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Abstract  In this paper, we are interested in the nonparametric estimation of probability density. From the « Rule of  
thumb » method, we were able to determine the smoothing parameter ℎ𝑛𝑛  of the Parsen-Rosenblatt kernel estimator for the 
density function. Our study is illustrated by numerical simulations to show the performance of the triangular core and 
Epanechnikov or parabolic density estimator studied. 
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1. Introduction 
The theory of the estimator is one of the major concerns 

of statisticians. It is a fundamental element of statistics. It 
allows to generalize observed results. There are two 
approaches: 
  the parametric approach, which considers that the 

models are known, with unknown parameters. The 
law of the studied variable is supposed to belong to a 
family of laws which can be characterized by a 
known functional form (distribution function, density 
f, ...) which depends on one or several unknown 
parameters to estimate; 

  the non-parametric approach, which makes no 
assumptions about the law or its parameters. 

Knowledge about the model (non-parametric model) is 
not generally accurate, i.e., we do not have enough 
information on this model unlike the parametric model, 
which is often the case in practice. In this situation, it is 
natural to want to estimate one of the functions describing 
the model, either generally the distribution function or the 
density function (for the continuous case): this is the 
objective of the functional estimation. 

Since the works of Rosenblatt (1956) and Parzen (1962) 
on non-parametric estimators of density functions, the 
kernel method  has been widely  used in  such works, as  
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Prakasa Rao (1983), Devroye and Györfi (1985), Silverman 
(1986), Scott (1992), Bosq and Lecoutre (1987), Wand and 
Jones (1995), Benchoulak (2012), Roussas (2012) and the 
references cited in these publications. Based on the study of 
the local empirical process indexed by certain classes of 
functions, Deheuvels and Mason (2004) have established 
probability convergence speed for deviations of these 
estimators from their expectations. 

The central purpose of this article is to show the 
performance of the kernel density estimator for triangular 
and Epanechnikov or parabolic kernels. 

For us to attain this aim, the present article is divided into 
three (3) parts: firstly, as revision, we are going to introduce 
some different modes of convergences and give some 
Bernstein exponential inequalities which have permitted us 
to regulate the limit of deviations of the estimators 
compared to their hopes. This is why we will mention three 
(3) non-parametric methods of density estimation: the 
histogram method, the simple estimation method and the 
kernel method (Parzen-Rosenblatt estimator) on which will 
be our focus and which can be considered as an extension 
of the estimator by the histogram. We will also present the 
statistical properties of every estimation method. In the 
second part, using the Rule of thumb method (studied    
in Deheuvels (1977), and Sheather, Jones, and Marron 
(1996)), we will determine the hn  smoothing parameter. 
Finally, using numerical simulations, we will explain the 
performance of the studied estimator. 

2. Density Function Estimator 
2.1. The Parzen-Rosenblatt Kernel Estimator 

For the fact 
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𝑓𝑓(𝑥𝑥) ≃ 𝐹𝐹(𝑥𝑥+ℎ)−𝐹𝐹(𝑥𝑥−ℎ)
2ℎ

 𝑓𝑓𝑓𝑓𝑓𝑓 ℎ𝑛𝑛  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,       (1) 

Rosenblatt in 1956, has given an estimator of f by 
replacing F by it’s estimator 𝐹𝐹𝑛𝑛 , so: 

𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛) = 𝐹𝐹𝑛𝑛 (𝑥𝑥+ℎ)−𝐹𝐹𝑛𝑛 (𝑥𝑥−ℎ)
2ℎ

,         (2) 

where 𝐹𝐹𝑛𝑛  is the empirical function of distribution.  
This estimator can also be written as: 

𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛) = �  
𝑛𝑛

𝑖𝑖=1

𝟙𝟙{𝑥𝑥−ℎ<𝑋𝑋𝑖𝑖≤𝑥𝑥+ℎ}

2𝑛𝑛ℎ
 

 =
1

2𝑛𝑛ℎ
�  
𝑛𝑛

𝑖𝑖=1

𝟙𝟙
�−1<𝑥𝑥−𝑋𝑋𝑖𝑖ℎ ≤1�

 

 = 1
2𝑛𝑛ℎ

∑  𝑛𝑛
𝑖𝑖=1 𝐾𝐾0 �

𝑥𝑥−𝑋𝑋𝑖𝑖
ℎ
�,             (3) 

with 𝐾𝐾0(𝑢𝑢) = 1
2
𝟙𝟙{−1<𝑢𝑢≤1}. 

In this same article, Rosenblatt (1956) measured the 
quality of this estimator, by calculating its bias and its 
variance, given respectively by 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛) = 𝔼𝔼[𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛) − 𝑓𝑓(𝑥𝑥)]       

=
1

2ℎ
𝔼𝔼(𝐹𝐹𝑛𝑛(𝑥𝑥 + ℎ) − 𝐹𝐹𝑛𝑛(𝑥𝑥 − ℎ)) − 𝑓𝑓(𝑥𝑥) 

 = 1
2ℎ
𝔼𝔼(𝐹𝐹 (𝑥𝑥 + ℎ ) − 𝐹𝐹 (𝑥𝑥 − ℎ )) − 𝑓𝑓(𝑥𝑥)       (4) 

and  

𝕍𝕍𝑎𝑎𝑎𝑎[ 𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛)] =
1

4𝑛𝑛ℎ𝑛𝑛2
�

 𝐹𝐹 (𝑥𝑥 + ℎ𝑛𝑛)(1 − 𝐹𝐹(𝑥𝑥 + ℎ𝑛𝑛)
− 𝐹𝐹 (𝑥𝑥 − ℎ𝑛𝑛)�1 −  𝐹𝐹 (𝑥𝑥 − ℎ𝑛𝑛)�� 

− 1
4𝑛𝑛ℎ𝑛𝑛2

� 2𝐹𝐹 (inf((𝑥𝑥 + ℎ𝑛𝑛), (𝑥𝑥 + ℎ𝑛𝑛)))
+2 𝐹𝐹 (𝑥𝑥 + ℎ𝑛𝑛) 𝐹𝐹 (𝑥𝑥 − ℎ𝑛𝑛) �   (5) 

We notice that if ℎ𝑛𝑛 → 0 and 𝑛𝑛ℎ𝑛𝑛 → ∞ when 𝑛𝑛 → ∞, 
we have: 

lim
𝑛𝑛→∞

 𝔼𝔼[ 𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛)] = 𝑓𝑓(𝑥𝑥) 

and 
lim
𝑛𝑛→∞

 𝕍𝕍𝑎𝑎𝑎𝑎[ 𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛)] = 0, 

therefore,  𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛) is a consistent estimator. 
By putting ℎ𝑛𝑛 = 𝑎𝑎𝑘𝑘+1 − 𝑎𝑎𝑘𝑘 , we notice that the estimator 

of f on [𝑎𝑎𝑘𝑘 ,𝑎𝑎𝑘𝑘+1] does not present the problem of the choice 
of origin 𝑎𝑎0 as is the case of the histogram but it has the 
disadvantage of being discontinuous at points 𝑋𝑋𝑖𝑖 ± ℎ. 

The generalization of this estimator had been introduced 
by Parzen since 1963 by performing  

𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛) = 1
𝑛𝑛ℎ𝑛𝑛

∑  𝑛𝑛
𝑖𝑖=1 𝐾𝐾 �

𝑋𝑋𝑖𝑖−𝑥𝑥
ℎ
�,         (6) 

where ℎ𝑛𝑛 , called window, is a strict sequence of positive real 
tending to zero when 𝑛𝑛 → ∞ (called window) and K is a 
measurable function defined from ℝ → ℝ, called kernel. 

2.2. Properties of the Estimator  
The pillar of the first results of the convergence of this 

estimator is the theorem of Bochner (1955). The estimator 
kernel of the density depends on two (2) parameters: the 
window hn  and the kernel K. The kernel K establishe he 

aspect of neighborhood of x and hn , controls the wideness 
of this neighborhood, so hn  is the first parameter to have 
good asymptotic properties. Nevertheless, the kernel K must 
not be neglected. As the works of Parzen (1962) on the 
consistence of this estimator shows, this properties is 
obtained after having studied the asymptotic bias of the 
variance and the following decomposition: 

𝔼𝔼[𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛) − 𝑓𝑓(𝑥𝑥)]2 =  𝕍𝕍𝑎𝑎𝑎𝑎[𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛)]  
 +[𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵{𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛)}]2.                     (7) 

After that, we suppose that 𝐾𝐾 is a kernel verifying the 
following conditions: 

(K.1) K is limitted, which means 𝑆𝑆𝑆𝑆𝑆𝑆𝑥𝑥∈ℝ|𝐾𝐾(𝑥𝑥)| < ∞; 
(K.2) lim |𝑥𝑥|𝐾𝐾(𝑥𝑥) = 0, when   |𝑥𝑥| → ∞ ; 
(K.3) 𝐾𝐾 ∈ 𝐿𝐿1(ℝ), meaning that ∫ |𝐾𝐾(𝑥𝑥)|𝑑𝑑𝑑𝑑 < ∞ 

ℝ ; 
(K.4) ∫ 𝐾𝐾(𝑥𝑥)𝑑𝑑𝑑𝑑 = 1 

ℝ ; 
(K.5) K is bounded, integrable and a compactly support. 

2.2.1. Study of Bias  

The bias of fn (x, hn ) is given by the following result: 
Proposition 1 (Parzen, 1962) 
Under the hypothesis (K.1), (K.2), (K.3) and (K.4) above, 

and if f is continuous, then: 
∀ x ∈ ℝ, limn→∞ 𝔼𝔼[fn (x, hn )] = f(x).        (8) 

We notice that the bias of the estimator converges to zero 
when the window turns to zero. Futhermore, in view of his 
expression we notice that it does not depend on the number 
of variables, but mostly on the kernel K. 

2.2.2. Study of the Variance of 𝒇𝒇𝒏𝒏(𝒙𝒙,𝒉𝒉𝒏𝒏)  

The variance of fn (x, hn ) is given by the following result: 
Proposition 2 (Parzen, 1962) 
Under the conditions K.1), (K.2), (K.3) and (K.4), and if 

f is continuous in all the points x of ℝ, then we have:  
limn→∞ 𝕍𝕍ar[fn(x, hn )] = 0.            (9) 

These two (2) propositions imply the convergence in 
quadratic average, and thus principally the consistence of the 
estimator. 

3. Choice of Smoothing Parameter  
In this section, we study the choice of the smoothing 

parameter hn  by the « Rule of thumb » method and give it’s 
result for the triangular kernel K and the Epanechnikov or 
parabolic kernel. In order to obtain these results, we 
determine at priori the mean and integral quadratic errors of 
fn (x, hn). 

3.1. Method of the Mean Quadratic Error Criteria of 
𝒇𝒇𝒏𝒏(𝒙𝒙,𝒉𝒉𝒏𝒏) 

The mean square error (MSE) is a measure permitting the 
evaluation of the similarities of fn  relative to the unknown 
density function f at a given point x of ℝ. Our aim being to 
minimize the following quantities: 
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𝑀𝑀𝑀𝑀𝑀𝑀�𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛)� = 𝔼𝔼(𝑓𝑓_𝑛𝑛 (𝑥𝑥,ℎ_𝑛𝑛 ) − 𝑓𝑓(𝑥𝑥))2.   (10) 

The development of this expression gives us: 

𝑀𝑀𝑀𝑀𝑀𝑀�𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛)� = 𝕍𝕍𝑎𝑎𝑎𝑎�𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛)� + (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛)))2. 
(11) 

For us to attain our aim, we calculate the mean and the 
variance of 𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛 ):  
a) Calculating the Mean of 𝐟𝐟𝐧𝐧(𝐱𝐱,𝐡𝐡𝐧𝐧) 

The calculation of the means gives us: 

𝔼𝔼�𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛)� = 𝔼𝔼 � 1
𝑛𝑛ℎ𝑛𝑛

∑ 𝐾𝐾 �𝑥𝑥−𝑋𝑋𝑖𝑖
ℎ𝑛𝑛

�𝑛𝑛
𝑖𝑖=1 �  

 =  1
ℎ𝑛𝑛
𝔼𝔼 �∑ 𝐾𝐾 �𝑥𝑥−𝑋𝑋𝑖𝑖

ℎ𝑛𝑛
�𝑛𝑛

𝑖𝑖=1 � 

 =  1
ℎ𝑛𝑛
∫ 𝐾𝐾 �𝑥𝑥−𝑋𝑋𝑖𝑖

ℎ𝑛𝑛
� 𝑓𝑓(𝑢𝑢)𝑑𝑑𝑑𝑑 

ℝ .   

In putting: 𝑦𝑦 = 𝑥𝑥−𝑢𝑢
ℎ𝑛𝑛

 i.e. 𝑑𝑑𝑑𝑑 = −𝑑𝑑𝑑𝑑
ℎ𝑛𝑛

, we have:  

 𝔼𝔼�𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛)� =  ∫ 𝐾𝐾(𝑦𝑦)𝑓𝑓(𝑥𝑥 − ℎ𝑛𝑛𝑦𝑦)𝑑𝑑𝑑𝑑 
ℝ .    (12) 

By making Taylor's limit development at order 2 at the 
point y = 0 of 𝑓𝑓(𝑥𝑥 − ℎ𝑛𝑛𝑦𝑦), we obtain:  

𝑓𝑓(𝑥𝑥 − ℎ𝑛𝑛𝑦𝑦) = 𝑓𝑓(𝑥𝑥) − ℎ𝑛𝑛𝑦𝑦
1!
𝑓𝑓′(𝑥𝑥) + ℎ𝑛𝑛2𝑦𝑦2

2!
𝑓𝑓′′ (𝑥𝑥) + 𝑂𝑂(ℎ𝑛𝑛2 ) .(13) 

So 

𝔼𝔼�𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛)� =  

� 𝐾𝐾(𝑦𝑦) �𝑓𝑓(𝑥𝑥) −
ℎ𝑛𝑛𝑦𝑦
1!

𝑓𝑓′(𝑥𝑥) +
ℎ𝑛𝑛2𝑦𝑦2

2!
𝑓𝑓′′ (𝑥𝑥)  + 𝑂𝑂(ℎ𝑛𝑛2 )� 𝑑𝑑𝑑𝑑

 

ℝ
 

= 𝑓𝑓(𝑥𝑥)∫
𝐾𝐾(𝑦𝑦)𝑑𝑑𝑑𝑑 − ℎ𝑛𝑛𝑓𝑓′(𝑥𝑥)∫ 𝑦𝑦𝑦𝑦(𝑦𝑦) 

ℝ

+ ℎ𝑛𝑛
2

2
𝑓𝑓′′ (𝑥𝑥)∫ 𝑦𝑦2𝐾𝐾(𝑦𝑦) 

ℝ + 𝑂𝑂(ℎ𝑛𝑛2 )
 
ℝ  

= 𝑓𝑓(𝑥𝑥) + ℎ𝑛𝑛2

2
𝑓𝑓′′ (𝑥𝑥)∫ 𝑦𝑦2𝐾𝐾(𝑦𝑦) 

ℝ 𝑑𝑑𝑑𝑑 + 𝑂𝑂(ℎ𝑛𝑛2 ).        (14) 

Hence, we have: 

 𝔼𝔼�𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛)� = 𝑓𝑓(𝑥𝑥) + ℎ𝑛𝑛2

2
𝑓𝑓′′ (𝑥𝑥)∫ 𝑦𝑦2𝐾𝐾(𝑦𝑦) 

ℝ 𝑑𝑑𝑑𝑑 + 𝑂𝑂(ℎ𝑛𝑛2 ). 
(15) 

According to the expression of the mean above we have: 

𝔼𝔼�𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛)� − 𝑓𝑓(𝑥𝑥) = ℎ𝑛𝑛2

2
𝑓𝑓′′ (𝑥𝑥)∫ 𝑦𝑦2𝐾𝐾(𝑦𝑦) 

ℝ 𝑑𝑑𝑑𝑑 + 𝑂𝑂(ℎ𝑛𝑛2 ). 
(16) 

But the bias is given by:  

 𝐵𝐵ias�𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛)� = 𝔼𝔼�𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛)� − 𝑓𝑓(𝑥𝑥),      (17) 

So  

 𝐵𝐵𝑖𝑖𝑎𝑎s�𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛)� = ℎ𝑛𝑛2

2
𝑓𝑓′′ (𝑥𝑥)∫ 𝑦𝑦2𝐾𝐾(𝑦𝑦) 

ℝ 𝑑𝑑𝑑𝑑 + 𝑂𝑂(ℎ𝑛𝑛2 ). (18) 

b) Calculating of the Variance of 𝐟𝐟𝐧𝐧(𝐱𝐱,𝐡𝐡𝐧𝐧) 
The variance of 𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛) is given by: 

𝕍𝕍𝑎𝑎𝑎𝑎�𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛)� = 𝕍𝕍𝑎𝑎𝑎𝑎 � 1
𝑛𝑛ℎ𝑛𝑛

∑ 𝐾𝐾 �𝑥𝑥−𝑋𝑋𝑖𝑖
ℎ𝑛𝑛

�𝑛𝑛
𝑖𝑖=1 �  

= 1
𝑛𝑛2ℎ𝑛𝑛2

∑ 𝕍𝕍𝑎𝑎𝑎𝑎 �𝐾𝐾 �𝑥𝑥−𝑋𝑋𝑖𝑖
ℎ𝑛𝑛

��𝑛𝑛
𝑖𝑖=1   

=  1
𝑛𝑛2ℎ𝑛𝑛2

∑ �𝔼𝔼�𝐾𝐾 �𝑥𝑥−𝑢𝑢
ℎ𝑛𝑛
��

2

� − 1
𝑛𝑛2ℎ𝑛𝑛2

∑ �𝔼𝔼�𝐾𝐾 �𝑥𝑥−𝑢𝑢
ℎ𝑛𝑛
���

2
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1   

= 1
𝑛𝑛ℎ𝑛𝑛2

∫ ��𝐾𝐾 �𝑥𝑥−𝑢𝑢
ℎ𝑛𝑛
��

2

� 𝑓𝑓(𝑢𝑢)𝑑𝑑𝑑𝑑 − 1
𝑛𝑛ℎ𝑛𝑛2

 
ℝ �∫ 𝐾𝐾 �𝑥𝑥−𝑢𝑢

ℎ𝑛𝑛
� 

ℝ 𝑓𝑓(𝑢𝑢)𝑑𝑑𝑑𝑑�
2
 

 (19) 

In putting 𝑦𝑦 = 𝑥𝑥−𝑢𝑢
ℎ𝑛𝑛

 i.e. 𝑑𝑑𝑑𝑑 = −𝑑𝑑𝑑𝑑
ℎ𝑛𝑛

, we have:  

     𝕍𝕍𝑎𝑎𝑎𝑎�𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛)� =  
1
𝑛𝑛ℎ𝑛𝑛

� [𝐾𝐾(𝑦𝑦)]2𝑓𝑓(𝑥𝑥 − ℎ𝑛𝑛𝑦𝑦)𝑑𝑑𝑑𝑑
 

ℝ
 

 −  1
𝑛𝑛
�∫ 𝐾𝐾(𝑦𝑦) 
ℝ 𝑓𝑓(𝑥𝑥 − ℎ𝑛𝑛𝑦𝑦)𝑑𝑑𝑑𝑑�

2
. 

Using an analogue working with the calculation of the 
mean above and using the Proposition 2, we obtain a new 
expression of the variance: 

 𝕍𝕍𝑎𝑎𝑎𝑎�𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛)� = 𝑓𝑓(𝑥𝑥)
𝑛𝑛ℎ𝑛𝑛

∫ 𝐾𝐾2(𝑦𝑦)𝑑𝑑𝑑𝑑 + 𝑂𝑂(ℎ𝑛𝑛−1) 
ℝ .   (20) 

So, the Mean Square Error (MSE) is: 

𝑀𝑀𝑀𝑀𝑀𝑀�𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛)� =
𝑓𝑓(𝑥𝑥)
𝑛𝑛ℎ𝑛𝑛

�𝐾𝐾2(𝑦𝑦)𝑑𝑑𝑑𝑑 + 𝑂𝑂(ℎ𝑛𝑛−1)
 

ℝ
 

+ ℎ𝑛𝑛4

4
�𝑓𝑓′′ (𝑥𝑥)�2�∫ 𝑦𝑦2𝐾𝐾(𝑦𝑦) 

ℝ 𝑑𝑑𝑑𝑑�2 + 𝑂𝑂(ℎ𝑛𝑛4 ).   (21) 

To find out a compromise between the bias and the 
variance, we minimise relatively to ℎ𝑛𝑛 the expression of the 
Asymptotic Mean Squared Error (AMSE) given by: 

𝑀𝑀𝑀𝑀𝑀𝑀�𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛)� =  𝑓𝑓(𝑥𝑥)
𝑛𝑛ℎ𝑛𝑛

∫ 𝐾𝐾2(𝑦𝑦)𝑑𝑑𝑑𝑑 
ℝ   

 + ℎ𝑛𝑛4

4
�𝑓𝑓′′ (𝑥𝑥)�2�∫ 𝑦𝑦2𝐾𝐾(𝑦𝑦) 

ℝ 𝑑𝑑𝑑𝑑�2
.        (22) 

Since AMSE is a convex function, so the window 
ℎ𝑜𝑜𝑜𝑜𝑜𝑜 (𝑓𝑓𝑛𝑛 (𝑥𝑥 ,ℎ𝑛𝑛 ))
𝑀𝑀𝑀𝑀𝑀𝑀  is a solution to the equation: 
𝜕𝜕

𝜕𝜕ℎ𝑛𝑛
�𝑓𝑓(𝑥𝑥)
𝑛𝑛ℎ𝑛𝑛

∫ 𝐾𝐾2(𝑦𝑦)𝑑𝑑𝑑𝑑 
ℝ + ℎ𝑛𝑛4

4
�𝑓𝑓′′ (𝑥𝑥)�2�∫ 𝑦𝑦2𝐾𝐾(𝑦𝑦) 

ℝ 𝑑𝑑𝑑𝑑�2� = 0. 
Thus, the smoothing parameter in the case of the estimator 

of the density function of the Parzen-Rosenblatt kernel is 
given by:  

ℎ𝑜𝑜𝑜𝑜𝑜𝑜 (𝑓𝑓𝑛𝑛 (𝑥𝑥 ,ℎ𝑛𝑛 ))
𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑛𝑛−

1
5 �

𝑓𝑓(𝑥𝑥)∫ 𝐾𝐾2(𝑦𝑦)𝑑𝑑𝑑𝑑 
ℝ

�𝑓𝑓′′ (𝑥𝑥)�2�∫ 𝑦𝑦2𝐾𝐾(𝑦𝑦) 
ℝ 𝑑𝑑𝑑𝑑�

2�

1
5
,    (23) 

with 𝑓𝑓′′ (𝑥𝑥) ≠ 0.  
c) Global Approach 

We will now focus on the global approach to select ℎ𝑛𝑛  
parameter. For this, we introduce the mean integrated square 
error (MISE) of 𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛). We obtain: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛)� =  �𝑀𝑀𝑀𝑀𝑀𝑀�𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛)� 𝑑𝑑𝑑𝑑 

 = ∫ �𝑓𝑓(𝑥𝑥)
𝑛𝑛ℎ𝑛𝑛

∫ 𝐾𝐾2(𝑦𝑦)𝑑𝑑𝑑𝑑 
ℝ + ℎ𝑛𝑛4

4
�𝑓𝑓′′ (𝑥𝑥)�2�∫ 𝑦𝑦2𝐾𝐾(𝑦𝑦) 

ℝ 𝑑𝑑𝑑𝑑�2� 𝑑𝑑𝑑𝑑 

 =  1
𝑛𝑛ℎ𝑛𝑛

∫ 𝐾𝐾2(𝑦𝑦)𝑑𝑑𝑑𝑑 
ℝ + ℎ𝑛𝑛4

4 ∫ (𝑓𝑓′′ (𝑥𝑥))2 
ℝ �∫ 𝑦𝑦2𝐾𝐾(𝑦𝑦) 

ℝ 𝑑𝑑𝑑𝑑�2𝑑𝑑𝑑𝑑,   
(24) 

because ∫𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = 1. 
Thus, the Asymptotic Mean Integrated Error (AMISE) is 

AMISE�𝑓𝑓𝑛𝑛(𝑥𝑥,ℎ𝑛𝑛)� = 1
𝑛𝑛ℎ𝑛𝑛

∫ 𝐾𝐾2(𝑦𝑦)𝑑𝑑𝑑𝑑 
ℝ   

+ ℎ𝑛𝑛4

4 ∫ (𝑓𝑓′′ (𝑥𝑥))2 
ℝ �∫ 𝑦𝑦2𝐾𝐾(𝑦𝑦) 

ℝ 𝑑𝑑𝑑𝑑�2𝑑𝑑𝑑𝑑,     (25) 
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and the window minimising the AMISE of the global criteria 
is: 

 ℎ𝑜𝑜𝑜𝑜𝑜𝑜 (𝑓𝑓𝑛𝑛 (𝑥𝑥 ,ℎ𝑛𝑛 ))
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑛𝑛−

1
5 � ∫ 𝐾𝐾2(𝑦𝑦)𝑑𝑑𝑑𝑑 

ℝ

�∫ 𝑦𝑦2𝐾𝐾(𝑦𝑦) 
ℝ 𝑑𝑑𝑑𝑑�

2
∫�𝑓𝑓′′ (𝑥𝑥)�2𝑑𝑑𝑑𝑑

�

1
5
,  (26) 

with 𝑓𝑓′′ (𝑥𝑥) ≠ 0.  

3.2. Method of Optimisation of 𝒉𝒉𝒏𝒏  

3.2.1. Introduction 

There are several methods of optimizing ℎ𝑛𝑛  in the 
literature. The most used are: The Plug-in method (Shealter, 
Jones, and Marron, 1996), the thumb method still called Rule 
of thumb (Deheuvels, 1977) and the method of cross 
validation (Rudemo, 1982; Bowmann, 1985 and Scott-Terrel, 
1987). The method used in this article is that of Rule of 
thumb because it is best suited for calculating densities. 

3.2.2. Rule of Thumb Method  
The optimal smoothing parameter with respect to the 

integrated root mean square contains the unknown term 
𝑓𝑓′′(𝑥𝑥). This method proposed by Deheuvels (1977) consists 
in supposing that 𝑓𝑓(𝑥𝑥) is the Gauss density of mean 0 and 
variance 𝜎𝜎𝑛𝑛2 , if we use the Gauss kernel, we obtain the 
window: 

ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = 1.06𝜎𝜎�𝑛𝑛𝑛𝑛
−1

5, 

with 𝜎𝜎�𝑛𝑛  the emperical estimator of 𝜎𝜎�. 
If the true density is no’t Gauss, this estimation of the 

windows does not gives good results. 

3.3. Fundamental Results 

To have our results, we will need the following 
hypotheses: 

(𝑯𝑯.𝟏𝟏) 𝑓𝑓(. ) is a function of class ℂ2(ℝ); 
(𝑯𝑯.𝟐𝟐) 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛→∞ℎ𝑛𝑛 = 0 when n→ ∞; 
(𝑯𝑯.𝟑𝟑) ∫ℝ𝑢𝑢𝑢𝑢(𝑢𝑢)𝑑𝑑𝑑𝑑 = 0; 
(𝑯𝑯.𝟒𝟒) ∫ℝ𝑢𝑢

2𝐾𝐾(𝑢𝑢)𝑑𝑑𝑑𝑑 < ∞; 
(𝑯𝑯.𝟓𝟓) 𝐾𝐾 fits the property (𝑲𝑲.𝟏𝟏) − (𝑲𝑲.5); 
(𝑯𝑯.𝟔𝟔) 𝐾𝐾 fits the property (K.4). 

3.3.1. Triangular Kernel 

Let the triangular kernel be defined by: 
 𝐾𝐾(𝑥𝑥) = (1 − |𝑥𝑥|)𝟙𝟙[−1,1](𝑥𝑥).        (27) 

The following technical lemma will help us as we proceed. 
Lemma 1 Under the hypothesis (𝑯𝑯.𝟒𝟒) and (𝑯𝑯.𝟔𝟔), we 

have:  

∫ 𝐾𝐾2(𝑦𝑦)𝑑𝑑𝑑𝑑 = 2
3

 
ℝ             (28) 

and 

∫ 𝑦𝑦2𝐾𝐾(𝑦𝑦)𝑑𝑑𝑑𝑑 = 1
6

 
ℝ .          (29) 

Proof  
Calculations are done at the -1 and 1 terminals. 
 

We have:  

∫ 𝐾𝐾2(𝑦𝑦)𝑑𝑑𝑑𝑑 =1
−1  ∫ (1 − |𝑦𝑦|)2𝑑𝑑𝑑𝑑1

−1   

 =  ∫ (1 + 𝑦𝑦)2𝑑𝑑𝑑𝑑0
−1 + ∫ (1 − 𝑦𝑦)2𝑑𝑑𝑑𝑑1

0   

 =  ∫ (1 + 2𝑦𝑦 + 𝑦𝑦2)𝑑𝑑𝑑𝑑0
−1 + ∫ (1 − 2𝑦𝑦 + 𝑦𝑦2)𝑑𝑑𝑑𝑑1

0  

 =  �𝑦𝑦 + 𝑦𝑦2 + 1
3
𝑦𝑦3�

−1

0
+  �𝑦𝑦 − 𝑦𝑦2 + 1

3
𝑦𝑦3�

0

1
  

 = 1 − 1 + 1
3

+ 1 − 1 + 1
3
 

 = 2
3
. 

Similarly, we have: 

 ∫ 𝑦𝑦2𝐾𝐾  (𝑦𝑦)𝑑𝑑𝑑𝑑 =1
−1  ∫ 𝑦𝑦2(1 − |𝑦𝑦|) 𝑑𝑑𝑑𝑑1

−1   

 =  ∫ 𝑦𝑦2(1 + 𝑦𝑦) 𝑑𝑑𝑑𝑑0
−1 + ∫ 𝑦𝑦2(1 − 𝑦𝑦) 𝑑𝑑𝑑𝑑1

0   

 =  ∫ (𝑦𝑦2 + 𝑦𝑦3)𝑑𝑑𝑑𝑑0
−1 + ∫ (𝑦𝑦2 − 𝑦𝑦3)𝑑𝑑𝑑𝑑1

0  

 =  �1
3
𝑦𝑦3 + 1

4
𝑦𝑦4�

−1

0
+  �1

3
𝑦𝑦3 − 1

4
𝑦𝑦4�

0

1
  

 = 1
3
− 1

4
+ 1

3
− 1

4
 

 = 2
3
− 1

2
 

 = 1
6
.  

This fundamental result specifies the choice of the 
window ℎ𝑛𝑛  of the triangular kernel by Rule of thumb 
method.  

Theorem: Under the hypotheses (H.𝟏𝟏) − (H.5) and if we 
choose 𝑓𝑓 as the unknown normal distribution of mean 0 and 
variance 𝜎𝜎2, the value of ℎ𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  is given by: 

 ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = 2.58𝜎𝜎 �𝑛𝑛−
1
5 ,            (30) 

where 𝜎𝜎 � = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑆𝑆 � , 𝐼𝐼𝐼𝐼
1.349

� and where 𝑆𝑆 �  is the estimator of 
the standard deviation and IQ is the estimator of the 
interquartile deviation. 

Proof The value of AMISE is given by: 

ℎ𝑜𝑜𝑜𝑜𝑜𝑜 (𝑓𝑓𝑛𝑛 (𝑥𝑥 ,ℎ𝑛𝑛 ))
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑛𝑛−

1
5 � 

∫ℝ𝐾𝐾
2(𝑦𝑦)𝑑𝑑𝑑𝑑

(∫ℝ𝑦𝑦
2𝐾𝐾(𝑦𝑦)𝑑𝑑𝑑𝑑)2 ∫ℝ(𝑓𝑓′′ (𝑥𝑥))2𝑑𝑑𝑑𝑑 

�

1
5

. 

On the other hand, 𝑓𝑓  being an unknown normal 
distribution of mean 0 and variance 𝜎𝜎2,  

we have:  

∫ℝ�𝑓𝑓
′′ (𝑥𝑥)�𝑑𝑑𝑑𝑑 =  3

8√𝜋𝜋
𝜎𝜎−5.  

Thus, 

 ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑛𝑛−
1
5 � 8√𝜋𝜋∫ℝ𝐾𝐾

2(𝑦𝑦)𝑑𝑑𝑑𝑑
3𝜎𝜎−5(∫ℝ𝑦𝑦

2𝐾𝐾(𝑦𝑦)𝑑𝑑𝑑𝑑 )2 
�

1
5

considering lemma1  

 = 𝑛𝑛−
1
5 � 

16√𝜋𝜋
3

3
36𝜎𝜎

−5 
�

1
5

 

 = 𝑛𝑛−
1
5 � 16√𝜋𝜋

3
�

1
5 ∙ � 3

36
𝜎𝜎5�

1
5  
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 =  𝑛𝑛−
1
5 � 16

3
�

1
5 ∙ �√𝜋𝜋�

1
5 ∙ � 3

36
�

1
5 ∙ {𝜎𝜎5}

1
5  

 =  �16
3
�

1
5 ∙ � 3

36
�

1
5 ∙ �√𝜋𝜋�

1
5 ∙ {𝜎𝜎5}

1
5 ∙  𝑛𝑛−

1
5 

 = 2.58𝜎𝜎𝑛𝑛−
1
5 

 = 2.58𝜎𝜎 �𝑛𝑛−
1
5 by the method of the Rule of thumb, 

where 𝜎𝜎 � = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑆𝑆 � , 𝐼𝐼𝐼𝐼
1.349

� and where 𝑆𝑆 �  is the estimator of 
the standard deviation and IQ is the estimator of the 
interquartile deviation. 

3.3.2. Epanechnikov Kernel or Parabolic Kernel 

Let the Epanechnikov kernel or parabolic kernel be 
defined by: 

𝐾𝐾(𝑥𝑥) =  3
4

(1 − 𝑥𝑥2)𝟙𝟙[−1,1](𝑥𝑥).       (31) 

The following technical lemma will be necessary for us: 
Lemma: Under the hypotheses (H.4) and (H.6), we have: 

∫ 𝐾𝐾2(𝑦𝑦)𝑑𝑑𝑑𝑑 
ℝ = 3

5
 ,             (32) 

and  

∫ 𝑦𝑦2𝐾𝐾(𝑦𝑦)𝑑𝑑𝑑𝑑 
ℝ = 1

5
.             (33) 

Proof The calculation is done at the limits -1 and 1. We 
have: 

�𝐾𝐾2(𝑦𝑦)𝑑𝑑𝑑𝑑
 

ℝ
= �  (

3
4

(1 − 𝑥𝑥2))2𝑑𝑑𝑑𝑑 
1

−1
 

 =
9

16
�  (1 − 𝑦𝑦2)2𝑑𝑑𝑑𝑑 

1

−1
 

 =
9

16
�  (1 − 2𝑦𝑦2 + 𝑦𝑦4) 𝑑𝑑𝑑𝑑 .

1

−1
 

Finally, we have: 

 �𝐾𝐾2(𝑦𝑦)𝑑𝑑𝑑𝑑
 

ℝ
=

9
16

�𝑦𝑦 −
2
3
𝑦𝑦3 +

1
5
𝑦𝑦5�

−1

1

 

 =
9

16
�1 −

2
3

+
1
5
− (−1 +

2
3

 −
1
5

)�
 

 

 

 =
9

16
�2 −

4
3

+
2
5
�

 

 

 

 =
9

16
∗ �

16
15
� 

=
3
5

 . 

Similarly, we have: 

�𝑦𝑦2𝐾𝐾(𝑦𝑦)𝑑𝑑𝑑𝑑
 

ℝ
= � 𝑦𝑦2 3

4
(1 − 𝑦𝑦2)𝑑𝑑𝑑𝑑

 
 

1

−1
 

 =
3
4
�  (𝑦𝑦2 − 𝑦𝑦4)𝑑𝑑𝑑𝑑

 
  

1

−1
 

 =
3
4
�
1
3
𝑦𝑦3 −

1
5
𝑦𝑦5�

−1

1

 

 =
3
4
�
1
3
−

1
5

+
1
3
−

1
5

)�
 

 

 

 =
3
4
∗ �

4
15
�  

= 1
5
. 

This fundamental result following precise the choice of 
the window hn  and of the Epanechnikov kernel by the Rule 
of thumb method. 
Theorem 

Under the hypothesis (𝑲𝑲.𝟏𝟏) − (𝑲𝑲.𝟓𝟓), and if we choose f 
like the normal unknown distribution of mean 0 and variance 
𝜎𝜎2 the value of ℎ𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  is given by: 

 ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = 4.90𝜎𝜎 �𝑛𝑛−
1
5 ,          (34) 

where 𝜎𝜎 � = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑆𝑆 � , 𝐼𝐼𝐼𝐼
1.349

� and where 𝑆𝑆 �  is the estimator of 
the standard deviation and IQ is the estimator of the 
interquartile deviation. 

Proof The value of the AMISE is given: 

ℎ𝑜𝑜𝑜𝑜𝑜𝑜 (𝑓𝑓𝑛𝑛 (𝑥𝑥 ,ℎ𝑛𝑛 ))
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑛𝑛−

1
5 � 

∫ℝ𝐾𝐾
2(𝑦𝑦)𝑑𝑑𝑑𝑑

(∫ℝ𝑦𝑦
2𝐾𝐾(𝑦𝑦)𝑑𝑑𝑑𝑑)2 ∫ℝ(𝑓𝑓′′ (𝑥𝑥))2𝑑𝑑𝑑𝑑 

�

1
5

. 

On the other hand, f being an unknown normal distribution 
of mean 0 and variance 𝜎𝜎2, we have: 

��𝑓𝑓′′ (𝑥𝑥)�𝑑𝑑𝑑𝑑
 

ℝ
=  

3
8√𝜋𝜋

𝜎𝜎−5. 

Thus,  

ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑛𝑛−
1
5 � 

8√𝜋𝜋∫ℝ𝐾𝐾
2(𝑦𝑦)𝑑𝑑𝑑𝑑

3𝜎𝜎−5(∫ℝ𝑦𝑦
2𝐾𝐾(𝑦𝑦)𝑑𝑑𝑑𝑑)2 

�

1
5
 

 = 𝑛𝑛−
1
5 � 

24√𝜋𝜋
5

3
25𝜎𝜎

−5 
�

1
5

 according to lemma 1  

= 𝑛𝑛−
1
5 � 

24√𝜋𝜋
5

�

1
5
∙ �

3
25

𝜎𝜎5�
1
5

  

 =  𝑛𝑛−
1
5 � 24

5
�

1
5 ∙ �√𝜋𝜋�

1
5 ∙ � 3

25
�

1
5 ∙ {𝜎𝜎5}

1
5  

=  �24
5
�

1
5 ∙ � 3

25
�

1
5 ∙ �√𝜋𝜋�

1
5 ∙ {𝜎𝜎5}

1
5 ∙  𝑛𝑛−

1
5  = 4.90𝜎𝜎𝑛𝑛−

1
5  

= 4.90𝜎𝜎 �𝑛𝑛−
1
5 by the method of the Rule of thumb,  

where 𝜎𝜎 � = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑆𝑆 � , 𝐼𝐼𝐼𝐼
1.349

� and where 𝑆𝑆 �  is the estimator of 
the standard deviation and IQ is the estimator of the 
interquartile deviation. 

4. Simulation 
We present in this section a simulation study carried out 

using the R software, to try to illustrate the different 
theoretical aspects discussed in the previous section. This 
numerical illustration will allow us to see the result of the 
density estimation by the method of the Role of thumb of the 
smoothing parameter. 

4.1. Introduction  
We consider a sample (𝑋𝑋𝑖𝑖)𝑖𝑖=1,…,𝑛𝑛 , series of random 
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independent and identical distributed variables (i.i.d) of 
probability density f which obey the law (𝑋𝑋𝑖𝑖 ⤳ 𝒩𝒩(μ,𝜎𝜎2)). 
To estimate f in a given interval, we suppose that F 
represents the function of distribution and f their density 
function in the form: 

 𝑓𝑓𝑛𝑛(x,ℎ𝑛𝑛) = 1
𝑛𝑛ℎ𝑛𝑛

∑  𝑛𝑛
𝑖𝑖=1 𝐾𝐾 �𝑥𝑥−𝑋𝑋𝑖𝑖

ℎ𝑛𝑛
�  

where K is the chosen kernel and ℎ𝑛𝑛  is the window 
parameter. 

If K is a triangular kernel, then the value of optimal ℎ𝑛𝑛  
noted ℎ𝑜𝑜𝑜𝑜𝑜𝑜  is given according to section 3.3.1 by: 

ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = 2.58𝜎𝜎 �𝑛𝑛−
1
5. 

On the other hand, if k is a parabolic or Epanechnikov 
kernel, then the value of optimal ℎ𝑛𝑛  noted ℎ𝑜𝑜𝑜𝑜𝑜𝑜  is given 
according to section 3.3.2. by: 

ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = 4.90𝜎𝜎 �𝑛𝑛−
1
5. 

We will generate for every of the applications which we 
propose the samples of height 𝑛𝑛 = 10,𝑛𝑛 = 100, 
𝑛𝑛 = 1 000,𝑛𝑛 = 10 000,𝑛𝑛 = 100 000 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛 = 1 000 000  
respectively. 

4.2. Simulation Algorithm 

In other to simulate the sample defined above and to 
evaluate the performances in a given interval, we go through 
the following steps: 

1.  Generate the sample 𝑋𝑋𝑖𝑖  according to the normal law; 
2.  Give the number of observation 𝑛𝑛 of the simulation; 
3.  Give the interval of the simulated space; 
4.  Choose the kernel 𝐾𝐾(. ); 
5.  Choose the smoothing window ℎ𝑛𝑛 ; 
6.  Estimate 𝑓𝑓(𝑥𝑥) with their estimator; 
7.  Draw the graph of the estimated densities. 

4.3. Results of Simulation 

The following simulation curves obtained in this section 
are conceived in the software R. the construction codes are 
given in the annex. 

4.3.1. Triangular Kernel  

For n = 10, we have the following graph: 

 
 
 
 

For n = 100, we have the following graph: 

 
For n = 1 000, we have the following graph: 

 
For n = 10 000, we have the following graph: 

 
For 𝑛𝑛 = 100 000, we have the following graph: 

 
For n = 1 000 000, we have the following graph: 
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We notice that the theoretical curves greatly differ from 
those of the density estimators for small values (𝑛𝑛 =
10,𝑛𝑛 = 100,𝑛𝑛 = 1 000)  while for great values (𝑛𝑛 =
10 000,𝑛𝑛 = 100 000), they are almost identical. Finally, 
for a very big value (n=1 000 000), the curves are identical, 
which confirms the robustness of our density estimator in the 
case of triangular kernel.  

4.3.2. Epanechnikov Kernel or Parabolic Kernel  

For n = 10, we have the following graph: 

 
For 𝑛𝑛 = 100, we have the following graph: 

 
For 𝑛𝑛 = 1 000, we have the following graph: 

 
For 𝑛𝑛 = 10 000, we have the following graph: 

 

For 𝑛𝑛 = 100 000, we have the following graph: 

 
For 𝑛𝑛 = 1 000 000, we have the following graph: 

 
We notice that the theoretical curves differ greatly from 

those of the density estimator for small values (n=10, n=100, 
n=1000) while being identical to high value ones (n=10 000, 
n=100 000). Finally, for a very high value (n=1 000 000), the 
curves are almost identical, which confirms the performance 
of our density estimator in the case of the Epanechnikov 
kernel. 

5. Conclusions 

In this paper, by studying the nonparametric estimate of 
the probability density of the triangular core and the 
Epanechnikov kernel by the "Rule of thumb" method, we 
have succeeded in determining the smoothing parameter ℎ𝑛𝑛  
of the kernel estimator of Parsen-Rosenblatt. We notice that 
when we increase the number of observations N, the error 
decreases and the information of the estimator is almost the 
same as the theoretical information. The results obtained 
from the software R perfectly illustrate this reduction of the 
error. By comparing them, we clearly see that the shape of 
the Parzen-Rosenblatt estimator approaches the shape of the 
theoretical probability density when the number of 
observations N increases and the window h decreases. In 
general, the performance characteristics obtained in the 
different observations of this sample with the 
Parzen-Rosenblatt estimator are very close to the theoretical 
ones. The higher 𝑵𝑵 is, the better the estimate of densities. 

We plan to study the kernel estimator of Nadaraya-Watson 
using the regression function and evaluate the quality of the 
estimation, to treat the asymptotic properties of these 
estimators, namely the convergence in quadratic average. 
This will allow us to study the convergence almost complete 
punctual as well as uniform. 
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The study of this kernel estimator of the Nadaraya-Watson 
density function will be studied in the context of competiting 
risks such as defined by Njamen and Ngatchou (2014) in 
order to compare the robustness of the two methods. 
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