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Abstract  This paper presents, a new method of constructing nested balanced incomplete block designs (NBIBDs) of 
resolvable type called Coset-k2, using an algebraic notion, of the left coset type. The class of NBIBDs that was constructed for 
′𝑣′ treatments arranged in ‘b’ blocks of size ′𝑘′ each with 𝑣 = 𝑘2 and other parameters of the design are expressed as 
(𝑘2, 𝑘 + 1, 𝑘 + 1, 𝑘(𝑘 + 1), 𝑘2, 𝑘, 𝑘 + 1, 𝑘0, 𝑘). Indeed, the parameters of the design for any given number of treatments, v, 
are specified with ease even before the full designs are constructed. Also, fewer numbers of blocks are required when 
compared with the designs of comparable sizes. Designs that are constructed in this paper are appropriate for experiments 
where extraneous factors of two types if they exist can be eliminated, evaluated and controlled.  
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1. Introduction 
Some experimental material, may exhibit more than one 

source of variation that can be controlled by ordinary 
blocking and there may also be other types of relationships 
among several types of variation. A relationship that is 
often encountered in practice and which is of concern in this 
paper is nesting between two or more set of blocks. 
Example1 and 2 that utilised nesting relation are provided 
below as real life Animal and Plant experiments. 

Example 1 (Plant Experiment) Preece [17], illustrated 
nesting, such that the half-leaves of a plant form the 
experimental units, on which a number of treatments were 
to be tested, where the number of treatments is more than 
the number of available half-leaves per plant. Clearly, one 
source of variation is due to variability among the plants. 
Further, leaves within a plant might exhibit variation due to 
their location on the upper, middle or lower branch of the 
same plant. Therefore, leaves within plants are nested 
nuisance factor, the nesting being within the plants. The 
half-leaves being the experimental units, there are two 
systems of blocks, leaves (which may be called sub-blocks) 
being nested within plants.  

Example 2 (Animal Experiment) Generally littermates, 
or (animals born in the same day) are experimental units  
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within a block. However, animals within the same litter may 
be varying in their initial body weight. If body weight is 
taken as another blocking factor, we have a system of 
nested blocks within a block. More examples and discussion 
of nesting, can be found in the literature, see for example 
Srivastana [20] and Morgan [13] 

Definition 1 A NBIBD with parameters (v, r, b1, b2, k1, k2, 
λ1, λ 2, m) is an incomplete block design with v treatments, 
each replicated r times, within two systems of blocks such 
that: 

i.  the second system is nested within the first, with each 
block from the first system (called blocks) containing 
exactly m blocks of the second system (called 
sub-blocks); 

ii.  ignoring the sub-blocks leaves a BIB design with 
parameters v, b1, r, k1, λ 1; and  

iii.  ignoring the blocks leaves a BIB design with 
parameters v, b2, r, k2, λ 2  

Theorem 1 Jimbo and Kuriki [11]. Consider a BIBD with 
parameters v*, b*, k* = v and also a BIBD design with (v, b1, 
b2, k), if the NBIBD is written using the treatments of each 
block of the BIB design, then the resulting design is a NBIB 
(v*, b1b*, b2, k). 

A BIBD is resolvable (Abel and Furino [1]) and Bailey [2], 
if its set of blocks can be partitioned into subsets such that 
each subset is a replicate or resolution class, such that each 
subset contains each treatment exactly once.  

Remark, a resolvable incomplete block design is a special 
case of nested incomplete block designs, with the main 
blocks being complete. In view of this fact, if a resolvable 
BIB design is taken as a particular case of NBIB design in 
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Theorem 2, and the NBIB design wherein is the same as ones 
obtained by Dey et. al. [7]. NBIB designs has been studied by 
a number of other authors, including Preece [17], Jimbo and 
Kuriki [11], Bailey [3], Iqbal [9], Jimbo [10], Jimbo and 
Kuriki [11] and Dey et. al. [5] 

Theorem 2 The existence of a NBIB design (v, b1, b2, k) 
and of a resolvable BIB design with parameters v* = b2, b*, 
k* implies the existence of a NBIB (v, b1b*, k*, k). 

2. Method of Construction 
In recent time, the development of the theory of designs 

has continued to exploit the advantages of advanced topics in 
algebra and combinatorics. Wen-Fong and Gunter [22] has 
shown how some specific classes of algebraic structures 
(planar near rings) give rise to efficient balanced incomplete 
block designs. Also, Morgan et al. [14], reviewed and 
extended mathematical aspect of nested balanced incomplete 
block design (NBIBD’s); isomorphism and automorphisms 
were defined for NBIBDs, and methods of construction were 
outlined. Peter, et al. [16], showed the necessary divisibility 
conditions for the existence of a 𝜎-resolvable BIBD (v, k, ʎ) 
as sufficient for large v. Saka et al. [19], developed a new 
method of construction of nested balanced incomplete block 
designs in which the resulting design schemes were of the 
type that harmonizes both the Series-I and Series-II of 
Rajender et al. [18]. Keerti and Vineeta [12], introduced a 
new method of construction of a series of Nested Balanced 
Incomplete Block Designs (NBIBDs) in which the inner 
blocks are constructed using Latin square. In this paper we 
present a new method of constructing NBIB designs called 
Coset-k2 of NBIB designs of resolvable type using an 
algebraic notion (left coset). 

2.1. Reduced BIBD 

The simplest series of balanced incomplete block designs 
is unreduced BIBDs. These designs consist of all possible 
combinations of k out of v treatments. Balanced incomplete 
block designs exist for a wide range of design parameters. 
The basic design parameters are (v, b, k) which denote 
number of treatments, number of blocks and block size 
respectively. However, the only disadvantage it has is that in 
some cases, the size of experiment might be too large to work 
with in real life. When the number of treatments, v, is a 
perfect squares with v ≥ 9 and k < v the number of blocks 
required could be too large to cope with. This may force the 
experiment to adopt the reduced BIBDs. As such the reduced 
method is demonstrated in the construction of Designs 2, 3, 4 
in section 4.3. Consequently, for instance, the design of 
unreduced BIBDs can be reduced by finding the highest 
common factor (H.C.F) of the parameters (b, r, λ) provided 
the value of H.C.F is neither decimal nor unity. The 
corresponding reduced designs could be obtained as: b1 = b/f, 
r1 = r/f, λ1 = λ /f, where (b1, r1, λ1) represents the parameters 
of the new (reduced) design and f is the H.C.F. of the 
parameters (b, r, λ). Example 3 and 4 below are to show the 

extent of reduction in the size of experiments that can be 
achieved with the use of reduced BIBD.  

Example 3 Let us consider an unreduced design for case v 
=7 and k = 3, the design is given by the following 35 blocks: 

 (1, 2, 3) (1, 3, 6) (1, 6, 7) (2, 4, 7) (3, 5, 6) 
 (1, 2, 4) (1, 3, 7) (2, 3, 4) (2, 5, 6) (3, 5, 7) 
 (1, 2, 5) (1, 4, 5) (2, 3, 5) (2, 5, 7) (3, 6, 7) 
 (1, 2, 6) (1, 4, 6) (2, 3, 6) (2, 6, 7) (4, 5, 6) 
 (1, 2, 7) (1, 4, 7) (2, 3, 7) (3, 4, 5) (4, 5, 7) 
 (1, 3, 4) (1, 5, 6) (2, 4, 5) (3, 4, 6) (4, 6, 7) 
 (1, 3, 5) (1, 5, 7) (2, 4, 6) (3, 4, 7) (5, 6, 7) 

The parameters of the design are:  
v = 7, k = 3, b = 35, r = 15, λ = 5. 

The corresponding reduced BIBD of example 3 is as 
presented as example 4 below:  

Example 4 Reduced BIBD from unreduced BIBD in 
Example 3: 

(1, 2, 4) 
(1, 3, 7) 
(1, 5, 6) 
(2, 3, 5) 
(2, 6, 7) 
(3, 4, 5) 
(4, 5, 7) 

The parameters of the resulting reduced design are: 
v = 7, k = 3, b1 = 7, r1 = 3, λ1 = 1 

which satisfies the necessary conditions for the existence 
of BIBDs. 

2.2. Some Definitions, Basic Mathematical Concepts and 
Assumptions 

Here, some mathematical terminologies, as well concepts, 
such as equivalence relations and partitions and some 
assumptions for the Coset-k2 NBIBD of resolvable type, will 
be defined. 
(a) Definition of Terms:  

Two terms namely, left and right cost; and coset as Initial 
block will be defined in what follows: 

Definition 2 (Left and Right Coset) Let G be a group, and 
H a subgroup of G, and g an element of G. Then 

gH = {gh : h is an element of H} is called a left coset of H 
in G, by g and 

Hg = {hg : h is an element of H} is called a right coset of H 
in G by g. If K = gh = Hg, then K is called a coset of H in G 
by g.  

Definition 3 (Coset as Initial Block) Let H ≤ G. The 
quotient set G / H = {gH : g ϵ G} is called the Coset initial 
Block of H in G if G / H partitions G. A NBIBD of resolvable 
type with G / H as coset initial block is called a Coset-|H|2 or 
Coset-|G| NBIBD of resolvable type. 
(b) Concepts of Equivalence Relation and Partitions 

Here, the concepts of Equivalence Relations and Partitions 
are presented because of their relevance in the proof of 
Theorem 5.  
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Let A and B be sets. Subsets of A x B are called relations. 
An equivalence relation on a set X is a relation R ϲ X × X 
such that 

i.  (x, x) ϵ R for all x ϵ X (reflexive property); 
ii.  (x, y) ϵ R implies (y, x) ϵ R (symmetric property); 
iii.  (x, y), (y, z) ϵ R imply (x, z) ϵ R (transitive property); 
A partition P of a set X is a collection of non-empty sets Xi,  
i ϵ Ω such that Xi ∩ Xj = ϕ for i ≠ j and.  
⋃ 𝑋𝑘𝑘∊𝛺 = 𝑋. Let R be an equivalence relation on a set X 

and let x ϵ X. Then [x] = {y ϵ X : yRx} is called the 
equivalence class of x. 

Theorem 3 Fundamental Theorem of Equivalence 
Relation Given an equivalence relation R on a set X, the 
equivalence classes of X form a partition of X. Conversely, if 
P = {Xi}iϵΩ is a partition of a set X, then there is an 
equivalence relation on X with equivalence classes Xi.  

3. Theorems and Lemma for 
Construction of Designs  

This section shall present a number of theorems to 
facilitate the design construction, and four assumptions that 
are to be compiled with are as follows: 

1.  v, number of treatments must be perfect square; and 
that v = k2, where k is the size of the block;  

2.  if two treatments occur together in one sub-block, they 
must not occur together again in the subsequent 
sub-blocks throughout the construction of the designs; 

3.  number of main-blocks is k + 1; and  
4.  number of sub-blocks is k(k + 1) 
Lemma 1 For a coset resolvable NBIBD with parameters 

(𝑣 = 𝑘22, 𝑏2, 𝑟, 𝑘2, 𝑎𝑛𝑑 𝜆) satisfy the following relation. 

𝑏 ≥ 𝑘2𝜆 + 𝑘 ≥ 𝑟𝑘(𝑟−1)
𝑟−𝑘+𝜆(𝑘−1)

≥ 𝑣 + 𝑟 − 1 ≥ 𝑘(𝑘 + 1), 

for 𝑏2 = 𝑏, 𝑘2 = 𝑘                            (1) 
The equality sign also holds if and only if BIBD is affine 

resolvable in each of the possible cases, as explained below. 
Note that, if the conditions stated in equation (2) are 

satisfied, the required number of blocks for a Coset-k2 
resolvable NBIBD will be obtained. 

3.1. Theorems on Coset-k2 of NBIBD of Resolvable Type 

Theorem 4 Let H⊂ℤk = {1, 2, …, k – 1, k} be a sub-block 
(generator) defined as H = {nk \ n = 1,…, k}, then i + H = 
{(i+h)(mod v)lh ϵ H}, i = 1, … k, with v( mod) = v, where k2, 
is called a coset of H in ℕ by i ϵ N. The family {i + H}k

i=1 is 
called the coset initial block of H in N. Let (ℤ𝑘2, +) be the 
group of integers modulo k2, ℤv = {1, 2, … , k2} with a 
subgroup H = {nk n = 1, 2,…, k}. Then 

(i) i + H = {i + h ϵ ℤ𝑘2 \ h ϵ H} is a coset of H in ℤ𝑘2; 
(ii) {𝑖 + 𝐻}𝑖=1𝑘  is a Coset Initial Block of H in ℤ𝑘2. 

Proof:  

For k = 2,3,4 are illustrated below in cases 1,2 and 3 
respectively. 

Case 1: for v = 4, k = 2, when H = (2, 4); 
  1 + H = 1 + (2, 4) = (3, 1) 
  2 + H = 2 + (2, 4) = (4, 2)  
The initial main-block for NBIBD for v = 4, k = 2, is [(3, 

1), (4, 2)].  
Case 2: for v = 9, k = 3, when H = (3, 6, 9); 
  1 + H = 1 + (3, 6, 9) = (4, 7, 1) 
  2 + H = 2 + (3, 6, 9) = (5, 8, 2) 
  3 + H = 3 + (3, 6, 9) = (6, 9, 3) 
The initial main-block for NBIBD for v = 9, k = 3, is [(4, 7, 

1), (5, 8, 2), (6, 9, 3)]. 
Case 3: for v = 16, k = 4, when H = (4, 8, 12, 16); 
  1 + H = 1 + (4, 8, 12, 16) = (5, 9, 13, 1) 
  2 + H = 2 + (4, 8, 12, 16) = (6, 10, 14, 2) 
  3 + H = 3 + (4, 8, 12, 16) = (7, 11, 15, 3) 
  4 + H = 4 + (4, 8, 12, 16) = (8, 12, 16, 4) 
The initial main-block for NBIBD for v = 16, k = 4, is [(5, 

9, 13, 1), (6, 10, 14, 2), (7, 11, 15, 3), (8, 12, 16, 4)]. 
Case 4: Let k = m, v = [1, 2, …, m2], H = {mn : n = 1, …, 

m} = {m, 2m, 3m, …, (m – 5)m, (m – 4)m, (m – 3)m, (m – 
2)m, (m – 1)m, m2}. The sub-blocks which form the initial 
main-block are shown in Figure 1. 

Case 5: Consider k = m + 1, v = [1, 2, …, (m + 1)2], H = 
{(m + 1)n : n = 1, …, m + 1} = {m + 1, 2(m + 1), 3(m + 1), …, 
(m - 1)(m + 1), m(m + 1), (m + 1)2}. The sub-blocks which 
form the initial main-block are shown in Figure 2. 

The entries in the matrix in Figure 1 marked with a unique 
colour in diagonal lines correspond with entries in the matrix 
in Figure 2 marked with the same unique colour of horizontal 
lines in the appropriate direction of sequence. Entries in the 
last column of the matrix in Figure 1 correspond to the 
entries in the last column of matrix in Figure 2, except the 
entry 𝑚 + 1 in the last row; which corresponds to the entry 
in the row 1, column 1 of the matrix in Figure 1. All entries in 
the matrix of Figure 1 can be found in the matrix of Figure 2. 
However, the converse is not true because entries in the third 
and second to the last columns (except one entry 
(𝑡ℎ𝑎𝑡 𝑖𝑠 𝑚2)) of the matrix in Figure 2 are not in the matrix 
in the Figure 1. These entries are 𝑚2 + 𝑖, 𝑖 = 1, 2, … ,𝑚 and 
𝑚2 + 𝑚 + 𝑖, 𝑖 = 1, 2, … ,𝑚 + 1. All these entries are distinct 
and greater than 𝑚2. Thus, when 𝑘 = 𝑚 we have a Coset 
Initial Block of 𝐻 𝑖𝑛 𝑍𝑚2. So, when 𝑘 = 𝑚 + 1 we equally 
have a Coset Initial Block of 𝐻 𝑖𝑛 𝑍(𝑚+1)2.  

Theorem 5: Let 𝑋 = [1, … , 𝑣] be a given treatment (𝑣), 
and let 𝒫i, i = 1, …, k+1 be partitions of X such that for the 
sub blocks 𝜋𝑖𝑗 ∊ 𝒫i , j = 1, … , k, |𝜋𝑖𝑗 ⋂ 𝜋𝑖′𝑗′|  = 1, i 
≠ 𝑖′, 𝑗 ≠ 𝑗′ . Then P =  {𝒫i}𝑖=1𝑘+1  is a Nested Balanced 
Incomplete Block Designs (NBIBD) of resolvable type with; 
treatment  (𝑣) , sub-block size (𝑘) and parameter 
combinations (𝑣, 𝑟, 𝑏1, 𝑏2, 𝑘1, 𝑘2, 𝜆1, 𝜆2,𝑚 )  
= (𝑘2, 𝑘 + 1, 𝑘 + 1, 𝑘(𝑘 + 1), 𝑘2, 𝑘, 𝑘 + 1, 𝑘0, 𝑘).  

Proof:  
Consider the pair (X, 𝒫) where X = {1, 2, …, K2} and 𝒫 
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= {𝒫i}𝑖=1𝑘+1, such that 𝒫i = {𝜋𝑖𝑗 }𝑗=1𝑘  is a partition of X for 
each 𝑖 = 1, 2, … , 𝑘 + 1.  

Consider the pair (X, 𝒫′) where 𝒫′ = {𝒫𝑖′}𝑖=1𝑘+1, such that 
𝒫𝑖′ = �𝜋𝑖𝑗 �

𝑘
, 𝑖 = 1, 2, … , 𝑘 + 1. (X, 𝒫′) is a block design 

because X is a set of elements called points and 𝒫′ is a 
collection of non-empty subsets 𝒫i′  of 2X called blocks. 

Since  
� 𝜋𝑖𝑗 

𝜋𝑖𝑗∊𝒫𝑖
′

= 𝑋 

for each 𝑖 = 1, 2, … , 𝑘 + 1, then (X, 𝒫′) is a complete block 
design with (𝑣, 𝑟, 𝑏1, 𝑘1, 𝜆1) ≡ (𝑘2, 𝑘 + 1, 𝑘 + 1, 𝑘2, 𝑘 + 1). 

 

Figure 1.  Proof of Theorem 4 for k=m 

 

Figure 2.  Proof of Theorem 4 for k = m+1 
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Consider the pair (X, 𝒫∗) where X = {1, 2, …, k2} and 𝒫∗ 
= �𝜋𝑖𝑗 �𝑖=1,𝑗=1

𝑘+1,𝑘
. (X, 𝒫∗) is a block design because 𝒫∗  is a 

collection of non-empty subset 𝜋𝑖𝑗 , 𝑖 = 1, 2, … , 𝑘 + 1,   
𝑗 = 1, 2, … , 𝑘  of X called sub-blocks. Recall that 𝒫𝑖  = 
�𝜋𝑖𝑗 �𝑗=1

𝑘 , partitions X for each 𝑖 = 1, 2, … , 𝑘 + 1 . This 

implies |𝑋| =  ∑ �𝜋𝑖𝑗 � =  k2𝑘
𝑗=1  for each 𝑖 = 1, 2, … , 𝑘 + 1. 

Thus, �𝜋𝑖𝑗 � <  |𝑋|  for each 𝑖 = 1, 2, … , 𝑘 + 1,        
 j = 1, 2, … , 𝑘 i.e �𝜋𝑖𝑗 � = 𝑘  <  k2 , hence, (X, 𝒫∗ ) is an 
Incomplete Block Design. Also, since 𝒫𝑖∗  = X for each 
𝑖 = 1, 2, … , 𝑘 + 1 , (𝑥, 𝑦) ϵ 𝜋𝑖𝑗 𝖷 𝜋𝑟𝑠  , 𝑥 ≠  𝑦 ⍱  𝑥, 𝑦 ϵ X 
appears once for 𝑖, 𝑟 = 1, 2, … , 𝑘 + 1, 𝑗, 𝑠 = 1, 2, … , 𝑘,  
 𝑖 ≠  𝑟, 𝑗 ≠ 𝑠. That is the numbers of pair of treatments is one 
(λ = 1). Thus, (X, 𝒫∗ ) is a BIBD with (𝑣, 𝑟, 𝑏2, 𝑘2, 𝜆2, )  
= (𝑘2, 𝑘 + 1, 𝑘(𝑘 + 1), 𝑘, 𝑘0). 

Since 𝒫𝑖  = {𝜋𝑖𝑗 }𝑗=1𝑘  partition X for each 
𝑖 = 1, 2, … , 𝑘 + 1  distinctly, then if 𝑥, 𝑦 ϵ 𝜋𝑖𝑗           
j = 1, 2, … , 𝑘, 𝑥 ≠ 𝑦 then 𝑥, 𝑦 ∉  𝜋𝑖𝑟  r = 1, 2, … , 𝑘, j ≠ 𝑟.  

Let   ℛ𝑖  be the equivalence relation corresponding to 
partition 𝒫𝑖 based on Theorem 3, then 𝑥  ℛ𝑖 𝑦.  

Consider another partition 𝒫𝑝  = {𝜋𝑝𝑗 }𝑗=1𝑘  of X. If 𝑥, 𝑦 
ϵ 𝜋𝑝𝑗, 𝑝 = 1, 2, … , 𝑘 + 1, j = 1, 2, … , 𝑘, then 𝑥  ℛ𝑝𝑦 and so 
𝑥  ℛ𝑖𝑦  and 𝑥  ℛ𝑝𝑦  ⇒ ℛ𝑖  =  ℛ𝑝  i.e  ℛ𝑖  and  ℛ𝑝  are not 
disjoint which is a contradiction. Thus 𝑥, 𝑦 ∉  𝜋𝑝𝑗, whereas 
𝑥, 𝑦  ϵ 𝜋𝑖𝑗 for any 𝒫,  𝑖 = 1, 2, … , 𝑘 + 1,  j =
1, 2, … , 𝑘. Hence, the pair (𝑥, 𝑦), 𝑥 ≠ 𝑦 , appears once 
whereas 𝑥, 𝑦 ϵ 𝜋𝑖𝑗, 𝑖 = 1, 2, … , 𝑘 + 1, j = 1, 2, … , 𝑘. So, (X, 
𝒫∗ ) is a BIBD. Now, the Nested Block design      
(𝑋, 𝒫) = (X, 𝒫,′ 𝒫∗) is a Nested Balanced Incomplete Block 
Design (NBIBD) of a Resolvable type with parameters 
(𝑘2, 𝑘 + 1, 𝑘 + 1, 𝑘(𝑘 + 1), 𝑘2, 𝑘, 𝑘 + 1, 𝑘0, 𝑘).  

Theorem 6: Let ℤ𝑘2 = {1, … , 𝑘2} ,               
𝐻 = { 𝑛𝑘  𝑛 = 1, … , 𝑘} and let 𝒫1= ⋃ {i + H}𝑘

𝑖=1  modulo k2 

with 𝒫𝑖 , i = 2, …, k+1 as partitions of ℤ𝑘2 such that for the 
blocks 𝜋𝑖𝑗 ϵ 𝒫𝑖, j = 1, … , k, | 𝜋𝑖𝑗 ⋂ 𝜋𝑖′𝑗′| = 1, i ≠ 𝑖′, 𝑗 ≠ 𝑗′. 
Then {𝒫𝑖}𝑖=1𝑘+1  is a Coset-k2 Nested Balanced Incomplete 
Block Designs (NBIBD) of Resolvable type with block size 
(𝑘)  and treatment (𝑣) , with parameters 
(𝑣, 𝑟, 𝑏1, 𝑏2, 𝑘1, 𝑘2, 𝜆1, 𝜆2,𝑚 )  
= (𝑘2, 𝑘 + 1, 𝑘 + 1, 𝑘(𝑘 + 1), 𝑘2, 𝑘, 𝑘 + 1, 𝑘0, 𝑘). 

Proof:  
This is achieved by using Theorem 4 and Theorem 5. By 

Theorem 4, 𝒫1  is a partition of X and so by Theorem 5, 
{𝒫𝑖}𝑖=1𝑘+1  is a 𝐶𝑜𝑠𝑒𝑡 − 𝑘2  Nested Balanced Incomplete 
Block Designs (NBIBD) of Resolvable type with block size 
(𝑘2)  and treatment (𝑣) , With parameters 
(𝑣, 𝑟, 𝑏1, 𝑏2, 𝑘1, 𝑘2, 𝜆1, 𝜆2,𝑚 ) 
= (𝑘2, 𝑘 + 1, 𝑘 + 1, 𝑘(𝑘 + 1), 𝑘2, 𝑘, 𝑘 + 1, 𝑘0, 𝑘).  

4. Construction of Designs 
Here, nested balanced incomplete block designs for a 

number of parameter combinations will be constructed. In 
what immediately, appropriate model and relationship 
between design parameters shall be presented.  

4.1. Model Specification 

𝑦1𝑗𝑙 = 𝜇 + 𝛽𝑖
(1) + 𝛽𝑖𝑗

(2) + 𝜏𝑖𝑗𝑙 +∊𝑖𝑗𝑙       (2) 

where, Yijl denotes the response from plot (unit) l in 
sub-block j of block i, μ an overall mean, βi

(1) the effect of the 
block i, βij

(2) the effect of the sub-block j in the block i, τijl the 
effect of the treatment assigned to the unit (i, j, l) and εijl a 
random error term, the error terms being assumed to be 
uncorrelated random variables with zero means and constant 
variance. 

4.2. Relationship between Design Parameters  

First, the design parameters are stated and defined as 
follow: 
𝑣 denotes the number of treatments, b number of blocks in 

the experiment, k size of each block (number of treatment 
per block), r number of replications for a given treatment in 
the experiment, λ number of times each pair of treatment 
appear (occur) together in the experiment, N total number of 
plots (observations), b1 number of main-blocks in the 
experiment, b2 number of sub-blocks in the experiment, k1 
size of each main-block (number of treatment per 
main-block), k2 size of each sub-block (number of treatment 
per sub-block), λ1 number of times each pair of treatment 
appear (occur) together in the main-blocks, λ2 number of 
times each pair of treatment appear (occur) together in the 
sub-blocks and m number of sub-blocks within the main 
block. 

Meanwhile, the relationships among the design 
parameters given above are presented below.  

vr = b1k1 = b1k2m = b2k2             (3) 
(v – 1) λ1 = (k1 – 1)r, (v – 1) λ2 = (k2 – 1)r     (4) 

(λ1 – m λ2)(v – 1) = r(m – 1)           (5) 

4.3. Nested BIBD’s for v = 4, 9, 16, and 25 

Here, Theorem 4, Theorem 5, and Theorem 6 were 
continuously utilized for the construction of designs 1 to 6 
for v = 4, v = 9 and v = 16 respectively.  

Design 1: A resolvable NBIB Design v = 4, k = 2  
[(3, 1), (4, 2)]  
[(3, 4) (1, 2)] 
[(1, 4), (2, 3)] 

The parameters of the design are: 
v = 4, r = 3, b1 = 3, k1 = 4, λ1 = 3, b2 = 6, k2 = 2, λ2 = 1 
Design 2: A resolvable NBIB Design  
v = 9, k = 3 
b= �93� = 84, r= �82� = 28, 𝛌= �71� = 7 

The corresponding parameters of the reduced form are 
obtained as follows: Let f = gcd(b, r, λ) = 7, then 

b1 = b/f = 84/7 = 12, r1 = r/f = 28/7 = 4, λ1 = λ /f = 7/7 = 1 
[(4, 7, 1), (5, 8, 2), (6, 9, 3)] 
[(4, 5, 6), (7, 8, 9,),(1, 2, 3)] 
[(1, 6, 8), (2, 4, 9), (3, 5, 7)] 
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[(1, 5, 9), (2, 6, 7), (3, 4, 8)] 
The parameters of the design are: 
V = 9, r = 4, b1 = 4, k1 = 9, λ1 = 4, b2 = 12, k2 = 3, λ2 = 1 
Design 3: A resolvable NBIB design  
v = 16, k = 4 
b= �164 � = 1820, r= �153 � = 455, 𝛌= �142 � = 91  
The corresponding parameters of the reduced form are 

obtained as follows: Let f = gcd(b, r, λ) = 91, then 
b1 = b/f = 1820 / 91 = 20, r1 = r / f = 455/91 = 5, 
λ1 = λ /f = 91/91 = 1 
[(5, 9, 13, 1), (6, 10, 14, 2), (7, 11, 15, 3), (8,12 , 16, 4)] 
[(5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16), (1, 2, 3, 4)] 
[(1, 6, 11, 16), (2, 5, 12, 15), (3, 8, 9, 14), (4, 7, 10, 13)] 
[(1, 7, 12, 14), (2, 8, 11, 13), (3, 5, 10, 16), (4, 6, 9, 15)] 
[(1, 8, 10, 15), (2, 7, 9, 16), (3, 6, 12, 13), (4, 5, 11, 14)] 
The parameters of the design are: 
v = 16, r = 5, b1 = 5, k1 = 16, λ1 = 5, b2 = 20, k2 = 4, λ2 = 1 
Design 4: A resolvable NBIB design v= 25, k = 5 
b= �255 � = 53130, r= �244 � = 10626, 𝛌= �233 � = 1771  
The corresponding parameters of the reduced form are 

obtained as follows: Let f = gcd(b, r, λ) = 1771, then 
b1 = b/f = 53130/1771 = 30, r1 = r/f = 10626/1771 = 6, λ1 = 

λ /f = 1771/1771 = 1  
[(6, 11, 16, 21, 1), (7, 12, 17, 22, 2), (8, 13, 18, 23, 3), (9, 

14, 19, 24, 4), (10, 15, 20, 25, 5)] 
[(6, 7, 8, 9, 10), (11, 12, 13, 14, 15), (16, 17, 18, 19, 20), 

(21, 22, 23, 24, 25), (1, 2, 3, 4, 5)] 
[(1, 7, 13, 19, 25), (2, 10, 14, 16, 23), (3, 9, 12, 20, 21), (4, 

6, 15, 18, 22), (5, 8, 11, 17, 24)] 
[(1, 8, 14, 20, 22), (2, 9, 11, 18, 25), (3, 7, 15, 16, 24), (4, 

10, 13, 17, 22), (5, 6, 12, 19, 23)] 
[(1, 9, 15, 17, 23), (2, 6, 13, 20, 24), (3, 10, 11, 19, 22), (4, 

8, 12, 16, 25), (5, 7, 14, 18, 21)] 
[(1, 10, 12, 18, 24), (2, 8,15, 19, 21), (3, 6, 14, 17, 25), (4, 7, 

11, 20, 23), (5, 9, 13, 16, 22)] 
The parameters of the design are: 
v = 25, r = 6, b1 = 6, k1 = 25, λ1 = 6, b2 = 30, k2 = 5, λ2 = 1 
Design 5: A resolvable NBIB design v = 49, k = 7  
B= �497 � = 85900584,  r= �486 � = 12271512,  
𝛌= �475 � = 1533939  
Let f = gcd(b, r, λ) = 1533939, then 

𝑏′ = 𝑏
𝑓

= 85900584 
1533939

= 56, 𝑟′ = 𝑟
𝑓

= 12271512
1533939

= 8, 

𝜆′ = 𝜆
𝑓

= 1533939
1533939

= 1, 

[(8, 15, 22, 29, 36, 43, 1), (9, 16, 23, 30, 37, 44, 2), (10. 17, 
24, 31, 38, 45, 3), (11, 18, 25, 32, 39, 46, 4), (12, 19, 26, 33, 
40, 47, 5), (13, 20, 27, 34, 41, 48, 6), (14, 21, 28, 35, 42, 49, 
7)]  

[(8, 9, 10, 11, 12, 13, 14), (15, 16, 17, 18, 19, 20, 21), (22, 
23, 24, 25, 26, 27, 28), (29, 30, 31, 32, 33, 34, 35), (36, 37, 38, 
39, 40, 41, 42), (43, 44, 45, 46, 47, 48, 49), (1, 2, 3, 4, 5, 6, 7)] 

[(8, 16, 24, 32, 40, 48, 7), (15, 23, 31, 39, 47, 6, 14), (22, 

30, 38, 46, 5, 13, 21), (29, 37, 45, 4, 12, 20, 28), (36, 44, 3, 11, 
19, 27, 35), (43, 2, 10, 18, 26, 34, 42), (1, 9, 17, 25, 33, 41, 
49)] 

[(8, 23, 38, 4, 19, 34, 49), (15, 30, 45, 11, 26, 41, 7), (22, 
37, 3, 18, 33, 48, 14), (29, 44, 10, 25, 40, 6, 21), (36, 2, 17, 32, 
47, 13, 28), (43, 9, 24, 39, 5, 20, 35), (1, 16, 31, 46, 12, 27, 
42)] 

[(8, 30, 3, 25, 47, 20, 42), (15, 37, 10, 32, 5, 27, 49), (22, 
44, 17, 39, 12, 34, 7), (29, 2, 24, 46, 19, 41, 14), (36, 9, 31, 4, 
26, 48, 21), (43, 16, 38, 11, 33, 6, 28), (1, 23, 45, 18, 40, 13, 
35)] 

[(8, 37, 17, 46, 26, 6, 35), (15, 44, 24, 4, 33, 13, 42), (22, 2, 
31, 11, 40, 20, 49), (29, 9, 38, 18, 47, 27, 7), (36, 16, 45, 25, 5, 
34, 14), (43, 23, 3, 32, 12, 41, 21), (1, 30, 10, 39, 19, 48, 28)] 

[(8, 44, 31, 18, 5, 41, 28), (15, 2, 38, 25, 12, 48, 35), (22, 9, 
45, 32, 19, 6, 42), (29, 16, 3, 39, 26, 13, 49), (36, 23, 10, 46, 
33, 20, 7), (43, 30, 17, 4, 40, 27, 14), (1, 37, 24, 11, 47, 34, 
21)] 

[(8, 2, 45, 39, 33, 27, 21), (15, 9, 3, 46, 40, 34, 28), (22, 16, 
10, 4, 47, 41, 35), (29, 23, 17, 11, 5, 48, 42), (36, 30, 24, 18, 
12, 6, 49), (43, 37, 31, 25, 19, 13, 7), (1, 44, 38, 32, 26, 20, 
14)] 

The parameters of the design are: 
v = 49, r = 8, b1 = 8, k1 = 49, λ1 = 8, b2 = 56, k2 = 7, λ2 = 1 

5. Conclusions 
From all the designs constructed in section 4, it is indeed 

clear that they are unique designs because of the fact that; 
fewer number of blocks are required, even when designs 
with large number of treatments that are interest. Also the 
parameters of the design for any given number of treatments 
are specified with ease prior to the construction of the full 
designs. For any nested balanced incomplete block designs 
to be referred to as coset-k2 resolvable, the design parameters 
are expected to satisfy the following relationship: v = k1 = k2

2, 
r = b1 = λ1, b2 = b1k1 = rk2 = λ1k2. The construction of designs 
when v is large requires tedious computational and 
combinatorial efforts.  
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