
International Journal of Statistics and Applications 2018, 8(5): 274-290 
DOI: 10.5923/j.statistics.20180805.06 

 

Bayesian Survival Analysis of Topp-Leone Generalized 
Family with Stan 

Mohammed H. AbuJarad*, Athar Ali Khan 

Department of Statistics and Operations Research, AMU, Aligarh, India 

 

Abstract  In this article, the discussion has been carried out on the generalization of three distribution by means of 
exponential, exponentiated exponential and exponentiated extension. We set up three and four parameters life model 
called the Topp-Leone exponential distribution, Topp-Leone exponentiated exponential distribution and Topp-Leone 
exponentiated extension distribution. We give extensive consequence of the, survival function and hazard rate function. To 
fit this model as survival model and hazard rate function we adopted to use Bayesian approach. A real survival data set is used 
to illustrate. application is done by R and Stan and suitable illustrations are prepared. R and Stan codes have been given to 
actualize censoring mechanism via optimization and also simulation tools. 
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1. Introduction 
In the survival, a number of continuous univariate 

distributions have been widely utilized for demonstrating 
information in numerous areas, for example, biology, 
medicine, engineering, public health, epidemiology and 
economics. In any case, applied areas, for example, lifetime 
analysis obviously require expanded types of these 
distributions. In this way, a few classes of distributions have 
been built by extending common families of continuous 
distributions. These generalized distributions give greater 
adaptability by including "at least one" parameters to the 
standard model. The Topp-Leone distribution was 
introduced by Topp and Leone in 1955 (Topp and Leone, 
1955). Topp-Leone Generalized family of distributions was 
inferred by Rezaei et al. (2016). The distribution and 
density function of proposed family is known by 

( )=[ ( ) {2 ( ) }]b bF t G t G t α−           (1.1) 
1 1( )= 2 ( )[ ( )] {1 ( ) }{2 ( ) }b b bf t bg t G t G t G tα αα − −− −   (1.2) 

Where G(t) and g(t) are the cdf and pdf, respectively 
where the > 0b  and > 0α . This present article is 
designed as follows; Section 2, we derive three parameter 
life model called Topp-Leone exponential distribution,   
the pdf and cdf expansion,  in Section 2.1,  we derive four  
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parameter life model called Topp-Leone exponentiated 
exponential distribution, the pdf and cdf expansion, in 
Section 2.2, we derive four parameter life model called 
Topp-Leone exponentiated extension distribution, the pdf 
and cdf expansion. The fundamental properties of the 
proposed demonstrate including, Bayesian methodology has 
been received to fit this model as survival model and hazard 
rate function. Survival analysis is the name for an 
accumulation of statistical techniques used to depict and 
evaluate time to event data. In survival analysis we utilize 
the term inability to characterize the event of the interest. In 
this paper, an endeavor has been made to plot how Bayesian 
methodology continues to fit Topp-Leone exponential 
model, Topp-Leone exponentiated exponential and 
Topp-Leone exponential extension for lifetime data using 
Stan. The tools and techniques used in this paper are in 
Bayesian environment, which are implemented using rstan 
package. Stan is a programming language designed to make 
statistical modeling easier and faster, especially for 
Bayesian estimation problems, it can do estimate complex 
models with large numbers of parameters, and can generally 
do it faster than alternative like JAGS/BUGS. However, 
Simulation can also be used as an alternative technique. 
Simulation based on Markov chain Monte Carlo (MCMC) 
is used when it is not possible to sample θ  directly from 
posterior ( | )p yθ . For a wide class of problems, this is the 
easiest method to get reliable results (Gelman et al, 2014). 
Gibbs sampling, Hamiltonian Monte Carlo and 
Metropolis-Hastings algorithm are the MCMC techniques 
which render difficult computational tasks quite feasible. To 
make computation easier, software such as R, Stan is a C++ 
library for Bayesian modeling and inference that primarily 
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uses the No-U-Turn sampler (NUTS) (Hoffman and 
Gelman 2012) to obtain posterior simulation given specified 
model and data, a variant of Hamiltonian Monte Carlo 
(HMC) are used, Stan can produce high dimensional 
proposals that are accepted with high probability without 
having to spend time tuning. Bayesian analysis of proposal 
appropriation has been made with the following objectives: 
  To define a Bayesian model, that is, specification of 

likelihood and prior distribution. 
  To write down the R code for approximating posterior 

densities with, Stan. 
  To illustrate numeric as well as graphic summaries of 

the posterior densities. 

2. The Topp-Leone Exponential 
Distribution 

Corderio et al. (2013) utilized the method for adding 
parameter prompts the exponentiated type of distribution 
which was considered by Nadarajah and Kotz (2003). In this 
segment, we infer three parameter Topp-Leone Exponential 
distribution. To construct the probability density function 
(pdf) and cumulative distribution function (cdf) of 
Exponential distribution which are given by (2.3) and (2.4), 
individually,  

1( )= ( )t
f t exp

λ λ
−              (2.3) 

( )= (1 ( ))t
F t exp

λ
−

−            (2.4) 

 

Figure 1.  Probability density plots, cdf, survival and hazard curves of 
Topp-Leone Exponential distribution for different value 

By inserting (2.3) and (2.4) into (1.1) and (1.2), we have 
the pdf, cdf, survival function and hazard function of the 
proposed model given by respectively, as in Figure (1). Then 
T follows Topp-Leone Generalized Exponential (TLGE) 
model (Sangsanit and Bodhisuman, 2016) 

12( )= ( )(1 ( )) (1 (1 ( )) )b bb t t t
f t exp exp expαα

λ λ λ λ
−− − −

− − −

1(2 (1 ( )) )bt
exp α

λ
−−

− −           (2.5) 

( )= (1 ( )) (2 (1 ( )) )b bt t
F t exp expα α

λ λ
− −

− − −        (2.6) 

( )= 1 ((1 ( )) (2 (1 ( )) ) )b bt t
S t exp expα α

λ λ
− −

− − − −   (2.7) 

( )( )=
( )

f t
h t

S t
                                (2.8) 

2.1. The Topp-Leone Exponentiated Exponential 
Distribution 

 

Figure 2.  Probability density plots, cdf, survival and hazard curves of 
Topp-Leone Exponential distribution for different value 

Topp-Leone additional two shapes parameter to the 
two-parameter exponentiated exponential distribution. It is 
seen that the new four-parameter distribution is 
exceptionally adaptable. At the point when the pdf, cdf, 
survival function and hazard function of exponentiated 
exponential appropriation is ( )~ expexp( , )g t θ λ , the 
outcomes are (2.9), (2.10), (2.11) and (2.12), individually, as 
in Figure(2)  

1 12( )= (1 ( )) ( )[(1 ( )) ] bb t t t
f t exp exp expα α αα λ

θ θ θ θ
− −− − −

− −  

1(1 [(1 ( )) ] )(2 [(1 ( )) ] )b bt t
exp expλ λ α

θ θ
−− −

× − − − −  (2.9) 

( )=[((1 ( )) ){2 ((1 ( )) ) }]bt t
F t exp expλ λ α

θ θ
− −

− − −    (2.10) 

( )= 1 {[((1 ( )) ){2 ((1 ( )) ) }] }bt t
S t exp expλ λ α

θ θ
− −

− − − − (2.11) 

( )( )=
( )

f t
h t

S t
                                 (2.12) 
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2.2. The Topp-Leone Exponential Extension Distribution 

When the pdf, cdf, survival function and hazard function 
of exponential extension distribution is ( )~ exp ( , )g t ext θ λ , 
the results are (2.13), (2.14), (2.15) and (2.16), respectively, 
as in Figure(3) 

1 12( )= (1 ) (1 (1 ) )[(1 (1 (1 ) ] bb t t t
f t exp expλ λ λ αα λ

θ θ θ θ
− −+ − + − − +

1(1 (1 (1 (1 ) )))(2 (1 (1 (1 ) )) )bt t
exp expλ λ α

θ θ
−× − − − + − − − +  

(2.13) 

( )=[(1 (1 (1 ) )){2 (1 exp(1 (1 ) )) }]bt t
F t exp λ λ α

θ θ
− − + − − − +

(2.14) 

( )= 1 {[(1 (1 (1 ) )){2 (1 (1 (1 ) )) }] }bt t
S t exp expλ λ α

θ θ
− − − + − − − +

(2.15) 

( )( )=
( )

f t
h t

S t
                                 (2.16) 

 

Figure 3.  Probability density plots, cdf, survival and hazard curves of 
Topp-Leone Exponential distribution for different value 

3. Bayesian Inference 
Gelman et al., (2013) break applied Bayesian modeling 

into the following three steps: 
1.  Set up a full probability model for all observable and 

unobservable quantities. This model should be 
consistent with existing knowledge of the data being 
modeled and how it was collected. 

2.  Calculate the posterior probability of unknown 
quantities conditioned on observed quantities. The 
unknowns may include unobservable quantities such 
as parameters and potentially observable quantities 
such as predictions for future observations. 

3.  Evaluate the model fit to the data. This includes 
evaluating the implications of the posterior. 

Typically, this cycle will be repeated until a sufficient fit is 
achieved in the third step. Stan automates the calculations 

involved in the second and third steps (Carpenter et al., 
2017). 

We have to specify here the most vital in Bayesian 
inference which are as per the following: 
  prior distribution: ( )p θ : The parameter θ  can set a 

prior distribution elements that using probability as a 
means of quantifying uncertainty about θ  before 
taking the data into acount. 

  Likelihood ( | )p y θ : likelihood function for variables 
are related in full probability model. 

  Posterior distribution ( | )p yθ : is the joint posterior 
distribution that expresses uncertainty about parameter 
θ  after considering about the prior and the data, as in 
equation. 

( | )= ( | ) ( )P y p y pθ θ θ×        (3.17) 

4. The Prior Distributions 
The Bayesian inference, having the prior distribution, can 

provide the information concerning an uncertain parameter 
θ  connected through the probability distribution of data. 
This uncertain parameter is able to help obtain the posterior 
distribution ( | )p yθ . In the case of the Bayesian paradigm, 
it is very important for prior information to be identified 
through the value of the specified parameter. The 
information which are gathered before analyzing the 
experimental data with using a probability distribution 
function is referred to as the prior probability distribution (or 
the prior). In the remain of this paper, The researchers make 
use of two types of priors: half-Cauchy prior and Normal 
prior. The simplest types of priors is a conjugate prior which 
facilitates posterior calculations. In addition, a conjugate 
prior distribution is intended for an unknown parameter 
which leads to a posterior distribution for which there is a 
simple formula for posterior means and variances. (Akhtar 
and Khan, 2014a) apply the half-Cauchy distribution by 
scale parameter α  = 25 while a prior distribution for scale 
parameter. 

Hereinafter we determination talk about the types of prior 
distribution: 
•  Half-Cauchy prior. 
•  Normal prior. 
First, the probability density function of half-Cauchy 

distribution by scale parameter α  is specified as a result  

2 2
2( )= > 0, > 0.

( )
f x x

x

α α
π α+

 

Half-Cauchy distribution does not exist for mean and 
variance, although its mode is equal to 0. The half-Cauchy 
distribution by scale = 25α  is a suggested, default, weakly 
informative prior distribution used for a scale parameter. On 
this scale = 25α , the density of half-Cauchy is almost flat 
however not completely (see Figure 4), prior distributions 
that are not completely flat afford adequate information for 
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the numerical approximation algorithm to continue to look  
at the target density; the posterior distribution. The 
inverse-gamma is often used as a non-informative prior 
distribution for scale parameter, but; this model creates a 
trouble for scale parameters close to zero; (Gelman and Hill, 
2007) suggest that, the uniform, otherwise if more 
information is needed, the half-Cauchy is a better option. 
Consequently, in this paper, the half-Cauchy distribution 
with scale parameter = 25α  is used as a weakly 
informative prior distribution.  

 

 

Figure 4 

Next, the normal (or Gaussian), every parameters is 
assigned a weak information Gaussian prior probability 
distribution. The researcher aims to use the parameters iβ  
independently in the normal distribution with mean=0 and 
standard deviation=1000, i.e., (0,1000)Nj β , for this, 
we get a flat prior. As of (Figure 4), we see that the large 
variance indicates a lot of uncertainty about each parameter 
and hence, a weak informative distribution.  

5. Stan Modeling 
Stan is an abnormal state dialect written in a C++ library 

for Bayesian demonstrating and (Carpenter et al., 2017) is 
another Bayesian programming program for induction that 
essentially utilizes the No-U-Turn sampler (NUTS) 
(Hoffman and Gelman 2012) to get posterior simulations 
given a client indicated model and data. Hamiltonian Monte 
Carlo (HMC; Radford 2011; Betancourt 2017) is one of the 
calculations having a place with the general class of MCMC 

strategies. Practically speaking, HMC can be very complex, 
because in addition to the specific computation of possibly 
complex derivatives, it requires tweaking of a few 
parameters. Hamiltonian Monte Carlo requires a touch of 
exertion to program and tune. In more entangled settings, 
however, HMC to be quicker and more dependable than 
fundamental Markov chain reproduction, Gibbs sampler and 
the Metropolis algorithm because they explores the posterior 
parameter space more efficiently. they do so by pairing  
each model parameter with a momentum variable, which 
determines HMC exploration behavior of the target 
distribution based on the posterior density of the current 
drawn parameter and hence enable HMC to suppress the 
random walk behavior in the Metropolis algorithm (Gelman, 
Carlin, Stern, & Rubin, 2014, p. 300). Consequently, Stan is 
considerably more efficient than the traditional Bayesian 
software programs. However, the main function in the rstan 
package is Stan, which calls the Stan software program to 
estimate a specified statistical model, rstan provides a very 
clever system in which most of the adaptation is automatic. 
Statistical model through a conditional probability function 

( | , )p y xθ  can be classified by Stan program, where θ  is a 
sequence of modeled unknown values, y  is a sequence of 
modeled known values, and x  is a sequence of un-modeled 
predictors and constants (e.g., sizes, hyperparameters). A 
Stan program imperatively defines a log probability  
function over parameters conditioned on specified data   
and constants. Stan provides full Bayesian inference for 
continuous-variable models through Markov chain Monte 
Carlo methods (Metropolis et al., 1953), an adjusted form of 
Hamiltonian Monte Carlo sampling (Duane et al., 1987; Neal, 
1994). Stan can be called from R using the rstan package, 
and through Python using the pystan package. All interfaces 
support sampling and optimization-based inference with 
diagnostics and posterior analysis. rstan and pystan also 
provide access to log probabilities, parameter transforms, 
and specialized plotting. Stan programs consist of variable 
type declarations and statements. Variable types include 
constrained and unconstrained integer, scalar, vector, and 
matrix types. Variables are declared in blocks corresponding 
to the variable use: data, transformed data, parameter, 
transformed parameter, or generated quantities.  

6. Bayesian Analysis of Model 
Bayesian analysis is the strategy to acquire the marginal 

posterior distribution of the specific parameters of interest. 
On a fundamental level, the course to accomplishing this 
point is clear; first, we require the joint posterior distribution 
of every obscure parameter, at that point, we integrate this 
distribution over the unknowns parameters that are not of 
prompt enthusiasm to acquire the coveted marginal 
distribution. Or on the other hand identically, utilizing 
simulation, we draw samples from the joint posterior 
distribution, at that point, we take at the parameters of 
interest and disregard the estimations of the other obscure 
parameters.  
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6.1. Topp-Leone Exponential Model 

Presently, the probability density function (pdf) is given 
by 

12( , , , )= ( )(1 ( ))bb t t
f t b exp exp ααλ α

λ λ λ
−− −

−  

1(1 (1 ( )) )(2 (1 ( )) )b bt t
exp exp α

λ λ
−− −

− − − −  

Likewise, the survival function is given by  

( ; , )= 1 ( )= 1 ((1 ( )) (2 (1 ( )) )b bt t
S t F t exp expαθ λ

λ λ
− −

− − − − −  

We can express the likelihood function for right censored 
(similar to our case the data are right censored) as  

=0= ( , )n
i ii

L Pr t δ∏ 1
=0= [ ( )] [ ( )]n i i

i ii
f t S tδ δ−∏  

where iδ  is a pointer variable which takes esteem 0  if 
perception is censored and 1 if perception is uncensored. In 
this manner, the likelihood function is given by  

1

=0

2= [ ( )(1 ( )) (1 (1 ( )) )
n

b b

i

b t t t
L exp exp expαα

λ λ λ λ
−− − −

− − −∏  

1(2 (1 ( )) ) ]b it
exp δα

λ
−−

− −  

1[1 ((1 ( )) (2 (1 ( )) ) )] .b b it t
exp exp δα α

λ λ
−− −

× − − − − (6.18) 

As a result, the posterior distribution of our beliefs about 
the underlying bias is derived in the usual way by applying 
Bayes rule (Statisticat LLC 2015), the joint posterior density 
is given by (AbuJarad and Khan 2018). Here the functions 
involve three parameters:  

( , , | , ) ( | , ) ( ) ( ) ( )p b t X L t X b p p b pβ α β β α∝ × × ×  

1

=0

2[ ( )(1 ( ))
n

b
X X X

i

b t t
exp exp

e e e
α

β β β
α −− −

∝ − ×∏  

1(1 (1 ( )) )(2 (1 ( )) ) ]b b i
X X

t t
exp exp

e e
δα

β β
−− −

− − − −  

1[1 ((1 ( )) (2 (1 ( )) ) )]b b i
X X

t t
exp exp

e e
δα α

β β
−− −

× − − − −  

2

3 2 2 2 23=0

1 1 2 25 2 25( ) .
2 10 ( 25 ) ( 25 )2 10

J
j

i

exp
b

β

π π απ

× ×
× − × ×

+ +×
∏ (6.19) 

To complete Bayesian inference in the Topp-Leone model, 
we ought to decide an prior distribution for ,b α  and sβ ′ . 
We talked about the issue related with determining prior 
distributions in section 4, however, for effortlessness now, 
we expect that the prior distribution for b  and α  is 
half-Cauchy on the interval [0, 5] and for β  is Normal with 
[0, 5]. Rudimentary utilization of Bayes control as showed in 
(3.17), connected to (6.18), at that point gives the posterior 

density for b , α  and β  as equation (6.19). Result for 
this marginal posterior distribution get high-dimensional 
integral over every single model parameters jβ , α  and b . 
To unravel this integral, we utilize the approximated 
utilizing Markov Chain Monte Carlo methods techniques. be 
that as it may, because of the accessibility of computer 
software package like rstan, this required model can without 
much of a stretch be fitted in Bayesian paradigm utilizing 
Stan in addition to MCMC strategies. 

6.2. Topp-Leone Exponentiated Exponential Model 

Now, the probability density function (pdf) is given by 

12( , , , , )= (1 ( )) ( )b t t
f t b exp expαα λα λ θ

θ θ θ
−− −

−  

1[(1 ( )) ] (1 [(1 ( )) ] )b bt t
exp expα α λ

θ θ
−− −

× − − −  

1(2 [(1 ( )) ] )bt
exp λ α

θ
−−

× − −  

Also, the survival function is given by  

( , , , , )= 1 ( )= 1 {[((1 ( )) )t
S t b F t exp λα λ θ

θ
−

− − −  

{2 ((1 ( )) ) }] }bt
exp λ α

θ
−

× − −  

In the presence of censoring, the resulting log-likelihood 
function is modified to account for the possibility of partially 
observed data (in correspondence with censoring) We can 
write the likelihood function for right censored (as is our case 
the data are right censored) as  

=0= ( , )n
i ii

L Pr t δ∏ 1
=0= [ ( )] [ ( )]n i i

i ii
f t S tδ δ−∏  

where iδ  is an indicator variable which takes value 0 if 
observation is censored and 1 if observation is uncensored. 
Thus, the likelihood function is given by  

1 1

=0

2= [ (1 ( )) ( )[(1 ( )) ]
n

b

i

b t t t
L exp exp expα α αα λ

θ θ θ θ
− −− − −

− −∏  

1(1 [(1 ( )) ] )(2 [(1 ( )) ] ) ]b b it t
exp exp δλ λ α

θ θ
−− −

× − − − −  

 1[1 {[((1 ( )) ){2 ((1 ( )) ) }] }] .b it t
exp exp δλ λ α

θ θ
−− −

× − − − −

(6.20) 
Thus, the joint posterior density is given by  

( , , | , ) ( | , ) ( ) () ( )p b t X L t X b p p pβ α β β α
−

∝ × × ×  

1

=0

2[ (1 ( )) ( )
n

X X X
i

b t t
exp exp

e e e
α

β β β
α λ −− −

∝ −∏  

1[(1 ( )) ] (1 [(1 ( )) ] )b b
X X

t t
exp exp

e e
α α λ

β β
−− −

× − − −  
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1(2 [(1 ( )) ] ) ]b i
X

t
exp

e
δλ α

β
−−

× − −  

1[1 {[((1 ( )) ){2 ((1 ( )) ) }] }]b i
X X

t t
exp exp

e e
δλ λ α

β β
−− −

× − − − −  

2

3 2 23=0

1 1 2 25( ) .
2 10 ( 25 )2 10

J
j

i

exp
β

π απ

×
× − ×

+×
∏  

 2 2 2 2
2 25 2 25

( 25 ) ( 25 )bπ π λ
× ×

× ×
+ +

                   (6.21) 

To carry out Bayesian inference in the Topp-Leone 
exponentiated exponential model, we must specify a prior 
distribution for ,b α , λ  and sβ ′ . We discussed the issue 
associated with specifying prior distributions in section 4, 
but for simplicity at this point, we assume that the prior 
distribution for α , λ  and b  is half-Cauchy on the 
interval [0, 5] and for β  is Normal with [0, 5]. Elementary 
application of Bayes rule as displayed in (3.17), applied to 
(6.20), then gives the posterior density for α , b , λ  and 
β  as equation (6.21). The result for this marginal posterior 
distribution get high-dimensional integral over all model 
parameters jβ , b , λ  and α . To resolve this integral we 
use the approximated using Markov chain Monte Carlo 
methods. However, due to the availability of computer 
software package like rstan, this required model can easily fit 
in Bayesian paradigm using Stan as well as MCMC 
techniques. 

6.3. Topp-Leone Exponential Extension Model 

The probability density function (pdf) given by  

12( , , , , )= (1 ) (1 (1 ) )b t t
f t b expλ λα λα λ θ

θ θ θ
−+ − +  

1[1 (1 (1 ) )] {1 (1 (1 (1 ) ))}bt t
exp expλ α λ

θ θ
−× − − + − − − +  

1{2 (1 (1 (1 ) )) }bt
exp λ α

θ
−× − − − +  

The survival function is given by  

( , , , , )= 1 ( )= 1 {[(1 (1 (1 ) ))t
S t b F t exp λα λ θ

θ
− − − − +  

{2 (1 (1 (1 ) )) }] }bt
exp λ α

θ
− − − +  

We can state the likelihood function for right censored (as 
is our case the data are right censored) as  

=0= ( , )n
i ii

L Pr t δ∏ 1
=0= [ ( )] [ ( )]n i i

i ii
f t S tδ δ−∏  

where iδ  is an indicator variable which takes value 0  if 
observation is censored and 1 if observation is uncensored. 
Thus, the likelihood function is given by  

1

=0

2= [ (1 ) (1 (1 ) )
n

i

b t t
L expλ λα λ

θ θ θ
−+ − +∏  

1[1 (1 (1 ) )] {1 (1 (1 (1 ) ))}bt t
exp expλ α λ

θ θ
−× − − + − − − +  

1{2 (1 (1 (1 ) )) } ]b it
exp δλ α

θ
−× − − − +  

1

[1 {[(1 (1 (1 ) ))

{2 (1 (1 (1 ) )) }] }] .b i

t
exp

t
exp

λ

δλ α

θ

θ
−

× − − − +

− − − +
           (6.22) 

Thus, the joint posterior density is given by  
( , , , | , ) ( | , ) ( ) ( ) ( ) ()p b t X L t X b p p p pβ α λ β β α λ

−
∝ × × × ×  

1

=0

2[ (1 ) (1 (1 ) )
n

X X X
i

b t t
exp

e e e
λ λ

β β β
α λ −∝ + − +∏  

1[1 (1 (1 ) )] {1 (1 (1 (1 ) ))}b
X X

t t
exp exp

e e
λ α λ

β β
−× − − + − − − +  

1{2 (1 (1 (1 ) )) } ]b i
X

t
exp

e
δλ α

β
−× − − − +  

[1 {[(1 (1 (1 ) ))
X

t
exp

e
λ

β× − − − +  

1{2 (1 (1 (1 ) )) }] }]b it
exp δλ α

θ
−× − − − +  

2

3 2 23=0

1 1 2 25( )
2 10 ( 25 )2 10

J
j

i

exp
β

π απ

×
× − ×

+×
∏  

2 2 2 2
2 25 2 25 .

( 25 ) ( 25 )bπ π λ
× ×

× ×
+ +

                  (6.23) 

To carry out Bayesian inference in the Topp-Leone 
exponential extension model, we must specify a prior 
distribution for α , b , λ  and sβ ′ . We discussed the 
issue associated with specifying prior distributions in section 
4, but for simplicity at this point, we assume that the prior 
distribution for α , λ  and b  is half-Cauchy on the 
interval [0, 5] and for β  is Normal with [0, 5]. Elementary 
application of Bayes rule as displayed in (3.17), applied to 
(6.22), then gives the posterior density for α , b , λ  and 
β  as equation (6.23). The result for this marginal posterior 
distribution get high-dimensional integral over all model 
parameters jβ , b , λ  and α . To resolve this integral we 
use the approximated using Markov chain Monte Carlo 
methods. However, due to the availability of computer 
software package like rstan, this required model can easily fit 
in Bayesian paradigm using Stan as well as MCMC 
techniques. 
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6.4. The Data: Chemotherapy in Ovarian Cancer 
Patients 

Following careful treatment od ovarian malignancy, 
patients may experience a course of chemotherapy. The two 
distinct types of chemotherapy treatment, Edmunson et al. 
(1979) looked at the counter tumor impacts of 
cyclophosphamide alone and cyclophosphamide joined with 
adriamycin. The preliminary included 26 ladies with 
insignificant remaining illness and who had encountered 
careful extraction of all tumor masses more prominent that 2 
can in dimeter. Following surgery, the patients were 
additionally ordered by whether the lingering illness was 
totally or mostly extracted. The age of the patient and their 
execution status were likewise recorded toward the 
beginning of the preliminary. The reaction variable was the 
survival time in day following randomisation to one ar other 
of the two chemotherapy medications. The data, which were 
obtained from Therneau (1986), are given in Table (1): 

Table 1 

Time Status Treat Age Rdisease Pref 

156 1 1 66 2 2 

1040 0 1 38 2 2 

59 1 1 72 2 1 

421 0 2 53 2 1 

329 1 1 43 2 1 

769 0 2 59 2 2 

365 1 2 64 2 1 

770 0 2 57 2 1 

1227 0 2 59 1 2 

268 1 1 74 2 2 

475 1 2 59 2 2 

1129 0 2 53 1 1 

464 1 2 56 2 2 

1206 0 2 44 2 1 

638 1 1 56 1 2 

563 1 2 55 1 2 

1106 0 1 44 1 1 

431 1 1 50 2 1 

855 0 1 43 1 2 

803 0 1 39 1 1 

115 1 1 74 2 1 

744 0 2 50 1 1 

477 0 1 64 2 1 

448 0 1 56 1 2 

353 1 2 63 1 2 

377 0 2 58 1 1 

Time: Survival time in days, 
Status: Event indicator (0=censored, 1=uncensored), 
Treat: Treatment (1=single, 2=combined), 
Age: Age of patient in years, 
Rdisease: Extent of residual disease (1=incomplete, 2=complete), 
Perf: Performance status (1=good, 2=poor)  

7. Implementation Using Stan 
Bayesian modeling of Topp-Leone models in rstan 

package includes the creation of blocks, data, transformed 
data, parameter, transformed parameter, or generated 
quantities. To use the method for Topp-Leone exponential 
model, Topp-Leone exponentiated exponential, and 
Topp-Leone exponential extension, we will follow the 
following steps; starting with build a function for the model 
containing the accompanying items: 
  Define the log survival. 
  Define the log hazard. 
  Define the sampling distributions for right censored 

data. 
At that point the distribution ought to be built on the 

function definition blocks. The function definition block 
contains user defined functions. The data block states the 
needed data for the model. The transformed data block 
permits the definition of constants and transforms of the data. 
The parameters block declares the model parameters. The 
transformed parameters block allows variables to be defined 
in terms of data and parameters that may be used later and 
will be saved. The model block is where the log probability 
function is defined. 
stan(file, model_name = "anon_model", model_code = 

"", 

fit = NA, data = list(), pars = NA, chains = 4, 

iter = 2000, warmup = floor(iter/2), thin = 1, 

init = "random",algorithm = c("NUTS", "HMC", 

"Fixed_param"),) 

7.1. Model Specification 

Presently we will look at the posterior estimates of the 
parameters when the Topp-Leone exponential, Topp-Leone 
exponentiated exponential and Topp-Leone exponential 
expansion model’s are fitted to the previously mentioned 
data (information). Accordingly the importance of the 
likelihood (probability) turns into the highest need for the 
Bayesian fitting. Indicate statistical models utilizing the Stan 
modeling language, which is detailed in the manual of Stan 
(The Stan Development Team 2014c). Here, we have 
likelihood as:  

1
=1( | )= ( ) ( )n i i

i ii
L t f t S tδ δθ −∏  

=1
( )

= ( ( ))
( )

in i
ii

i

f t
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S t
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∏ =1= ( ) ( ),n i
i ii

h t S tδ∏  

along these lines, our log-likelihood progresses toward 
getting to be  

== ( [ ( )] ( ))n i
i ti i

logL log h t log Sδ +∑ . 

7.1.1. Topp-Leone Exponential Model 

The first model is Topp-Leone exponential: 
( , , ),y TLexp bα λ~  
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where = ( )exp Xθ β  a linear combination of explanatory 
variables, log is the natural log for the time to failure event. 
The Bayesian system requires the determination and 
specification of prior distributions for the parameters. Here, 
we stick to subjectivity and thus introduce weakly 
informative priors for the parameters. Priors for the α , b  
and jβ  are taken to be half-Cauchy and normal as follows:  

(0,5); = 1,2,3,...j N j Jβ  ~  

, (0,25).b HCα ~  

The rstan package allows a model to be coded in a text file, 
here we write the Stan model code and save it in a separated 
text-file with name "model code1": 
library(rstan) 

model_code1=" 

functions{ 

//defined survival 

vector log_s(vector t, real shape, real scale, vector 

rate){ 

vector[num_elements(t)] log_s; 

for(i in 1:num_elements(t)){ 

log_s[i]=log(1-((1-exp(-t[i]/rate[i]))^(shape)*(2-

(1-exp(-t[i]/rate[i]))^shape))^scale);} 

return log_s;} 

//define log_ft 

vector log_ft(vector t, real shape, real scale, vector 

rate){ 

vector[num_elements(t)] log_ft; 

for(i in 1:num_elements(t)){ 

log_ft[i]=log((2*shape*scale)*((1/rate[i])*exp(-t[

i]/rate[i]))*(1-exp(-t[i]/rate[i]))^((shape*scale)

-1)*(1-(1-exp(-t[i]/rate[i]))^(shape))*(2-(1-exp(-

t[i]/rate[i]))^shape)^(scale-1));} 

return log_ft;} 

//define log hazard 

vector log_h(vector t, real shape, real scale, vector 

rate){ 

vector[num_elements(t)] log_h; 

vector[num_elements(t)] logft; 

vector[num_elements(t)] logs; 

logft=log_ft(t, shape, scale, rate); 

logs=log_s(t, shape, scale, rate); 

log_h=logft-logs; 

return log_h;} 

//define the sampling distribution 

real surv_TLEXP_lpdf(vector t, vector d, real 

shape ,real scale, vector rate){ 

vector[num_elements(t)] log_lik; 

real prob; 

log_lik=d.*log_h(t ,shape ,scale ,rate)+log_s(t ,s

hape ,scale ,rate); 

prob=sum(log_lik); 

return prob;}} 

In this manner, we acquire the survival and hazard of the 
Topp-Leone Exponential model.  

7.1.2. Topp-Leone Exponentiated Exponential Model 

The second model is Topp-Leone exponentiated 
exponential model:  

( , , , ),y TLexpexp bα λ θ~  

where = ( )exp Xθ β . The Bayesian framework requires the 
specification of prior distributions for the parameters.   
Here, we stick to subjectivity and thus introduce weakly 
informative priors for the parameters. Priors for the β , α , 
λ , and b  are taken to be normal and half-Cauchy as 
follows:  

(0,5); = 1,2,3,...j N j Jβ ~  

, , (0,25).b HCα λ ~  

To fit this model in Stan, we first write the Stan model 
code and save it in a separated text-file with name "model 
code2".: 
library(rstan) 

model_code2=" 

functions{ 

//defined survival 

vector log_s(vector t, real shape1, real shape2, real 

shape3, vector rate){ 

vector[num_elements(t)] log_s; 

for(i in 1:num_elements(t)){ 

log_s[i]=log(1-(((1-exp(-t[i]/rate[i]))^(shape3))^

(shape2)*(2-((1-exp(-t[i]/rate[i]))^shape3)^shape2

))^shape1);} 

return log_s;} 

//define log_ft 

vector log_ft(vector t, real shape1, real shape2,real 

shape3, vector rate){ 

vector[num_elements(t)] log_ft; 

for(i in 1:num_elements(t)){ 

log_ft[i]=log(2*shape1*shape2*((shape3/rate[i])*((

1-exp(-t[i]/rate[i]))^(shape3-1))*exp(-t[i]/rate[i

]))*(((1-exp(-t[i]/rate[i]))^(shape3))^((shape1*sh

ape2)-1))*((1-((1-exp(-t[i]/rate[i]))^(shape3))^(s

hape2)))*((2-((1-exp(-t[i]/rate[i]))^shape3)^shape

2)^(shape1-1)));} 

return log_ft;} 

//define log hazard 

vector log_h(vector t, real shape1, real shape2, real 

shape3, vector rate){ 

vector[num_elements(t)] log_h; 

vector[num_elements(t)] logft; 

vector[num_elements(t)] logs; 

logft=log_ft(t,shape1,shape2,shape3,rate); 

logs=log_s(t,shape1,shape2,shape3,rate); 

log_h=logft-logs; 

return log_h;} 

//define the sampling distribution 

real surv_TLEXPEXP_lpdf(vector t, vector d, real 

shape1, real shape2,real shape3, vector rate){ 

vector[num_elements(t)] log_lik; 
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real prob; 

log_lik=d.*log_h(t,shape1,shape2,shape3,rate)+log_

s(t,shape1, shape2, shape3, rate); 

prob=sum(log_lik); 

return prob;}} 

Therefore, we obtain the survival and hazard of the 
Topp-Leone exponentiated exponential model. 

7.1.3. Topp-Leone Exponential Extension Model 

The third model is Topp-Leone exponential extension 
model:  

~ ( , , , ),y TLexpext bα λ θ  

where = ( )exp Xθ β . The Bayesian framework requires the 
specification of prior distributions for the parameters. Here, 
we stick to subjectivity and thus introduce weakly 
informative priors for the parameters. Priors for the β , α , 
λ , and b  are taken to be normal and half-Cauchy as 
follows:  

(0,5); = 1,2,3,...j N j Jβ ~  

, , (0,25).b HCα λ ~  

To fit this model in Stan, we first write the Stan model 
code and save it in a separated text-file with name "model 
code3": 
library(rstan) 

model_code3=" 

functions{ 

//defined survival 

vector log_s(vector t, real shape1, real shape2, real 

shape3, vector rate){ 

vector[num_elements(t)] log_s; 

for(i in 1:num_elements(t)){ 

log_s[i]=log(1-((((1-exp(1-(1+t[i]/rate[i])^(shape

3)))^(shape2))*(2-(1-exp(1-(1+t[i]/rate[i])^shape3

))^shape2))^shape1));} 

return log_s;} 

//define log_ft 

vector log_ft(vector t, real shape1, real shape2,real 

shape3, vector rate){ 

vector[num_elements(t)] log_ft; 

for(i in 1:num_elements(t)){ 

log_ft[i]=log(2*shape1*shape2*((shape3/rate[i])*(1

+t[i]/rate[i])^(shape3-1)*exp(1-(1+t[i]/rate[i])^s

hape3)) 

*((1-exp(1-(1+t[i]/rate[i])^(shape3)))^((shape1*sh

ape2)-1))*(1-(1-exp(1-(1+t[i]/rate[i])^(shape3)))^

(shape2))*(2-(1-exp(1-(1+t[i]/rate[i])^shape3))^sh

ape2)^(shape1-1));} 

return log_ft;} 

//define log hazard 

vector log_h(vector t, real shape1, real shape2, real 

shape3, vector rate){ 

vector[num_elements(t)] log_h; 

vector[num_elements(t)] logft; 

vector[num_elements(t)] logs; 

logft=log_ft(t,shape1,shape2,shape3,rate); 

logs=log_s(t,shape1,shape2,shape3,rate); 

log_h=logft-logs; 

return log_h;} 

//define the sampling distribution 

real surv_TLEXPEXt_lpdf(vector t, vector d, real 

shape1, real shape2,real shape3, vector rate){ 

vector[num_elements(t)] log_lik; 

real prob; 

log_lik=d.*log_h(t,shape1,shape2,shape3,rate)+log_

s(t,shape1,shape2,shape3,rate); 

prob=sum(log_lik); 

return prob;}} 

Therefore, we obtain the survival and hazard of the 
Topp-Leone exponential extension model.  

7.2. Build the Stan 

Stan contains an arrangement of blocks as stated 
previously; in the first block we will define the data block, in 
which we include the number of the observations, observed 
times, censoring indicator (1=observed, 0=censored), 
number of covariates, and build the matrix of covariates 
(with N rows and M columns). Then we create the parameter 
in block parameters, since we have more one parameter, we 
will do some changes for the parameters in side transformed 
parameters block. Finally, we arrange the model in blocks 
model. In these blocks, we put the prior for the parameters 
and the likelihood to get the posterior distribution for these 
model. We save this work in a file to use it in rstan package.  

7.2.1. Topp-Leone Exponential Model 

//data block 

data { 

int N; // number of observations 

vector<lower=0>[N] y; // observed times 

vector<lower=0,upper=1>[N] censor;//censoring 

indicator (1=observed, 0=censored) 

int M; // number of covariates 

matrix[N, M] x; // matrix of covariates (with n rows 

and H columns)} 

parameters { 

vector[M] beta; // Coefficients in the linear 

predictor (including intercept) 

real<lower=0> shape; // shape parameter 

real<lower=0> scale;} 

transformed parameters { 

vector[N] linpred; 

vector[N] rate; 

linpred = x*beta; 

for (i in 1:N) { 

rate[i] = exp(linpred[i]);}} 

model { 

shape ~ cauchy(0,25); 
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scale ~ cauchy(0,25); 

beta ~ normal(0,1000); 

y ~ surv_TLEXP(censor, shape, scale, rate);} 

generated quantities{ 

real dev; 

dev=0; 

dev=dev+(-2)*surv_TLEXP_lpdf(y|censor,shape,scale,

rate);} 

" 

7.2.2. Topp-Leone Exponentiated Exponential Model 

//data block 

data { 

int N; // number of observations 

vector<lower=0>[N] y; // observed times 

vector<lower=0,upper=1>[N] censor;//censoring 

indicator (1=observed, 0=censored) 

int M; // number of covariates 

matrix[N, M] x; // matrix of covariates (with n rows 

and H columns)} 

parameters { 

vector[M] beta; // Coefficients in the linear 

predictor (including intercept) 

real<lower=0> shape1; // shape parameter 

real<lower=0> shape2; 

real<lower=0> shape3;} 

transformed parameters { 

vector[N] linpred; 

vector[N] rate; 

linpred = x*beta; 

for (i in 1:N) { 

rate[i] = exp(linpred[i]);}} 

model { 

shape1 ~ cauchy(0,25); 

shape2 ~ cauchy(0,25); 

shape3 ~ cauchy(0,25); 

beta ~ normal(0,1000); 

y ~ surv_TLEXPEXP(censor, shape1,shape2, shape3, 

rate);} 

generated quantities{ 

real dev; 

dev=0; 

dev=dev+(-2)*surv_TLEXPEXP_lpdf(y|censor,shape1,sh

ape2,shape3,rate);} 

" 

7.2.3. Topp-Leone Exponential Extension Model 

//data block 

data { 

int N; // number of observations 

vector<lower=0>[N] y; // observed times 

vector<lower=0,upper=1>[N] censor;//censoring 

indicator (1=observed, 0=censored) 

int M; // number of covariates 

matrix[N, M] x; // matrix of covariates (with n rows 

and H columns)} 

parameters { 

vector[M] beta; // Coefficients in the linear 

predictor (including intercept) 

real<lower=0> shape1; // shape parameter 

real<lower=0> shape2; 

real<lower=0> shape3;} 

transformed parameters { 

vector[N] linpred; 

vector[N] rate; 

linpred = x*beta; 

for (i in 1:N) { 

rate[i] = exp(linpred[i]);}} 

model { 

shape1 ~ cauchy(0,25); 

shape2 ~ cauchy(0,25); 

shape3 ~ cauchy(0,25); 

beta ~ normal(0,1000); 

y ~ surv_TLEXPEXt(censor, shape1,shape2, shape3, 

rate);} 

generated quantities{ 

real dev; 

dev=0; 

dev=dev+(-2)*surv_TLEXPEXt_lpdf(y|censor,shape1,sh

ape2,shape3,rate);} 

" 

7.3. Creation of Data for Stan 

Within this part, we force organize the data that we have to 
utilize for analysis, data arrangement requires model matrix 
X, number of predictors M, information regarding censoring 
and response variable. The number of observations is 
specified by N, that is, 26. Censoring is taken into account, 
where 0 stands for censored and 1 for uncensored values. 
Finally, every one of these things are consolidated in a 
recorded list as dat.  
#Time 

y<-c(156,1040,59,421,329,769,365,770,1227,268,475,

1129,464,1206,638,563,1106,431,855,803,115,744,477

,448,353,377) 

censor<-c(1,0,1,0,1,0,1,0,0,1,1,0,1,0,1,1,0,1,0,0,

1,0,0,0,1,0) 

#Treat 

x1<-c(1,1,1,2,1,2,2,2,2,1,2,2,2,2,1,2,1,1,1,1,1,2,

1,1,2,2) 

#Age 

x2<-c(66,38,72,53,43,59,64,57,59,74,59,53,56,44,56

,55,44,50,43,39,74,50,64,56,63,58) 

#Rdisease 

x3<-c(2,2,2,2,2,2,2,2,1,2,2,1,2,2,1,1,1,2,1,1,2,1,

2,1,1,1) 

#Perf 

x4<-c(2,2,1,1,1,2,1,1,2,2,2,1,2,1,2,2,1,1,2,1,1,1,

1,2,2,1) 

x2<-x2-mean(x2) 

x<-cbind(1,x1,x2,x3,x4) 

N = nrow(x) 
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M = ncol(x) 

event=censor 

dat <- list( y=y, x=x, event=event, N=N, M=M) 

7.4. Runing the Model Using Stan for Topp-Leone 
Exponential Model 

Now we run Stan with 2 chains for 5000 iterations and 
display the results numerically and graphically:  
#regression coefficient with log(y) as a guess to 

initialize 

beta1=solve(crossprod(x),crossprod(x,log(y))) 

#convert matrix to a vector 

beta1=c(beta1) 

S0<-stan(model_code=model_code1,init=list(list(bet

a=beta1),list(beta=2*beta1)), 

data=dat,iter=5000,chains=2) 

print(S0,c("beta","shape","scale","lp__","dev"),di

gits=2) 

7.4.1. Summarizing Output 

A summary of the parameter distributions can be obtained 
by using print(S0), which provides posterior estimates for 
each of the parameters in the model. Before any inferences 
can be made, however, it is critically important to determine 
whether the sampling process has converged to the posterior 
distribution. Convergence can be diagnosed in several 
different ways. One way is to look at convergence statistics 
such as the potential scale reduction factor, Rhat (Gelman & 
Rubin, 1992), and the effective number of samples, n_eff 
(Gelman et al., 2013), both of which are outputs in the 
summary statistics with print(S0). The function rstan 
approximates the posterior density of the fitted model and 
posterior summaries can be seen in the following tables. 
Table 2, which contain summaries for all chains merged and 
individual chains, respectively. Included in the summaries 
are (quantiles), (means), standard deviations (sd), effective 
sample sizes (n_eff), and split (Rhats) (the potential scale 
reduction derived from all chains after splitting each chain in 
half and treating the halves as chains). For the summary of all 
chains merged, Monte Carlo standard errors (se_mean) are 
also reported.  

Table 2.  Summary of the simulated results using rstan function with Mean stands for posterior mean, se_mean, sd for posterior standard deviation, LB, 
Median, UB are 2.5%, 50%, 97.5% quantiles, n_eff for number effective sample size, and Rhat, respectively 

 mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat 

beta[0] 7.63 0.04 1.73 4.93 6.45 7.42 8.50 11.79 1775 1 

beta[1] 0.56 0.01 0.46 -0.33 0.29 0.56 0.82 1.51 3694 1 

beta[2] -0.08 0.00 0.03 -0.14 -0.09 -0.07 -0.06 -0.04 2746 1 

beta[3] -0.64 0.01 0.56 -1.85 -0.95 -0.60 -0.28 0.34 2595 1 

beta[4] -0.13 0.01 0.44 -1.08 -0.38 -0.11 0.15 0.67 2932 1 

shape 2.13 0.07 3.79 0.15 0.54 1.08 2.32 11.03 2559 1 

scale 5.40 0.50 18.25 0.16 0.92 2.18 4.98 26.90 1347 1 

lp -90.59 0.07 2.55 -96.90 -91.97 -90.13 -88.71 -87.04 1176 1 
 

The inference of the posterior density after fitting the 
(Topp-Leone Exponential model) for ovarian cancer patients 
data using stan are reposted in Table 2. The posterior 
estimate for 0β  is 7.63 1.73±  and 95% credible interval is 
(4.93,11.79) , which is statistically significant. Rhat is close 
to 1.0, indication of good mixing of the three chains and thus 
approximate convergence. posterior estimate for 1β  is 
0.56 0.46±  and 95% credible interval is ( 0.33,1.51)− , 
which is statistically not significant. Rhat is close to 1.0, 
indication of good mixing of the three chains and thus 
approximate convergence posterior estimate for 2β  is 
1.08 0.03±  and 95% credible interval is ( 0.14, 0.04)− − , 
which is statistically significant. Rhat is close to 1.0 , 
indication of good mixing of the three chains and thus 
approximate convergence, posterior estimate for 3β  is 
0.64 0.56±  and 95% credible interval is ( 1.85,0.34)− , 
which is statistically not significant. Rhat is close to 1.0 , 
indication of good mixing of the three chains and thus 

approximate convergence, posterior estimate for 4β  is 
0.13 0.44±  and 95% credible interval is ( 1.08,0.67)− , 
which is statistically not significant. Rhat is close to 1.0 , 
indication of good mixing of the three chains and thus 
approximate convergence. The table displays the output 
from Stan. Here, the coefficient 0β  is the intercept, while 
the coefficient = 1,.,.,4jβ  is the effect of the covariate 
included in the model. The effective sample size given an 
indication of the underlying autocorrelation in the MCMC 
samples values close to the total number of iterations. The 
selection of appropriate regressor variables can also be done 
by using a caterpillar plot. Caterpillar plots are popular plots 
in Bayesian inference for summarizing the quantiles of 
posterior samples. we can see in this (Figure 5) that the 
caterpillar plot is a horizontal plot of 3 quantiles of selected 
distribution, in this plot, credible intervals (by default 80%) 
for all the parameters, and the median of each chain are 
displayed. In addition, under the lines representing intervals, 
small colored areas are used to indicate which range the 
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value of the split Ȓ statistic is in. This may be used to 
produce a caterpillar plot of posterior samples. In MCMC 
estimation, it is important to thoroughly assess convergence 
as it in (Figure 6) the rstan contains specialized function to 
visualise the model output and assess convergence.  
stan_ac(S0,"beta") 

traceplot(S0,"beta") 

Usually Bayesian practitioners like to check whether a 
model estimation converges well or not, we want to plot a 
distribution (histogram) of each estimated parameter. The 
simplest way is using library coda.  

 

 

Figure 5.  Caterpillar plot for Topp-Leone Exponential model 

 

 

Figure 6.  Checking model convergence using rstan, through inspection of 
the traceplots or the autocorrelation plot 

 

 

Figure 7.  Checking model convergence using coda, through inspection of 
the simulated posterior density plots with trace plots of regressor variables 
obtained by HMC 

7.5. Runing the Model Using Stan for Topp-Leone 
Exponentiated Exponential Model 

Now we run Stan with 2 chains for 5000 iterations and 
display the results numerically and graphically:  
#regression coefficient with log(y) as a guess to 

initialize 

beta1=solve(crossprod(x),crossprod(x,log(y))) 

#convert matrix to a vector 



286 Mohammed H. AbuJarad et al.:  Bayesian Survival Analysis of Topp-Leone Generalized Family with Stan  
 

 

beta1=c(beta1) 

S1<-stan(model_code=model_code2,init=list(list(bet

a=beta1),list(beta=2*beta1), 

data=dat,iter=5000,chains=2) 

print(S1,c("beta","shape1","shape2","shape3","lp__

","dev"),digits=2) 

7.5.1. Summarizing Output 

The function rstan approximates the posterior density of 

the fitted model and posterior summaries can be seen in the 
following tables. Table 2, contains summaries for for all 
chains merged and individual chains, respectively. Included 
in the summaries are (quantiles), (means), standard 
deviations (sd), effective sample sizes (n_eff), and split 
(Rhats) (the potential scale reduction is derived from all 
chains after splitting each chain in half and treating the 
halves as chains). For the summary of all chains merged, 
Monte Carlo standard errors (se_mean) are also reported.  

Table 3.  Summary of the simulated results using rstan function with Mean stands for posterior mean, se_mean, sd for posterior standard deviation, LB, 
Median, UB are 2.5%, 50%, 97.5% quantiles, n_eff for number effective sample size, and Rhat, respectively 

 Mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat 

beta[0] 7.77 0.05 1.91 4.90 6.50 7.52 8.67 12.29 1702 1 

beta[1] 0.56 0.01 0.47 -0.38 0.28 0.56 0.84 1.48 3714 1 

beta[2] -0.08 0.00 0.03 -0.14 -0.09 -0.08 -0.06 -0.03 2460 1 

beta[3] -0.66 0.01 0.58 -1.94 -0.97 -0.62 -0.30 0.38 2597 1 

beta[4] -0.16 0.01 0.48 -1.21 -0.43 -0.13 0.14 0.71 2873 1 

shape1 6.58 0.50 22.04 0.05 0.76 2.33 5.66 37.52 1949 1 

shape2 2.90 0.09 5.20 0.05 0.44 1.22 3.31 15.94 3175 1 

shape3 2.88 0.11 6.19 0.05 0.39 1.20 3.15 15.31 3189 1 

lp -91.32 0.07 2.68 -97.73 -92.83 -90.86 -89.39 -87.43 1333 1 
 

The inference of the posterior density after fitting the 
(Topp-Leone exponential exponential model) for ovarian 
cancer patients data using stan are reposted in Table 3. The 
posterior estimate for 0β  is 7.77 1.91±  and 95% credible 
interval is (4.90,12.29) , which is statistically significant. 
Rhat is close to 1.0 , indication of good mixing of the three 
chains and thus approximate convergence. posterior estimate 
for 1β  is 0.56 0.47±  and 95% credible interval is 
( 0.38,1.48)− , which is statistically not significant. Rhat is 
close to 1.0 , indication of good mixing of the three chains 
and thus approximate convergence posterior estimate for 2β  
is 0.08 0.03− ±  and 95% credible interval is 
( 0.14, 0.03)− − , which is statistically significant. Rhat is 
close to 1.0 , indication of good mixing of the three chains 
and thus approximate convergence, posterior estimate for 

3β  is 0.66 0.58− ±  and 95% credible interval is 
( 1.94,0.38)− , which is statistically not significant. Rhat is 
close to 1.0 , indication of good mixing of the three chains 
and thus approximate convergence, posterior estimate for 

4β  is 0.16 0.48− ±  and 95% credible interval is 
( 1.21,0.71)− , which is statistically not significant. Rhat is 
close to 1.0 , indication of good mixing of the three chains 
and thus approximate convergence. The selection of 
appropriate regressor variable can also be done by using a 
caterpillar plot. Caterpillar plots are popular plots in 
Bayesian inference for summarizing the quantiles of 
posterior samples. we can see in this (Figure 8) that the 
caterpillar plot is a horizontal plot of 3 quantiles of selected 
distribution. In MCMC estimation, it is important to 
thoroughly assess convergence as in (Figure 9) the rstan 

contains specialized function to visualise the model output 
and assess convergence.  
stan_ac(S1,"beta") 

traceplot(S1,"beta") 

 

 

Figure 8.  Caterpillar plot for Topp-Leone Exponentiated Exponential 
model 
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Figure 9.  Checking model convergence using rstan, through inspection of 
the traceplots or the autocorrelation plot 

 

 

Figure 10.  Checking model convergence using coda, through inspection 
of the simulated posterior density plots with trace plots of regressor 
variables obtained by HMC 

Usually Bayesian practitioners like to check whether a 
model estimation converges well or not, we want to plot a 
distribution (histogram) of each estimated parameter. The 
simplest way is using library coda.  

7.6. Runing the Model Using Stan for Topp-Leone 
Exponential Extension Model 

Now we run Stan with 2 chains for 5000 iterations and 
display the results numerically and graphically:  
#regression coefficient with log(y) as a guess to 

initialize 

beta1=solve(crossprod(x),crossprod(x,log(y))) 

#convert matrix to a vector 

beta1=c(beta1) 

S2<-stan(model_code=model_code3,init=list(list(bet

a=beta1),list(beta=2*beta1)), 

data=dat,iter=5000,chains=2) 

print(S2,c("beta","shape1","shape2","shape3","lp__

","dev"),digits=2) 

7.6.1. Summarizing Output 

The function rstan approximates the posterior density of 
the fitted model, and posterior summaries can be seen in the 
following tables. Table 4, contains summaries for for all 
chains merged and individual chains, respectively. Included 
in the summaries are (quantiles),(means), standard 
deviations (sd), effective sample sizes (n_eff), and split 
(Rhats) (the potential scale reduction derived from all chains 
after splitting each chain in half and treating the halves as 
chains). For the summary of all chains merged, Monte Carlo 
standard errors (se_mean) are also reported.  

The inference of the posterior density after fitting the 
(Topp-Leone exponential extension model) for ovarian 
cancer patients data using stan are reposted in Table 4. The 
posterior estimate for 0β  is 6.13 4.54±  and 95% credible 
interval is ( 2.76,13.90)− , which is statistically not 
significant. Rhat is close to 1.0, indication of good mixing of 
the three chains and thus approximate convergence. posterior 
estimate for 1β  is 0.59 0.48±  and 95% credible interval is 
( 0.35,1.56)− , which is statistically not significant. Rhat is 
close to 1.0 , indication of good mixing of the three chains 
and thus approximate convergence posterior estimate for 2β  
is 0.08 0.03− ±  and 95% credible interval is 
( 0.15, 0.04)− − , which is statistically significant. Rhat is 
close to 1.0 , indication of good mixing of the three chains 
and thus approximate convergence, posterior estimate for 

3β  is 0.66 0.56− ±  and 95% credible interval is 
( 1.87,0.41)− , which is statistically not significant. Rhat is 
close to 1.0, indication of good mixing of the three chains 
and thus approximate convergence, posterior estimate for 

4β  is 0.14 0.48− ±  and 95% credible interval is 
( 1.18,0.76)− , which is statistically not significant. Rhat is 
close to 1.0, indication of good mixing of the three chains 
and thus approximate convergence. The selection of 
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appropriate regressor variable can also be done by using a 
caterpillar plot. Caterpillar plots are popular plots in 
Bayesian inference for summarizing the quantiles of 
posterior samples. We can see in (Figure 11) that the 
caterpillar plot is a horizontal plot of 3 quantiles of selected 
distribution. In MCMC estimation, it is important to 

thoroughly assess convergence as it in (Figure 12) the rstan 
contains specialized function to visualise the model output 
and assess convergence 
stan_ac(S2,"beta") 

traceplot(S2,"beta") 

 

Table 4.  Summary of the simulated results using rstan function with Mean stands for posterior mean, se_mean, sd for posterior standard deviation, LB, 
Median, UB are 2.5%, 50%, 97.5% quantiles, n_eff for number effective sample size, and Rhat, respectively 

 mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat 

beta[0] 6.13 0.39 4.54 -2.76 2.86 6.61 9.50 13.90 133 1.01 

beta[1] 0.59 0.01 0.48 -0.35 0.34 0.60 0.85 1.56 2702 1.00 

beta[2] -0.08 0.00 0.03 -0.15 -0.09 -0.07 -0.06 -0.04 1053 1.00 

beta[3] -0.66 0.01 0.58 -1.87 -0.95 -0.66 -0.31 0.41 2376 1.00 

beta[4] -0.14 0.01 0.48 -1.18 -0.39 -0.13 0.15 0.76 2365 1.00 

shape1 7.17 0.92 14.26 0.19 1.37 3.36 7.66 29.84 239 1.01 

shape2 3.68 0.18 6.27 0.16 0.64 1.71 4.67 16.77 1243 1.00 

shape3 31.17 18.24 876.33 0.14 0.26 0.67 3.78 57.53 2309 1.00 

lp -90.65 0.24 2.83 -97.45 -92.13 -90.18 -88.55 -86.83 142 1.01 

 

 

 

Figure 11.  Caterpillar plot for Topp-Leone Exponential Extension model 

Usually Bayesian practitioners like to check whether a 
model estimation converges well or not, we want to plot a 
distribution (histogram) of each estimated parameter. The 
simplest way is using library coda.  

 

 

Figure 12.  Checking model convergence using rstan, through inspection 
of the traceplots or the autocorrelation plot 



 International Journal of Statistics and Applications 2018, 8(5): 274-290 289 
 

 

 

 

Figure 13.  Checking model convergence using coda, through inspection 
of the simulated posterior density plots with trace plots of regressor 
variables obtained by HMC 

8. Conclusions 
It is a standout amongst the most critical issues in Bayes 

statistics how to make accurate Markov Chain Monte Carlo 
(MCMC) process. Here there are some MCMC methods, for 
example, the Metropolis method, the Gibbs sampler method, 
and Hamiltonian Monte Carlo method (HMC). Another 
problems is how we know which model best. Numerical 
calculation of widely applicable information criterion 
(WAIC, Watanabe 2010) and deviance, are help a lot for this 
tow problems depends on the accuracy of MCMC process 
and models. Here, therefore, Table 5 clearly demonstrates 
that Topp-Leone exponentiated exponential is the most 
proper model for the Stan as it has least estimation of 
deviance and WAIC, when contrasted with Topp-Leone 
exponential and Topp-Leone exponential extension.  

Table 5.  Model comparison of Topp-Leone exponential, Topp-Leone 
exponentiated exponential and Topp-Leone exponential extension models 
for the ovarian cancer patients data. It is evident from this table that 
Topp-Leone exponentiated exponential is much better than Topp-Leone 
exponential and Topp-Leone exponential Extension 

Models Stan Deviance WAIC 

Topp-Leone exponential 182.64 409.1 

Topp-Leone exponentiated exponential 181.18 408.3 

Topp-Leone exponential extension 183.30 411.6 
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