete block design. 

The concept of Orthogonal Array (OA) dates back to 
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(Rao 1947) [11]. OAs has been used widely in 

manufacturing and high-technology industries for quality 

and productivity improvement experiments, as accounted by 

many industrial case studies and recent design textbooks 

(Montgomery 1997) [12]; (Wu and Hamada 2000) [13]. 

Applications of Nearly Orthogonal designs (NOAs) have 

been described by Wang and Wu (1992) [14]. From an 

estimation point of view, all of the main effects of an OA are 

estimable and orthogonal to each other, whereas all the main 

effects of an NOA are still estimable, but some are partially 

aliased with other (Honguan xu 2002) [15]. Since balance is 

an important and required property in practice, the balance 

considered in this article is OA (12, 31, 29). The purpose of 

this article is to present a simple and effective construction of 

OAs and NOAs with mixed levels and small runs. 

In this paper, we focus on finding combinatorial solution 

of the experiment. The experimental design considers an n× 

p matrix of factor settings, with a row corresponding to each 

of n design points and a column corresponding to each of p 

factors. This work has several steps, we clarify them as: 

  We proposed a class of special super saturated design of 

the experiment which can be easily constructed via half 

fraction of the Hadamard matrices. 

  We define mixed designs as designs with different 

factor types and different factor levels (e.g., factor 1 

with 3 levels, factor 9 with 2 levels). Throughout this 

paper, we use the terms “qualitative” and “categorical” 

interchangeably, and may refer to discrete and 

continuous factors as “quantitative” or “numerical.” 

  We checked the pairwise correlation (ρ) between any 

two factors (columns). An orthogonal design has ρ = 0. 

http://creativecommons.org/licenses/by/4.0/
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If a design has 0 < ρ ≤ 0.05, it is called a nearly 

orthogonal design.  

  Finally, we analyze a design as efficient with optimality 

E (s2) and J2 criterion if the number of design points is 

acceptable. 

The purpose of this paper is to propose a framework for 

generating a design which is supersaturated design, nearly 

orthogonal and also balanced design with a minimum 

number of design points n. Section 2 articulates the Super 

Saturated design using Hadamard design in Thalassemic 

children. Section 3 shows that a solution for the problem 

which is an E (s2) - optimal SSD. Section 4 describes about 

an algorithm for constructing mixed-level OAs and nearly 

orthogonal designs (NOAs). Section 5 introduces the 

concept of J2 -optimality and other optimality criteria. 

Section 6 contains concluding remarks. 

2. Supersaturated Design Using 
Hadamard Design for Thalassemic 
Children 

To have efficient analytical results a methodology for the 

design of an experiment was proposed in order to find as 

many as possible schemes containing maximum number of 

factors having different levels for the smallest number of 

experimental runs. This design study is based on an 

experiment which was conducted in order to obtain sufficient 

factors for accurate results. For the experiment, this study 

selected 250 Thalassemic children aged 8-18 years to 

analyze the impact of thalassemia disease and treatment 

pattern of thalassemic children. 

Consider two-level factorial experiments with p factors 

and „n‟ observations, n being even. Denote the two levels of 

a factor by + 1 and -1. Then the design is determined by, n X 

p matrix of elements and the ith column ri gives the sequence 

of factor levels for factor „i‟ in „n‟ observations (1, 2, ..., n). 

We only consider the designs of the columns consisting of 
1

2
n +l's and 

1

2
n -l's. Now in an ordinary factorial experiment, 

where we assume interactions being ignored, the efficient 

and simple estimation of main effects by calculating the 

orthogonality of all design columns (Plackett & Burman, 

1946) [1] is ensured. So, the condition required is, 

rr‟ = O                       (1) 

This condition cannot be satisfied for all i, j whenever p> n 

- 1; for otherwise the ri , taken with a column of ones, would 

form a set of more than n orthogonal vectors in n 

dimensional space (Kathleen H.V. Booth and D.R. Cox, 

1962) [3]. Therefore we require to have (1) satisfied as 

nearly as possible. First we require a minimum value for 

Max |rri‟|                      (2) 

The resulting design obtained is D-optimal design. 

D-optimal designs are straight optimizations based on a 

chosen optimality criterion and the model that will be fit. The 

optimality criterion used in generating D- optimal designs is 

one of maximizing |rri‟|, the determinant of the information 

matrix rr‟. 

(Lin 1993) [2] proposed a class of special super saturated 

design which can be easily constructed via half fraction of 

the Hadamard matrices. These designs can examine K=N-2 

factors with n=N/2 runs, where N is the order of the 

Hadmard matrix used. The (Plackett and Burmann1946) [1] 

designs, which can be viewed as a special class of Hadmard 

matrices, are used to illustrate the basic construction method 

of super saturated design in thalassemic children. 

We are interested in studying the effect of some clinical 

variables on thalassemia children‟s health using a subset of 

following 11 variables for super saturated design: Pale 

appearance (yes/no), Less appetite (yes/no), Frequent history 

of body temperature (yes/no), No weight & height gain 

(yes/no), Pneumonia (yes/no), Loose motion & vomiting 

(yes/no), Anxious Behaviour (yes/no), Less hemoglobin 

(yes/no), very weak/dull/less active (yes/no), frequently sick 

(yes/no), cough & cold (yes/no), Jaundice (yes/no), Previous 

history in family (yes/ no). 

Table 1.  The Plackett-Burman Design Run OA (12, 211), representing 11 
two-level factors in 12 runs 

1 1 0 1 1 1 0 0 0 1 0 

0 1 1 0 1 1 1 0 0 0 1 

1 0 1 1 0 1 1 1 0 0 0 

0 1 0 1 1 0 1 1 1 0 0 

0 0 1 0 1 1 0 1 1 1 0 

0 0 0 1 0 1 1 0 1 1 1 

1 0 0 0 1 0 1 1 0 1 1 

1 1 0 0 0 1 0 1 1 0 1 

1 1 1 0 0 0 1 0 1 1 0 

0 1 1 1 0 0 0 1 0 1 1 

1 0 1 1 1 0 0 0 1 0 1 

0 0 0 0 0 0 0 0 0 0 0 

For this experiment a full factorial design with single 

replication would require testing children with the above 

mentioned factors. This appears to be an impossible task. 

The interest of the experimenter is to identify only important 

active factors. An efficient design was needed to investigate 

the important variables in the model. Even an orthogonal 

main effect plan would require test results obtained from 12 

children (Hadamard matrix H12). But for this test we would 

only require test results from 6 children (using SSD). The 

following design is a possible alternative for 6 runs obtained 

from Hadamard matrix H12. 

Table 1 shows the original 12-run Plackett and Burmann 

design. If we take column 11 as the branching column, then 

the runs can be split into two groups, Group I with the sign 

+1 in column 11 and Group II with the sign -1 in column 11. 

Deleting column 11 from group I causes 1-10 columns to 

from a SSD to examine N-2=10 factors in N/2=6 runs. It can 

be shown that if group II is used, the resulting SSD is an 

equivalent one. In general a Plackett and Burman (1946) [1] 

design matrix can be split into two half-fraction according to 
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a specific branching column whose sign is either +1 or -1. 

Specifically, take only the rows which have +1 in the 

branching column. Then N-2 columns other than the 

branching column will form a SSD for N-2 factors in N/2 

runs. Judged by various design criterion, including E(s2) 

proposed by (Booth and Cox 1962) [3] then design have 

been shown to be superior to other existing SSD. 

Consequently, the E (s2) value for a SSD from half fraction 

Hadamard matrix is n2 (n-3)/[(2n-3)(n-1)] which can be 

shown to be minimum within the class of design with same 

size. 

Table 1.1.  Binary codes of the Super saturated design 

0 1 1 0 1 1 1 0 0 0 

0 0 0 1 0 1 1 0 1 1 

1 0 0 0 1 0 1 1 0 1 

1 1 0 0 0 1 0 1 1 0 

0 1 1 1 0 0 0 1 0 1 

1 0 1 1 1 0 0 0 1 0 

Wu (1993) [5] made use of such property and proposed a 

SSD that consists of all main-effects and two factors 

interaction columns from any given Hadamard matrix of 

order N. The resulting design has N runs and can 

accommodate up to N (N-1)/2 factors. When there are k<N 

(N-1)/2 factor to be studied, choosing columns becomes an 

important issue to be addressed (Ravindra Khattree, 

Calyampudi Radhakrishna Rao) [16]. 

By exploiting a relationship between SSDs and orthogonal 

designs (OA) presented in Section 2, we show that a solution 

for the problem is an E (s2) - optimal SSD with (n, m) = (6, 10) 

derived from a OA design with 12 treatments and 11 blocks. 

3. E (s
2
) as a Measure of Goodness of 

Supersaturated Designs 

We present a method for constructing two-level 

supersaturated designs (SSDs) from orthogonal designs. A 

lower bound of E(s2) that also covers the case of odd run 

sizes is given. This bound is attained by SSDs constructed 

from orthogonal designs.  

Let X be an n*p design matrix of a design with n runs and 

m two level factors each with 1/2n of +1 or high level value 

and 1/2n of -1 or low level values (p>n-1). Let Sij be the 

element in the ith row and jth column of X‟X. Booth and Cox 

(1962) proposed on a criterion for comparing design the 

minimization of ave(S2).  

Where ave(s2) =  𝑆𝑖𝑗
2

𝑖<𝑗 /  𝑝
2
  Clearly the orthogonal 

design ave(S2)=0. 

The rationale of the Booth-Cox criterion can be explained 

by using the singular value decomposition to decompose X 

as UA1/2V‟ where matrices U and V are orthogonal and A is 

diagonal. It can be shown that X‟X and XX‟ share the same 

set of non-zero eigenvalues (λ1, ..., λr).  

Where, r =rank(X‟X)=rank(XX‟). Moreover 

tr(X‟X)=tr(XX‟)= 𝜆𝑖
2. Thus, minimizing  𝑆𝑖𝑗

2
𝑖<𝑗 , which is 

equivalent to minimizing tr (X‟X)2), is the same as making 

the λi „s equal as possible with  𝜆𝑖  = constant. 

This in a sense is an approximation of the A-Optimality 

criterion, which requires the maximization of  𝜆𝑖 . Because 

the sum of each column of X is 0, the sum of the elements of 

XX‟ is 0 i.e. the sum of the off diagonal elements of XX‟ 

equal to –np (np is the sum of the diagonal elements of XX‟). 

Thus, the sum of square of elements of XX‟ and X‟X will 

reach the minimum if XX‟ is of the form (p-x) In+Jn where 

x=-p/n-1 (assuming p is divisible by n-1), In is the identity 

matrix and Jn is the n*n matrix of 1‟s. 

In this case         ave (S2) = n (p2+ (n-1) x2-pn)/p (p-1) = 

n2(p-n+1)/(n-1)(p-1). 

4. Construction of Nearly Orthogonal 
Design for Thalassemic Children 

Table 2.  The Design OA (12, 31, 29), representing first column has 
three-level and other factors have two level each  

0 0 1 0 1 1 1 0 0 0 

0 1 0 0 1 1 0 0 1 0 

0 0 1 1 0 1 0 1 1 1 

0 1 0 1 0 0 1 1 0 0 

1 0 0 0 0 0 0 0 0 1 

1 1 1 0 0 0 1 0 1 1 

1 0 1 1 1 0 0 1 1 0 

1 1 0 1 1 1 1 1 0 1 

2 0 0 1 0 1 1 0 1 0 

2 1 1 0 0 1 0 1 0 0 

2 0 0 0 1 0 1 1 1 1 

2 1 1 1 1 0 0 0 0 1 

We assume that the research and development department 

of the health care wants to know whether there is a more 

economical design. Nearly Orthogonal design consider 

another study conducted to examine 12 factors affecting the 

children suffering with Thalassemia: Age of chelation 

therapy was started (less than 5 years, 1-5 years, above 5 

years) Pale appearance(yes/no), Less appetite(yes/no), 

Frequent history of temperature(yes/no), No weight &   

height gain(yes/no), Pneumonia(yes/no), Loose motion    

& vomiting(yes/no), Irritation(yes/no), Less 

hemoglobin(yes/no), Very weak/dull/ less active(yes/no), 

frequently sick(yes/no), cough & cold(yes/no), 

Jaundice(yes/no), Previous history in family(yes/ no). To 

ensure that all the main effects are estimated clearly from one 

another, it is desirable to use an orthogonal array (OA). The 

smallest OA is found for one three-level factor and nine 

two-level factors. However, we want to reduce the cost of 

this experiment and plan to use a 12-run design. A good 

solution then is to use a 12-run nearly-orthogonal array 

(NOA). 
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Consider the matrix of Table: 2 below, of OA (12, 31, 29) 

the first column has three levels and the other 9 columns 

have two levels each. For illustration wk=1 is chosen for all k. 

Now we consider a design comprising the first five columns 

of OA (12, 31, 29). 

5. J2 Optimality Criterion 

The concept of J2-optimality criteria for n × m matrix 

d=[xik], weight wk>0 is assigned for column k, which has sk 

levels. For 1≤ i< j≤ N, let 𝛿𝑖𝑗  (d)= 𝑤𝑘 
𝑛
𝑘=1 𝛿(𝑥𝑖𝑘  𝑥𝑗𝑘  ) , 

where 𝛿(x,y)=1 if x=y and 0 otherwise.  

The 𝛿𝑖𝑗  (d) value measures the similarity between the ith 

and jth rows of d. In particular, if wk=1 is chosen for all k, 

then 𝛿𝑖𝑗  (d) is the number of coincidences between the ith 

and jth rows. 

Define J2 (d) =  [𝛿𝑖𝑗   d ]2
1≤𝑖<𝑗≤𝑁  A design is optimal if 

it minimizes J2. By minimizing J2(d), it is desired that the 

rows of d be as dissimilar as possible. The following lemma 

shows an important lower bound of J2. 

Lemma: For an N×n matrix d whose kth column has sk 

levels and weight wk, 

J2 (d)≥L(n) =2-1 [( 𝑁𝑠𝑘
−1𝑛

𝑘=1 𝑤𝑘)2 

+ (𝑠𝑘 − 1)(𝑁𝑠𝑘
−1𝑛

𝑘=1 𝑤𝑘)2 –N( 𝑤𝑘
𝑛
𝑘=1 )2]       (3) 

and the equality holds if and only if d is an OA. 

The statistical justification of J2-optimality and other 

optimality criteria is given in the section. The coincidence 

matrix 12 rows is:  

 

5 3 3 1 2 2 3 1 1 2 3 2 

3 5 1 3 2 2 1 3 1 2 3 2 

3 1 5 3 2 2 3 1 3 2 1 2 

1 3 3 5 2 2 1 3 3 2 1 2 

2 2 2 2 5 3 2 2 3 2 3 0 

2 2 2 2 3 5 2 2 1 4 1 2 

3 1 3 1 2 2 5 3 2 1 2 3 

1 3 1 3 2 2 3 5 2 1 2 3 

1 1 3 3 3 1 2 2 5 2 3 2 

2 2 2 2 2 4 1 1 2 5 2 3 

3 3 1 1 3 1 2 2 3 2 5 2 

2 2 2 2 0 2 3 3 2 3 2 5 

 
It is easy to verify that J2=330 and that the lower bound in 

(3) is also 330 for one factor have 3 level and four factor have 

2 level column with wk=1. Therefore, we consider the first 

five columns from OA (12, 31, 29), because the J2 value 

equals the lower bound. 

Next, consider the whole array, comprising all 10 columns. 

Same calculation shows that J2= 1284 and that the lower 

bound of (3) is 1260. Therefore, the whole array is not an OA 

because the J2 value is greater than the lower bound. 

6. Conclusions 

The result of this paper enlightens us with an efficient 

construction method for Super Saturated and Nearly 

Orthogonal designs. An efficient design was needed to 

investigate or generate those variables and combinations 

which are important. In our study an orthogonal main effect 

plan would require clinical testing of 12 thalassemia children, 

but with super saturated design we can test only 6 children. 

The resultant arrays are optimal with respect to E(s2) and J2 

optimality criteria. Advantage of these constructions are:- 

eased usability, flexibility for constructing various mixed 

level designs to generate several OA‟s main effect plans. The 

proposed construction method is important because it can 

efficiently construct more new Nearly Orthogonal and 

Supersaturated designs with good projective properties.     

ACKNOWLEDGMENTS 

We are grateful to an anonymous referee for their helpful 

and constructive comments. 

 

REFERENCES 

[1] Plackett, R. L., and Burman, J. P., 1946, The design of 
optimum multifactorial experiments, Biometrika, 33, 1946, 
303-309. 

[2] Lin, D.K.J., 1993, A new class of supersaturated designs, 
Technometrics, 35, 28-31. 

[3] Kathleen H. V. Booth, and Cox D. R., 1962, Some systematic 
supersaturated designs,” Technometrics, 4, 489-495. 

[4] Lin, D.K.I.., 1993a, A new class of supersaturated designs, 
Technometrics, 35, 28-31. 

[5] Wu, C.F.J., 1993, Construction of supersaturated designs 
through partially aliased interactions, Biometrika, 80, 
661-669. 

[6] Bulutoglu, D.A., and Cheng, C.S., 2004, Construction of  
E(s 2)-optimal supersaturated designs, Annals of Statistics, 32, 
1662-1678. 

[7] John, B., Lin, D.K.I., and Nachtsheim, C.I., 2008, Bayesian 
D-optimal supersaturated designs, Journal of statistical 
planning and inference, 138, 86-92. 

[8] Bulutoglu D.A., 2007, Cyclicy constructed E(s2)-optimal 
supersaturated design” Journal of statistical planning and 
inference, 137, 2413-2428. 

[9] Ryan, K.J. and Bulutoglu, D.A., 2007, E(s2)-Optimal 
supersaturated designs with good minimax properties, Journal 
of statistical planning and inference, 137, 2250-2262. 

[10] Nguyen, N.K., 1996, An algorithmic approach to constructing 
supersaturated designs, Technometrics, 38, 69-73. 

[11] Rao, C. R., 1947, Factorial Experiments Derivable from 
Combinatorial Arragements of Arrays, Journal of the Royal 
Statistical Society, Supplement, 9, 128-139. 



78 Sunita Khurana and Shakti Banerjee:  A Method for Constructing Super Saturated  

Design and Nearly Orthogonal Design with Mixed Level Orthogonal Design 

 

[12] Montgomery, D.C., 1997, Design and Analysis of 
Experiments, 5th edition, Wilery, New York. 

[13] Wu, C. F. J. and Hamada, M., 2000, Experiments: Planning, 
Analysis and Parameter Design Optimization, Wiley, New 
York. 

[14] Wang, J. C, and Wu, C. F. J., 1992, Nearly Orthogonal Arrays 
with Mixed Levels and Small Runs, Technometrics, 34, 
409-422. 

[15] Honguan, Xu., 2002, An algorithm for constructing 
orthogonal and nearly orthogonal arrays with mixed levels 
and small runs, Technometrics, Vol. 44, No.4. 

[16] Khattree, R., and Rao, C.R., Handbook of statistics: Vol 22: 
Statistics in industry, Oakland University, Department of 
Mathematics and Statistics, USA. 

[17] Box, G.E.P., and Tyssedal, J., 1996, Projective Properties of 
Certain Orthogonal Arrays, Biometrika, 83, 950–955. 

[18] Chen, J., and Lin, D.K.J., 1998, On the identifiability of a 
supersaturated design, Journal of Statistical Planning and 
Inference, 72, 99-107. 

[19] Cheng, C.S., 1997, E(s 2)-optimal supersaturated designs, 
Statistica Sinica, 7, 929-939. 

[20] Cheng, S.W., and Wu, C. F. J., 2001, Factor Screening and 
Response Surface Exploration, Statistica Sinica, 11, 553–604. 

[21] Cook, R. D., and Nachtsheim, C. J. ,1980, A Comparison of 
Algorithms for Constructing Exact D-Optimal Designs, 
Technometrics, 22, 315–324. 

[22] Das, A., Dey, A., Chan, L., and Chatterjee, K., 2006, On   
E(s 2)-optimal supersaturated designs, Journal of Statistical 
Planning and Inference, in press. 

[23] Ma, C. X., Fang, K.T.., and Liski, E., 2000, A New Approach 
in Constructing Orthogonal and Nearly Orthogonal Arrays, 
Metrika, 50, 255–268. 

[24] Li, W. W., and Wu, C. F. J., 1997, Columnwise-Pairwise 
Algorithms With Applications to the Construction of 
Supersaturated Designs, Technometrics, 39, 171–179. 

[25] Hamada, M. S., and Wu, C. F. J., 1992, Analysis of Designed 
Experiments With Complex Aliasing, Journal of Quality 
Technology, 24, 130–137. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


