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Abstract  In order to improve the overall health condition of a population, accurate estimates of health indicators are 
required at very small spatial scale, typically the administrative units of a country and/or a region within a country. Direct 
estimation methods tend to have unacceptably high standard errors when the area-specific sample sizes are not large enough. 
In such situations, model-based small area estimation methods can be conducted based on either area level or unit level 
models on the basis of data availability and achieve lower mean squared errors. When unit level data are inaccessible, area 
level models such as Fay-Herriot model have been widely used instead. This paper is concerned with the use of a multivariate 
Fay-Herriot area level model to get improved estimates for each variable by area rather than using single variable. A 
simulation study is carried out to investigate multivariate and univariate small area estimators. An empirical study has been 
performed to compare univariate and multivariate estimators using data from the Bangladesh Demographic Health Survey 
(BDHS) 2011 and Population Census 2011. In Bangladesh, a few works have been done to estimate district level child 
nutrition status. The prevalence of nutrition status is assessed by two standard anthropometric indicators: underweight and 
stunting. Small area estimates of underweight and stunting are calculated from BDHS 2011 with auxiliary variables derived 
from the Bangladesh Population and Housing Census 2011. The survey Bangladesh DHS covers all districts but district wise 
sample sizes are very small to get consistent estimates. So Fay-Herriot Model has been used to calculate district wise 
estimates with efficient mean squared error. 
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1. Introduction 
Survey data are now widely used to provide estimates not 

only for the total population but also for subpopulation (also 
known as domains). Domains can be defined by geographic 
areas or socio-demographic groups. A domain or area is 
known as large when the domain-specific sample size is 
large [1]. Domains or area estimators that are obtained based 
only on the sample data from the domain or area are known 
as direct estimators. Direct estimation methods such as the 
design-based Horvitz-Thompson estimator (HT) [2] or the 
model-assisted generalized regression (GREG) estimator [3] 
are effective when the domain-specific sample sizes are large. 
However, in practice, when the domain-specific sample sizes 
are not large enough (known as small areas), sufficiently 
precise direct estimates cannot be produced. In such 
situations, small area estimation (SAE) methods can be used 
to get reliable estimates of the parameters of interest from the  
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related areas [4]. 
The basic idea of small area estimation method is to link 

the variable of interest with auxiliary information (e.g., 
Census and Administrative data) in a random effects model 
[5]. SAE method is broadly classified into two methods - 
Unit level SAE and Area level SAE. When unit level survey 
data is not available, area level SAE is utilized for small 
area estimates. One of the basic area level models is the 
Fay-Herriot (FH) model [6] which relates small area direct 
survey estimates to area specific covariates. When multiple 
dependent variables are considered correlated, multivariate 
Fay-Herriot model may produce better results than 
univariate FH model [1] but these models have received 
relatively little attention. 

Statisticians use the univariate Fay-Herriot (UFH) model 
for one variable or separately for each variable. However, in 
some surveys it may be desirable to consider two or more 
correlated response variables together. In such cases, the 
multivariate Fay-Herriot (MFH) model can be used to 
incorporate the correlation among the response variables [7]. 
When multiple dependent variables are correlated, MFH 
models may produce better results than UFH models, but 
these models have received relatively little attention. There 
is limited work on the benefits of MFH models. More 
precise SAEs are obtainable using MFH models rather than 
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using separate UFH models for each variable [8]. A 
simulation study conducted by [9], designed for comparing 
MFH and UFH estimators, and concluded that multivariate 
modelling reduced the MSE of the SAE estimators.  

The focus of this paper is to elucidate how bivariate 
Fay-Herriot (BFH) models work better than separate UFH 
models based on MSE. Some special cases are explained 
which will give insight into when BFH should be 
worthwhile in practice. A simulation and an empirical  
study are conducted to compare the two methods. In the 
simulation study, the behaviour of the UFH and BFH 
estimators is investigated by generating datasets following 
[9]. Both the UFH and BFH models are fitted and MSEs of 
the corresponding empirical best linear unbiased predictor 
(EBLUP) are calculated using the estimated parameters 
from the simulated data. In the empirical study, BFH and 
UFH estimators and the MSE estimator are applied to data 
from the Bangladesh Demographic and Health Survey 2011 
and Bangladesh Population and Housing Census 2011.  

In Bangladesh, no works have been done to estimate 
district level child nutrition status either direct or indirect 
approach. The recent Bangladesh Demographic and Health 
Survey 2011 covers all districts but district wise sample 
sizes are very small (10-100) to get consistent estimates 
[10]. The purpose of this paper is to develop an area level 
Fay-Herriot Model to calculate district level estimates  
with their efficiency. Comparison between univariate and 
multivariate FH models has also been done.  

The paper is organized as follows: Section 2 outlines the 
model structure and the MSE for both the UFH and BFH 
estimators. The relative performance of UFH and BFH 
estimators is measured by the relative efficiency of these 
MSEs. Section 3 explain the special cases. Section 4 
investigates the performance of the UFH and the BFH 
estimators via a simulation experiment. Section 5 describes 
the empirical study and Section 6 summarises the findings. 

2. Univariate and Bivariate Fay-Herriot 
Estimators 

The purpose of this section is to make simple comparisons 
of the MSEs of the BFH and UFH estimators assuming 
known model parameters including variance components 
and regression coefficients. However, in practice these 
parameters are unknown and this must be reflected in MSE 
estimation when FH estimators are calculated in practice.  

2.1. Univariate Fay-Herriot Model  

Let 𝜃𝑑 = 𝑔(𝑌�𝑑)  where 𝑌�𝑑 is the small area mean for the 
dth area. Suppose 𝜃𝑑  is related to the auxiliary data 
 𝒁𝒅=�𝒁𝒅𝟏 ,𝒁𝒅𝟐 , . . . ,𝒁𝒅𝒑�

′
 through the model called the 

linking model: 
𝜃𝑑 = 𝒁𝒅′ 𝜷 + 𝑣𝑑 ,  𝑑 = 1,2, …𝐷 

The direct estimators of 𝜃𝑑 follow a sampling model, 

𝜃�𝑑 = 𝜃𝑑 + 𝑒𝑑 , 𝑑 = 1,2, … ,𝐷 
Combining the above two assumptions, the univariate 

Fay-Herriot model is 
𝜃�𝑑 = 𝒁𝒅′ 𝜷 + 𝑣𝑑  +  𝑒𝑑 ,𝑑 = 1,2, … ,𝐷      (1) 

where D is the number of areas, 𝒁𝒅 is a (p × 1) vector of 
auxiliary variables, and β is a (p × 1) vector of regression 
coefficients. Furthermore, vd and ed are area specific random 
effects and sampling errors respectively, assumed to be 
independent with 𝑣𝑑  ∼ 𝑁(0,  𝜎𝑣2)  and  𝑒𝑑  ∼ 𝑁(0,  𝜓𝑑) 
respectively. The disturbance terms 𝑣𝑑 and 𝑒𝑑 are assumed 
to be independent from each other. Their respective 
variances, 𝜎𝑣2 and 𝜓𝑑, are the area-specific random effect 
variance and the design-based sampling variance.  

The BLUP estimator of 𝜃�𝑑, denoted by 𝜃�𝑑∗  for known β, 
is 

𝜃�𝑑∗ = 𝜎𝑣2

𝜎𝑣2+𝜓𝑑
𝜃�𝑑 + 𝜓𝑑

𝜎𝑣2+𝜓𝑑
𝒁𝒅′ 𝜷        (2) 

The MSE of the BLUP estimator of, 𝜃�𝑑∗ , is  

MSE�𝜃�𝑑∗� = 𝜎𝑣2𝜓𝑑
𝜎𝑣2+𝜓𝑑

              (3) 

The log-likelihood function of the data {𝜃�𝑑} is 

log𝐿 = −
𝐷
2
𝑙𝑜𝑔(2𝜋) −

1
2
� log(𝜎𝑣2 + 𝜓𝑑)
𝐷

𝑑=1

 

            −
1
2
��𝜃�𝑑 − 𝑍𝑑′ 𝛽�

2(𝜎𝑣2 + 𝜓𝑑)−1
𝐷

𝑑=1

  

2.2. Bivariate Fay-Herriot Model 

Let 𝜽𝒅 be the (2 × 1) vector of the small area statistics in 
area d for the two target variables. The linking model is 

 𝜽𝒅= β′ 𝒁𝒅+ vd , d = 1, 2,….., D     (5) 
where 𝒁𝒅 is a (p × 1) vector of auxiliary variables, β is   
a (p × 2) matrix of regression coefficients and vd are     
the area specific random effects with mean zero and 
variance-covariance matrix 𝚺𝒗 given by: 

𝚺𝒗 = �Σ𝑣11 Σ𝑣12
Σ𝑣12 Σ𝑣22

� 

where Σ𝑣11 and Σ𝑣22 are the random effects variances of 
the first and second variables respectively and Σ𝑣12 is the 
random effects covariance term.  

The direct estimator of 𝜽𝒅 follows a sampling model, 
 𝜽�𝒅 = 𝜽𝒅 + 𝒆𝒅,   𝑑 = 1,2, … ,  𝐷        (6) 

where 𝜽�𝒅 = �𝜽�𝒅𝟏,𝜽�𝒅𝟐�
′

 are the direct estimates of 
 𝜽𝒅 = (𝜽𝒅𝟏,𝜽𝒅𝟐)′ . Let 𝒆𝒅 = (𝒆𝒅𝟏, 𝒆𝒅𝟐)′  be the sampling 
error with mean zero and variance–covariance matrix  

𝚿𝒅 = �Ψd11 Ψd12
Ψd12 Ψd22

� 

where Ψd11 and Ψd22 are the sampling error variances of 
the estimate of first and second variables respectively with 
covariance term Ψd12. Combining (5) and (6), the bivariate 
Fay-Herriot model is 
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𝜽�𝒅 = 𝜷′ 𝒁𝒅 + 𝒗𝒅  +  𝒆𝒅, 𝒅 = 𝟏,𝟐, … ,  𝑫      (7) 
The BLUP estimator of 𝜽�𝒅 for known 𝜷 is 

𝜃�𝑑1∗ = 𝜷𝟏′ 𝒁𝒅 + (𝚺𝒗 + 𝚿𝒅)−1𝚺𝒗𝟏(𝜽�𝒅 − 𝜷′𝒁𝒅)
𝜃�𝑑2∗ = 𝜷𝟐′ 𝒁𝒅 + (𝚺𝒗 + 𝚿𝒅)−1𝚺𝒗𝟐(𝜽�𝒅 − 𝜷′𝒁𝒅)

 } (8) 

where 𝚺𝐯𝟏 = (Σv11,Σv12)′  and  𝚺𝐯𝟐 = (Σv12, Σv22)′ . The 
BLUP estimator (8) can be written as 

𝜽�𝒅∗ = 𝜷′𝒁𝒅 + 𝚺𝒗′ (𝚺𝒗 + 𝚿𝒅)−1(𝜽�𝒅 − 𝜷′𝒁𝒅)      (9) 
See [1] who derive the BLUP when 𝜷 is unknown.  
The MSE of the BLUP estimator of 𝜽�𝒅∗  is 

MSE(𝜃�𝑑1∗ ) = Σ𝑣11 − 𝚺𝒗𝟏′ (𝚺𝒗 + 𝚿𝒅)−1)𝚺𝒗𝟏
MSE(𝜃�𝑑2∗ ) = Σ𝑣22 − 𝚺𝒗𝟐′ (𝚺𝒗 + 𝚿𝒅)−1)𝚺𝒗𝟐

}  (10) 

which can be expressed as 

MSE�𝜽�𝑑∗ � = 𝚺𝒗 − 𝚺𝒗(𝚺𝒗+𝚿𝒅)-1 𝚺𝒗        (11) 

The log likelihood function is 

log𝐿 = −
𝐷𝑟
2

log(2𝜋) −
1
2
� log|𝚺𝒗 + 𝚿𝒅|
𝐷

𝑑=1

 

−
1
2
�(𝜽�𝒅 − 𝜷′𝒁𝒅)′(𝚺𝒗 + 𝚿𝒅)−1(𝜽�𝒅 − 𝜷′𝒁𝒅)
𝐷

𝑑=1

 

2.3. Relative Efficiency of UFH and BFH Estimators 

The relative efficiency, RE, of the bivariate BLUP 
estimator compared to the univariate BLUP estimator is  

RE𝑑1 =
MSE(𝜃�𝑑1∗ )
MSE(𝜃�𝑑∗)

 

RE𝑑1 =
MSE(𝜃�𝑑2∗ )
MSE(𝜃�𝑑∗)

 

Substituting the expressions of MSE�𝜃�𝑑∗�, MSE�𝜃�𝑑1∗ �, and 
MSE�𝜃�𝑑2∗ �  from (3) and (10), the approximate relative 
efficiencies of the bivariate BLUP estimator compared to the 
univariate BLUP estimator are 

RE𝑑1 =
Σ𝑣11 − 𝚺𝒗𝟏′ (𝚺𝒗 + 𝚿𝒅)−1𝚺𝒗𝟏
Σ𝑣11 − Σ𝑣112 (Σ𝑣11 + Ψ𝑑11)−1

RE𝑑2 =
Σ𝑣22 − 𝚺𝒗𝟐′ (𝚺𝒗 + 𝚿𝒅)−1𝚺𝒗𝟐
Σ𝑣22 − Σ𝑣222 (Σ𝑣22 + Ψ𝑑22)−1

 

3. Special Cases 
When the correlation exists between the response 

variables, the multivariate model leads to more efficient 
estimators compared to those based on univariate model [1]. 
This implies that relative efficiency becomes one the 
correlation between the sampling errors and random effects 
for each variable are both zero. In addition, when the 
sampling errors are zero, then the relative efficiency also 
becomes zero. It can also be shown that when the covariance 
term of the random effects is equal to its variance term of the 
first variable and when the covariance term of the sampling 
errors is equal to its variance term of the first variable then 

there is no gain for the first variable. Similarly, when the 
covariance term of the random effects is equal to its variance 
term of the second variable and when the covariance term of 
the sampling errors is equal to its variance term of the second 
variable then there is no gain for the second variable. 
However, when the ratio of the variances of random effects 
is large, there would be some gains of using BFH estimators. 
These special cases are informative but of course none of 
them will hold exactly in practice, so a simulation study will 
be conducted next section to evaluate the relative efficiencies 
of UFH and BFH estimators.  

4. Simulation Experiment 
4.1. Design of the Experiment 

This section describes a simulation experiment for 
analyzing and comparing the relative efficiency of small area 
estimates from the BFH model compared to the UFH model. 
The simulation follows [9].  

Let us consider two response vectors  𝜽𝒅 = (𝜽𝒅𝟏,𝜽𝒅𝟐)′, 
d = 1, 2. . . D, which are assumed to be linearly related to 

the values of the two explanatory variables. For the 
simulation study we have D=100 areas. The steps of 
simulation study are:  

1.  The values of the explanatory variables 𝒁𝒅 = 
(𝑍𝑑1,𝑍𝑑2)′ are generated from a multivariate normal 
distribution as 

�𝑍𝑑1𝑍𝑑2
� ∼ MVN

⎝

⎜
⎛
�10
10� ,

⎣
⎢
⎢
⎡ 1

1
√2

1
√2

2
⎦
⎥
⎥
⎤

⎠

⎟
⎞

 

The random area effects 𝒗𝒅 are generated from a normal 
distribution with zero mean and unit variance, and the 
vectors of sampling errors 𝒆𝒅  are generated from a 
multivariate normal distribution with mean zero and 
covariance matrix Ψd = �Ψdjk�, j, k = 1,2  where Ψdjk = 
rjk�𝑤𝑑  and 𝑤𝑑  are the heteroscedasticity weights. For 
generating 𝒆𝒅  assume r11 = 1, r22 = 2  and r12 = 𝑟12 = 
𝜌𝑒√𝑟11𝑟22  with the heteroscedasticity weights  𝑤𝑑 = 
�𝑍𝑑12 + 𝑍𝑑22 . Two options are implemented here: firstly 
considering heteroscedasticity weights as 𝑤𝑑 = 1 
(homoscedastic model) and secondly heteroscedasticity 
weights as 𝑤𝑑 = �𝑍𝑑12 + 𝑍𝑑22  (heteroscedastic model). Like 
[9], the regression coefficients are set as 𝛽1 = 𝛽2 = 1.  

2.  Using the simulated values of explanatory variables, 
the random effects and sampling errors, the two 
response variables are generated with different values 
of 𝜌𝑒 = −0.5,−0.25 ,0, 0.25, 0.5 via the BFH model 
(9).  

3.  Both the UFH and BFH models are fitted to the direct 
estimates on the explanatory variables using the 
maximum likelihood (ML) estimation method. ML 
estimators are obtained using optim function in R. 
The estimated parameters are then used in BLUP 
estimates (2) and (9). Repeat step (1) to (3) for S=500 
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times and calculate the MSE of EBLUP of 𝜽�𝒅  as 
below 

MSE𝑠𝑖𝑚(𝜃�𝑑𝑟) = 𝑆−1�(𝜃�𝑑𝑟𝑠 − 𝜃𝑑𝑟𝑠)2
𝑆

𝑠=1

, 𝑟 = 1,2 

Where 𝜃�𝑑𝑟 is the estimator for variable r in area d, 𝜃�𝑑𝑟𝑠 
is the s-th simulation of the estimator of variable r in area d, 
and 𝜃𝑑𝑟𝑠 is the true value for variable r in area d in the s-th 
simulation. 

4.2. Results of the Simulation Experiment 
Table 1 presents the medians of the REs over the 100  

areas for the different values of the correlation 𝜌𝑒  with 
heteroscedasticity weight 1. The RE of BFH estimators are 
less than 1 for both variables although the gain is much better 
(lower value of RE) for the second variable than the first 
variable. The reason may be that the sampling variances are 
higher for the second variable than the first variable and 
consequently, second variable of the model borrows more 
strength from the first variable and hence achieves larger 
reduction in MSE [9]. Lowest REs are obtained for the most 
negative values of 𝜌𝑒   for both variables. Table 2 show   
the medians of the REs over D=100 areas considering 
heteroscedasticity weight as 𝑤𝑑 = �𝑍𝑑12 + 𝑍𝑑22 . The REs of 
the BFH estimators are approximately one for different 
values of 𝜌𝑒  for both variables. It can be said that BFH 
estimators performed better that UFH when homoscedastic 
model is considered.  

Table 1.  Medians of RE over D=100 small areas with 𝑤𝑑 = 1 

𝜌𝑒 -0.5  0 0.25 0.5 

First variable 0.56 0.71 0.83 0.92 0.98 

Second Variable 0.46 0.58 0.65 0.72 0.77 

Table 2.  Medians of RE over D = 100 small areas with 𝑤𝑑 = �𝑍𝑑12 + 𝑍𝑑22  

𝜌𝑒 -0.5 -0.25 0 0.25 0.5 

First variable 0.96 0.98 1.00 1.00 1.00 

Second Variable 0.97 0.98 0.99 0.99 0.99 

5. Empirical Study 
5.1. Materials and Methods 

Small area models are developed using the data set of 
BDHS 2014 and Bangladesh Population and Housing 
Census 2011. The BDHS covers 600 communities (Primary 
Sampling Unit) across 396 sub-districts, comprising 64 
districts in 7 divisions [11]. Two anthropometric standard 
indices Height-for-age and Weight-for-age (Z-score) are 
used to calculate the proportion of stunted and underweight 
children at district level. Three district level statistics - 
Proportion of children under 5 years, Proportion of 
household size with ≤4 members and Average household 
size are considered as explanatory variables in the FH 
models. The BFH model (7) as well as the UFH model (1) 
will be used to estimate area prevalence of the indicators. 

The analysis has been performed using R software. 

5.2. Results of the Empirical Study 

Figure 1 presents the comparison of the direct, univariate 
and bivariate models against sample sizes. In Bangladesh, 
the national level proportion of stunted and underweight 
children aged under 5 are estimated to be 41.0 percent and 
36.0 percent respectively [11], while district level estimates 
obtained from SAE models vary across the districts (Panels 
(a) and (b)). Direct estimates are highly variable for those 
districts with small (≤ 100) sample size. However, for 
districts with large (>100) sample size the direct estimates 
are found stable and very close to the FH estimates (Panels (a) 
and (b)). The variation of UFH and BFH estimates are 
smaller than the direct estimates over the sample sizes.  

 

Figure 1.  Estimates of Direct, UFH and BFH Model 

 

Figure 2.  Coefficient of variation of Direct, UFH and BFH estimators 

The above statements are supported by the pattern of root 
mean squared errors (RMSE) or coefficient of variations 
(CV) of the estimates. The CVs of the direct estimates are 
almost double those of FH estimators when the samples are 
small, however the differences reduce with the increasing 
sample size (Figure 2). For FH, CV's are found below 15 
percent for all sample sizes. However, BFH estimators have 
lower CV’s comparing direct and UFH estimators which 
means BFH estimators perform better than UFH and direct 
estimators over the sample sizes. Figure 3 show that the 
direct estimates are randomly distributed around the FH 
estimates and they are close to the diagonal line indicating no 
evidence of bias.  
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Figure 3.  Bias diagnostic plot of UFH and BFH model 

 
Figure 4.  Relative Efficiencies of UFH and BFH Estimators 

 

Figure 5.  Gain in efficiency of BFH over UFH estimators 

Although the differences in the UFH and BFH estimates 
are negligible (Figure 1), the efficiency significantly varies 
with sample size. Figure 4 exhibit smaller RMSE of BFH 
estimates than those of UFH estimates for both stunting and 
underweight. So from this figure it can be said that BFH 
estimators have quite good benefit over the UFH estimators. 
Figure 5 shows that the gain in efficiency (GE= ratio of 
difference between the RMSEs of UFH and BFH to RMSE 
of UFH) of BFH estimates decreases with sample size. We 
can say from Figure 5 that the BFH estimators perform better 
than UFH estimators for small sample sizes.  

6. Conclusions 
In conclusion, in the simulation experiment, relative 

efficiencies of bivariate estimators were calculated on data 
generated from a homoscedastic BFH model. In that case, 
good gains are obtained for both variables with different 
values of sampling errors but gains are better for the second 
variable. The reason is that the sampling variances were 
higher for the second variable than the first variable but when 
the data were simulated from a heteroskedastic model, 
resulting relative efficiencies close to 1 for both variables. 

BFH and UFH estimators were also applied to small area 
prevalences of Bangladesh Demographic Health Survey 
2011 with auxiliary variables taken from the Bangladesh 
Population and Housing Census 2011. The study attempts to 
examine the small area estimates of nutritional status for 
Bangladeshi children under five years of age in terms of 
stunting and underweight. The efficiencies of BFH and UFH 
estimators have been compared for both variables. The 
distributions of the estimated coefficient of variation shows 
that BFH estimators had greater improvement over direct 
and UFH estimators for both variables. The efficiency of 
BFH estimates are appearing better particularly for the areas 
with small samples for the data set and variables considered 
here. These efficiencies are themselves estimates and future 
research will determine whether the apparent gain from the 
BFH are genuine with more auxiliary variables or more areas 
or both would be worthwhile. The research could also be 
extended in future incorporating multivariate version of 
spatio-temporal small area approach where we will consider 
the geographic position of the considered small areas. 
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