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Abstract  Background: The pooled prevalence of childhood overweight and obesity worldwide dramatically increased 
between 2000 and 2013. If these increasing trends continue, it is estimated that the prevalence of overweight (including 
obesity) in children under 5 years of age will rise to 11% worldwide by 2025, up from 7% in 2012 [1, 9]. Research has shown 
that the pooled prevalence of overweight (including obesity) among children under five years in sub-Saharan Africa was 
about 5% in 2012 and is expected to reach about 8% by 2025 [1, 9, 38]. The pooled prevalence of stunting among children 
under five years in sub-Saharan Africa was about 43% in 2000 and about 34% in 2016. [1, 8] To reduce childhood 
malnutrition, several interventions including scaling-up nutrition programmes are currently operational in most sub-Saharan 
African countries including Republic of Congo [2]. However, very few studies have ever fitted in-depth statistical models for 
childhood malnutrition in Republic of Congo. The main objective of this study was to fit newly proposed spatio-temporal 
quantile interval regression models for childhood stunting, overweight, and obesity in Republic of Congo from 2005 to 2012. 
Methods: The Demographic and Health Survey (DHS) datasets for Republic of Congo from 2005 to 2012 were used in this 
study. The spatio-temporal quantile interval regression models were used to analyse childhood stunting, overweight, and 
obesity in Republic of Congo from 2005 to 2012. The statistical inference performed in this study was fully Bayesian using 
R-INLA package [37, 38] implemented in R version 3.4 [39]. Results: We observed that significant determinants of 
childhood malnutrition ranged from socio-demographic factors to child and maternal factors. In addition, child age and 
preceding birth interval had significant nonlinear effects on childhood stunting, overweight, and obesity. Furthermore, 
mother’s body mass index had significant nonlinear effects on childhood overweight and obesity. Lastly, I also observed 
significant spatial and temporal effects on childhood stunting, overweight, and obesity in Republic of Congo. Conclusions: 
To achieve the World Health Organisation (WHO) global nutrition targets 2025 in Republic of Congo [8, 9], scaling-up 
nutrition programmes and childhood malnutrition policy makers should consider timely interventions based on 
socio-demographic determinants and spatial targets as identified in this paper. 
Keywords  Bayesian inference, Spatio-temporal model, Quantile interval regression, R-INLA, Childhood malnutrition, 
Childhood stunting, Childhood overweight, Childhood obesity 

 

1. Background 
Childhood malnutrition has severe adverse effects on the 

growth of any child and the economy of any nation. The  
most common indicators of childhood malnutrition are 
stunting, wasting, underweight, overweight, and obesity. A 
malnourished child is more likely to fall sick and die [3]. In 
sub-Saharan Africa, malnutrition often leads to more than  
30% of deaths in children below five years annually [4]. 
Malnutrition is also a strong indicator of retarded growth [5], 
impaired cognitive and  behaviour  development [6], poor  
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school performance, and lower working capacity [7]. If not 
corrected, it can slow down economic growth and increase 
poverty levels. Furthermore, it can prevent a nation from 
meeting its full potential through loss in productivity, 
cognitive capacity and increased cost in health care [6].  

The prevalence of childhood overweight and obesity 
worldwide dramatically increased between 2000 and 2013. If 
these increasing trends continue, it is estimated that the 
prevalence of overweight (including obesity) in children 
under 5 years of age will rise to 11% worldwide by 2025, up 
from 7% in 2012 [1, 9]. The prevalence of stunting among 
children under five years in sub-Saharan Africa was about  
43% in 2000 and about 34% in 2016 [1, 8]. Doubly 
surprising, childhood overnutrition is alarmingly becoming 
more prevalent parallel to existing undernutrition burden in 
sub-Saharan Africa. The prevalence of overweight 
(including obesity) among children under five years in 
sub-Saharan Africa was about 5% in 2012 and is expected to 
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reach about 8% by 2025 [1, 9, 36]. 
The consequences of overnutrition can be more 

devastating than those for undernutrition because it leads to 
chronic failure problems which in turn lead to increased 
medical expenditure. Children who are either overweight or 
obese are at a higher risk of developing serious health 
problems, including type 2 diabetes, high blood pressure, 
asthma and other respiratory problems, sleep disorders and 
liver disease. They may also suffer from psychological 
effects, such as low self-esteem, depression and social 
isolation. Childhood overweight and obesity also increase 
the risk of obesity, noncommunicable diseases (NCD), 
premature death and disability in adulthood. Finally, the 
economic costs of the escalating problem of childhood 
overweight and obesity are considerable, both in terms of the 
enormous financial strains it places on health-care systems 
and in terms of lost economic productivity [9]. 

The overall WHO global nutrition target 2025 is to 
improve maternal, infant and young child nutrition. One of 
the specific nutrition targets is the stunting policy which 
aims at reduction of childhood stunting by 40% from 2014 to 
2025 [8]. Another specific nutrition target is the overweight 
(including obesity) policy which aims at making sure that 
there is no more increase in prevalence of childhood 
overweight from 2014 to 2025 [9]. To attain these targets, 
various malnutrition interventions including scaling-up 
nutrition programmes are available in most sub-Saharan 
African countries including Republic of Congo [2]. However, 
very few studies have ever fitted in-depth statistical models 
for childhood stunting in Republic of Congo. The main aim 
of this study was to assess socio-demographic determinants 
and spatio-temporal variation of childhood stunting, 
overweight, and obesity in Republic of Congo from 2005 to 
2012 using newly proposed spatio-temporal quantile  
interval regression models and R-INLA package [37, 38] 
implemented in R version 3.4 [39]. 

Spatial models have previously been used to analyse 
childhood malnutrition in most sub-Saharan African 
countries [11, 12, 40, 41, 42]. Unfortunately, most of them 
have emphasised on modeling mean regression instead of 
quantile regression. Modeling malnutrition using quantile 
regression is more appropriate than using mean regression 
with extensive literature examples [13, 14, 15, 20, 25, 26, 27, 
28, 29, 30, 43] in that it provides flexibility to analyse the 
determinants of malnutrition corresponding to quantiles of 
interest either in the lower tail (say 5% or 10%), upper tail 
(say 90% or 95%) or even median (50%) of the distribution 
rather than only analysing the determinants of mean 
distribution. When modeling malnutrition, it makes more 
sense to model severe responses rather mean responses   
[13, 14, 15, 20, 25, 26, 27, 28, 29, 30, 43]. For instance,    
it is more sensible to model severe stunting or severe 
overweight/obesity which corresponds to the lower and 
upper tails of the distribution of the same anthropometric 
measure than to model mean stunting or mean 
overweight/obesity which corresponds to the average 

nutritional response. 
Furthermore, almost all studies on quantile modeling have 

emphasised on selecting only one specific response quantile 
level of interest and report the recommendations based on 
the only chosen response quantile. Unlike mean response 
modeling, quantile regression yields model estimates which 
are stochastic functions of quantiles 𝜏 such that 0 < 𝜏 < 1. 
This implies that quantile regression modeling using 
estimates based on only one chosen quantile level 𝜏 might 
be insufficient and not robust enough. In this study, I 
proposed a new quantile interval modeling approach which 
is sufficient and robust because it uses weighted mean 
estimates based on all quantile levels in a specified quantile 
interval 𝜏∗ ± ∆ 𝜏∗ of interest. 

2. Materials and Methods 
This section summarises the conceptual framework of the 

spatio-temporal quantile interval regression models, the data 
sources, and data analysis procedures used in this study.  

Quantile Regression Model 

In general, quantile regression is about describing 
conditional quantiles of the response variable in terms of 
covariates instead of the mean. The general additive 
conditional quantile model is given by 

 𝑄𝑌𝑖|𝑥𝑖, 𝑧𝑖(𝜏|𝒙𝒊, 𝒛𝒊) = 𝜂𝜏𝑖 = 𝒙𝒊𝑇𝜷𝝉 + ∑ 𝑔𝜏𝑗� 𝑧𝑖𝑗�
𝑞
𝑗=1    (1) 

where 𝑄𝒀𝒊|𝒙𝒊,𝒛𝒊(𝜏|𝒙𝒊, 𝒛𝒊)  is the conditional 𝜏𝑡ℎ  quantile 
response given 𝒙𝒊  and 𝒛𝒊 , 𝜂𝜏𝑖  is the semi-parametric 
predictor, 𝜏𝜖(0,1) is the 𝜏𝑡ℎ quantile of the response e.g. 
𝜏 = 0.5  for the median response regression, 𝒙𝒊 =
�𝑥𝑖1, 𝑥𝑖2,⋯ , 𝑥𝑖𝑝�

𝑇
 is the vector of 𝑝 categorical covariates 

(assumed to have fixed effects) for each individual 𝑖 , 
𝒛𝒊 = �𝑧𝑖1, 𝑧𝑖2,⋯ , 𝑧𝑖𝑞�

𝑇
 is the vector of 𝑞 

metric/spatial/temporal covariates, 
𝜷𝜏 = �𝛽𝜏1,𝛽𝜏2,⋯ ,𝛽𝜏𝑝�

𝑇
 is the vector of 𝑝 coefficients for 

categorical covariates at a given 𝜏 , 
𝒈𝜏 = �𝑔𝜏1,𝑔𝜏2,⋯ ,𝑔𝜏𝑞�

𝑇
 is the vector of 𝑞  smoothing 

functions for metric/spatial/temporal covariates at a given 𝜏 
[13, 14, 26]. It is worthy to note that quantile regression 
duplicates the roles of median, tertile, quartile, quintile, 
sextile, septile, octile, decile, hexadecile, duodecile, ventile, 
percentile, and permille regressions. This is achieved by 
selecting appropriate values of 𝜏 in the conditional quantile 
regression model where τϵ(0,1). 

The two unknowns, 𝜷𝜏  and 𝒈𝜏  are estimated via the 
minimization rule given by 

 ∑𝜌𝜏�𝜂𝜏𝑖� + 𝜆0‖𝜷𝜏‖1 + ∑ 𝜆𝑗⋁ �∇𝑔𝜏𝑗�
𝑞
𝑗=1(𝜷𝜏,𝒈𝜏) 

𝑚𝑖𝑛    (2) 

where 𝜌𝜏 is the check function (appropriate loss function) 
evaluated at a given 𝜏 , 𝜆0  is the zeroth (initial) tuning 
parameter for controlling the smoothness of the estimated 
function, 𝜆𝑗 is the 𝑗𝑡ℎ tuning parameter for controlling the 
smoothness of the estimated function, ‖𝜷𝜏‖1 = ∑ �𝜷𝜏𝑘�

𝐾
𝑘=1  
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and ⋁(∇𝑔𝜏𝑗) denotes the total variation of the derivative on 
the gradient of the function gτj [13, 15, 16]. 

Proposed Quantile Interval Regression Estimation 
Let the quantile interval 𝜏∗ ± ∆ 𝜏∗ = [𝜏∗ − ∆ 𝜏∗, 𝜏∗ +

∆ 𝜏∗] be of interest where 𝜏∗ is the desired quantile interval 
median of interest and ∆ 𝜏∗ > 0  is the desired quantile 
bandwidth. I propose a new methodology for estimating the 
quantile interval weighted mean estimates for (𝑝 + 1) fixed 
effects parameters denoted by 𝛽̂𝑖(𝜏∗ ± ∆ 𝜏∗)  for 𝑖 =
0,1,2,⋯ ,𝑝  and 𝑞  nonlinear/spatio-temporal effects 
smoothing functions denoted by 𝑔�𝑖(𝜏∗ ± ∆ 𝜏∗)  for 𝑖 =
1,2,⋯ , 𝑞 in three steps as follows.  

Step 1: Divide the quantile interval 𝜏∗ ± ∆ 𝜏∗  into 𝑛 
equally spaced subintervals with a uniform step size of 
ℎ > 0  such that 𝑛 = [(𝜏∗ + ∆ 𝜏∗) − (𝜏∗ − ∆ 𝜏∗)]/ℎ =
[𝜏∗ + ∆ 𝜏∗ − 𝜏∗ + ∆ 𝜏∗]/ℎ = 2∆ 𝜏∗/ℎ  is a positive even 
integer. This step ensures that I have discretized the quantile 
interval 𝜏∗ ± ∆ 𝜏∗  into (𝑛 + 1)  odd number of equally 
spaced quantiles denoted by quantile set 
𝜏 = �𝜏0∗, 𝜏1∗,⋯ , 𝜏𝑛/2−1

∗ , 𝜏𝑛/2
∗ , 𝜏𝑛/2+1

∗ ,⋯ , 𝜏𝑛−1∗ , 𝜏𝑛∗�  such that 
𝜏0∗ = 𝜏∗ − ∆ 𝜏∗ , 𝜏𝑛/2

∗ = 𝜏∗ , and 𝜏𝑛∗ = 𝜏∗ + ∆ 𝜏∗ . The step 
size ℎ is supposed to be determined by the user in such a 
way that it is small enough relative to the bandwidth ∆ 𝜏∗. 
Since it is more natural to use percentiles, I propose a default 
step size of ℎ = 0.01. 

Step 2: For each 𝑖 = 0,1,2,⋯ ,𝑝  of the (𝑝 + 1)  fixed 
effects parameters, compute all (𝑛 + 1) quantile estimates 
𝛽̂𝑖𝑗(𝜏𝑗∗)  where 𝑗 = 0,1,2,⋯ ,𝑛 . Similarly, for each 𝑖 =
1,2,⋯ , 𝑞  of the 𝑞  nonlinear/spatio-temporal effects 
smoothing functions, compute all (𝑛 + 1)  quantile 
estimates 𝑔�𝑖𝑗(𝜏𝑗∗) where 𝑗 = 0,1,2,⋯ ,𝑛. 

Step 3: Compute the quantile interval weighted mean 
estimates for (𝑝 + 1) fixed effects parameters denoted by 
𝛽̂𝑖(𝜏∗ ± ∆ 𝜏∗) for each 𝑖 = 0,1,2,⋯ ,𝑝 using the formula 

𝛽̂𝑖(𝜏∗ ± ∆ 𝜏∗) = ∑ 𝜔𝑗𝛽̂𝑖𝑗(𝜏𝑗∗)𝑛
𝑗=0          (3) 

where 𝜔𝑗 =  normalized 𝑗 -th weight assigned to 𝜏𝑗∗  such 
that ∑ 𝜔𝑗 = 1𝑛

𝑗=0 . 
Similarly, compute the quantile interval weighted mean 

estimates for 𝑞 nonlinear/spatio-temporal effects smoothing 
functions denoted by 𝑔�𝑖(𝜏∗ ± ∆ 𝜏∗) for each 𝑖 = 1,2,⋯ , 𝑞 
using the formula 

𝑔�𝑖(𝜏∗ ± ∆ 𝜏∗) = ∑ 𝜔𝑗𝑔�𝑖𝑗(𝜏𝑗∗)𝑛
𝑗=0         (4) 

where 𝜔𝑗 =  normalized 𝑗 -th weight assigned to 𝜏𝑗∗  such 
that ∑ 𝜔𝑗 = 1𝑛

𝑗=0 . 
The normalized weights 𝜔𝑗′𝑠  are supposed to be 

determined by the user basing on application at hand. For 
simplicity, I proposed a default of equal weights 𝜔𝑗 =
1/(𝑛 + 1)  for each 𝑗 = 0,1,2,⋯ ,𝑛  which consequently 
corresponds to quantile interval equally weighted mean 
estimates (or simply quantile interval mean estimates) as 
follows. 

𝛽̂𝑖(𝜏∗ ± ∆ 𝜏∗) = 1
𝑛+1

∑ 𝛽̂𝑖𝑗(𝜏𝑗∗)𝑛
𝑗=0  for each 𝑖 = 0,1,2,⋯ ,𝑝 

(5) 

𝑔�𝑖(𝜏∗ ± ∆ 𝜏∗) = 1
𝑛+1

∑ 𝑔�𝑖𝑗(𝜏𝑗∗)𝑛
𝑗=0  for each 𝑖 = 1,2,⋯ , 𝑞 (6) 

For childhood stunting, the primary interest was to model 
the adjusted height-for-age 𝑧-value (HAZ) in the quantile 
interval 𝜏∗ ± ∆ 𝜏∗ = 0.15 ± 0.05  i.e. [𝜏∗ − ∆ 𝜏∗, 𝜏∗ +
∆ 𝜏∗] = [0.10, 0.20]  where 𝜏∗ = 0.15  was the desired 
quantile interval median of interest and ∆ 𝜏∗ = 0.05 was the 
desired quantile bandwidth. 

For childhood overweight, the primary interest was to 
model the childhood body mass index-for-age 𝑍 -score 
(BMIAZ) in the quantile interval 𝜏∗ ± ∆ 𝜏∗ = 0.90 ± 0.05 
i.e. [𝜏∗ − ∆ 𝜏∗, 𝜏∗ + ∆ 𝜏∗] = [0.85, 0.95]  where 𝜏∗ = 0.90 
was the desired quantile interval median of interest and 
∆ 𝜏∗ = 0.05 was the desired quantile bandwidth. 

For childhood obesity, the primary interest was to model 
the childhood body mass index-for-age 𝑍-score (BMIAZ) in 
the quantile interval 𝜏∗ ± ∆ 𝜏∗ = 0.97 ± 0.02  i.e. [𝜏∗ −
∆ 𝜏∗, 𝜏∗ + ∆ 𝜏∗] = [0.95, 0.99]  where 𝜏∗ = 0.97  was the 
desired quantile interval median of interest and ∆ 𝜏∗ = 0.02 
was the desired quantile bandwidth. 
Prior Distributions 

In fully Bayesian framework, all unknown functions 
{𝑔}′𝑠  for both metric and spatio-temporal covariates, all 
parameters {𝛽}′𝑠 for categorical covariates, and all variance 
parameters {𝜎2}′𝑠 are considered as random variables and 
must be supplemented by appropriate prior distributions. In 
this research, the following prior distributions were 
supplemented. The priors for unknown functions 𝑓𝑘(∙), 𝑘 =
1,⋯ ,𝑛𝑓, do belong to the class of Gaussian Markov random 
fields (GMRF), whose specific forms actually depend on 
covariate types and also on the prior beliefs about the 
smoothness of 𝑓𝑘. Although only GMRF was used in this 
study, there exist some other options like Bayesian P-splines 
[15, 17]. 

Let 𝒇 = (𝑓(𝑢1), 𝑓(𝑢2),⋯ , 𝑓(𝑢𝑛))𝑇 , a random vector of 
the response at 𝑢𝑖 , 𝑖 = 1,2,⋯ ,𝑛. The vector 𝒇 is a GMRF 
with mean 𝝁 and precision (the inverse covariance) matrix 
𝛿𝑸 if and only if it has density of form 

𝜋(𝒇|𝛿) ∝ 𝛿(𝑛−𝑚)/2exp �− 𝛿
2

(𝒇 − 𝝁)𝑇𝑸(𝒇 − 𝝁)�    (7) 

where 𝑸 is a semi-definite matrix of constants with rank 
(𝑛 −𝑚) where 𝑚 ≥ 0 . The properties of a particular 
GMRF are all reflected through matrix 𝑸. For instance, the 
Markov properties of GMRFs totally depend on the various 
sparse structures that the matrix 𝑸 may have. In this paper, I 
used two kinds of GMRFs: second order random walk (RW2) 
models [18] for metric covariates and intrinsic conditional 
autoregressive (ICAR) models [19] for spatial covariates. 
These two GMRFs share equation 7 but with different 
structures of 𝑸. 

For metric covariates, let 𝑢1 < 𝑢2 < ⋯ < 𝑢𝑛 be the set 
of continuous locations and 𝑧𝑖 = 𝑓(𝑢𝑖)  be the function 
evaluations at 𝑢𝑖 ,  for  𝑖 = 1,2,⋯ ,𝑛 . Then construction of 
RW2 model is based on a discretely observed continuous 
time process 𝑧(𝑢) that is a realization of an (𝑚 −  1) fold 
integrated Wiener process given by 

𝑧(𝑢) = ∫ (𝑢−ℎ)𝑚−1

(𝑚−1)!
𝑢
0 d𝑊(ℎ)           (8) 
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where 𝑊(ℎ) is a standard Wiener process. 
For spatial covariates, letting 𝑛𝑖  denote the number of 

neighbours of site 𝑢𝑖 , I assumed the following spatial 
smoothness prior for the function evaluations 

𝑓(𝑢𝑖)��𝑓(𝑢𝑗�, 𝑗 ≠ 𝑖�, 𝛿~𝑁 �1
𝑛𝑖
∑ 𝑓�𝑢𝑗�, 1

𝑛𝑖𝛿𝑗:𝑗~𝑖 �  (9) 

where 𝑗~𝑖 denotes that site 𝑢𝑖 and 𝑢𝑗 are neighbors. Thus, 
the conditional mean of 𝑓(𝑢𝑖) is an un-weighted average of 
evaluations of neighbouring sites. 

For the fixed effect parameters {𝛽𝑗}′𝑠 , I assumed 
independent diffuse priors 𝜋(𝛽𝑗) ∝ constant or a weakly 
informative Gaussian 𝜷~𝑁(𝟎,𝜙−1𝑰) with small precision 
 𝜙  on the identity matrix 𝑰 . If 𝜷  is a high-dimensional 
vector, one may consider using Bayesian regularization 
priors developed in [17], where conditionally Gaussian 
priors are assigned with suitable hyper prior assumptions on 
the variances inducing the desired shrinkage and sparseness 
on coefficient estimates. 
Spatio-temporal models 

The spatio-temporal data can be defined by a stochastic 
process 𝒀(𝑠, 𝑡) ≡ {𝑦(𝑠, 𝑡), (𝑠, 𝑡) ∈ 𝓓 ⊆ ℝ2 × ℝ}  and are 
observable or measurable at 𝑛 spatial locations or areas and 
at given 𝑇 time points. Since the space and time dimensions 
are always correlated, a valid spatio-temporal covariance 
function given as Cov (𝜃𝑖𝑡,𝜃𝑗𝑢) =  𝜎𝐶2𝐶(𝑠𝑖 , 𝑠𝑗; 𝑡,𝑢)  must 
always be defined and assessed [31, 44]. If an assumption of 
stationarity in space and time is made, then the space-time 
covariance function can simply be written as a function of 
both the spatial Euclidean distance ∆𝑖𝑗= �𝑠𝑖 − 𝑠𝑗�  and   
the temporal lag 𝛬𝑡𝑢 = |𝑡 − 𝑢| , as Cov (𝜃𝑖𝑡 ,𝜃𝑗𝑢) =
𝜎𝐶2𝐶(∆𝑖𝑗;𝛬𝑡𝑢) . Note that many valid non-separable 
space-time covariance functions are also possible as are 
reported in [32]. 

To overcome the computational complexity of 
non-separable models, many simplifications have been 
introduced in practice. For instance, basing on the 
separability hypothesis, the space-time covariance function 
can be decomposed into either sum or the product of a purely 
spatial component and a purely temporal component, 
e.g. Cov (𝜃𝑖𝑡,𝜃𝑗𝑢) = 𝜎𝐶2𝐶1(∆𝑖𝑗)𝐶2(𝛬𝑡𝑢), as described in [33]. 
In some cases, it is also possible to assume that the spatial 
correlation is constant over time so that a space-time 
covariance function becomes purely spatial when 𝑡 = 𝑢 ,   
i.e. Cov (𝜃𝑖𝑡,𝜃𝑗𝑢) = 𝜎𝐶2𝐶(∆𝑖𝑗) , and is zero otherwise. 
Consequently, the temporal evolution can also be introduced 
with an assumption that the spatial process evolves with time 
following some autoregressive dynamics [34].  

Similarly, the GMRF framework for area level 
spatio-temporal data analysis can be extended to include a 
precision matrix that is defined also in terms of time with a 
neighbourhood structure assumption. It is worthy to note that 
if a space-time interaction is included, then its precision can 
be obtained through the Kronecker product of the precision 
matrices for the space and time effects interacting [35]. 

In this research, I performed spatio-temporal data analysis 
of childhood stunting, overweight, and obesity in Republic 

of Congo. In this case, the datasets were defined by 
stochastic processes of the form 𝒀(𝑠, 𝑡) ≡ {𝑦(𝑠, 𝑡), (𝑠, 𝑡) ∈
𝓓 ⊆ ℝ2 × ℝ} where 𝒀(𝑠, 𝑡) were childhood height-for-age 
Z-score (HAZ) and childhood body mass index-for-age 
Z-score (BMIAZ) as a continuous response variable at a 
given 2-dimensional (latitude and longitude) spatial location 
𝑠  which was a region of Republic of Congo at a given   
time point (year) 𝑇 which ranged from 2005 to 2012. For 
simplicity, I assumed stationarity in space and time to easily 
decompose the space-time covariance function into a sum or 
product of purely spatial and purely temporal terms. 
Posterior Inference 

The well-known method for estimating Bayesian posterior 
marginal distribution is Markov chain Monte Carlo 
(MCMC). The alternative method is Integrated Nested 
Laplace Approximations (INLA). In this study, INLA 
method was used because it is generally faster than MCMC 
for quantile models [21, 22, 23, 24, 37, 38, 45].  

Data Sources 
For applications of the newly proposed methodology, I 

considered the Demographic and Health Survey (DHS) 
datasets of Republic of Congo from 2005 to 2012. A 
multi-stage clustered sampling technique was used to 
interview eligible women of reproductive age between 15 
and 49 years. The anthropometric assessment of themselves 
and their children that were born within the previous 5 years 
preceding the survey were administered. These DHS datasets 
contained information on family planning, maternal and 
child health, child survival, educational attainment, and other 
household composition and characteristics. 
Data Analysis 

Firstly, I started with estimating the crude prevalence rates 
of childhood stunting, overweight, and obesity in the 
Republic of Congo from 2005 to 2012. The categorized 
adjusted childhood stunting with two categories, stunted 
(𝐻𝐴𝑍 <– 2 ) and not stunted (otherwise), was used as a 
childhood stunting indicator variable in this phase. The 
categorized adjusted childhood overweight with two 
categories, overweight ( 2 ≤ 𝐵𝑀𝐼𝐴𝑍 ≤ 3 ) and not 
overweight (otherwise), was used as a childhood overweight 
indicator variable in this phase. The categorized adjusted 
childhood obesity with two categories, obese (𝐵𝑀𝐼𝐴𝑍 > 3) 
and not obese (otherwise), was used as a childhood obesity 
indicator variable in this phase. 

Finally, I performed spatio-temporal data analysis of 
childhood malnutrition in Republic of Congo from 2005 to 
2012. The primary outcomes in this study were the childhood 
(under 5 years) stunting, overweight, and obesity in Republic 
of Congo from 2005 to 2012. On one hand, childhood 
stunting was assessed by using the childhood height for age 
Z-score (HAZ) as a continuous response variable. On the 
other hand, childhood overweight and obesity were assessed 
by body mass index-for-age Z-score (BMIAZ) as a 
continuous response variable. The statistical inference was 
fully Bayesian using the newly proposed quantile interval 
estimation approach and INLA approach implemented in R 



 International Journal of Statistics and Applications 2018, 8(4): 153-166 157 
 

 

version 3.4 with reference to examples cited in [21, 22, 23, 
24, 37, 38, 45]. 

3. Results 
Firstly, the exploratory results were assessed in terms of 

trends in crude prevalence rates of stunting, overweight, and 
obesity in Republic of Congo from 2005 to 2012. Secondly, 
the results of spatio-temporal quantile interval regression 
models were assessed in terms of fixed effects, nonlinear 
effects, and spatial effects. 
Prevalence of Childhood Malnutrition 

Table 1 and Figure 1 show the trends in prevalence rates 
for childhood stunting, overweight, and obesity in Republic 
of Congo from 2005 to 2012. Firstly, the prevalence of 
childhood stunting in Republic of Congo slightly decreased 
from 28.1% in 2005 to 26.5% in 2012. Secondly, the 
prevalence of childhood overweight in Republic of Congo 
decreased from 10.3% in 2005 to 4% in 2012. Lastly, the 
prevalence of childhood obesity in Republic of Congo also 
decreased from 3.1% in 2005 to 0.9% in 2012. 

Table 1.  Trends of childhood malnutrition prevalence rates in Republic of 
Congo 

 Stunted Overweight Obese 

Year Total Count (%) Count (%) Count (%) 

2005 2879 809 (28.1) 296 (10.3) 88 (3.1) 
2012 3090 820 (26.5) 124 (4) 29 (0.9) 

 

Figure 1.  Trends of childhood malnutrition prevalence rates in Republic 
of Congo 

Fixed Effects 
Table 2, Table 3, and Table 4 show the estimated fixed 

effects plus their 95% credible intervals for childhood 
stunting, overweight, and obesity, respectively. 

In general, I observed that rural residence, poor source of 
drinking water, poor type of toilet facility, male-headed 
household, and male child were significantly associated with 
reduced HAZ and hence were significantly associated with 
increased childhood stunting in Republic of Congo over the 

period from 2005 to 2012. I found that, although almost all 
household wealth indexes were significantly negatively 
associated with HAZ, the pattern of the magnitudes of their 
fixed effects revealed that richer households were associated 
with reduced childhood stunting compared to poor 
households. It was noticed that availability of TV was 
associated with decreased childhood stunting in 2005 but 
with increased childhood stunting in 2012. Finally, I found 
out that households with less educated mothers (secondary or 
below) were significantly negatively associated with HAZ 
whereas households with more educated mothers (graduates) 
were significantly associated with positive HAZ which 
implied that the children of more educated mothers were 
likely not stunted in Republic of Congo over the period 2005 
to 2012. 

The fixed effects on both childhood overweight and 
obesity revealed similar pattern of associations as follows. It 
was observed that urban residence, poor source of drinking 
water, poor type of toilet facility, availability of TV, 
male-headed household, and male child were significantly 
positively associated with BMIAZ and hence were 
significantly associated with increased childhood overweight 
and obesity in Republic of Congo over the period from 2005 
to 2012. I observed that all household wealth indexes were 
significantly positively associated with BMIAZ in a such a 
way that the richer households were associated with reduced 
childhood overweight and obesity compared to poor 
households. However, I found out that households with 
highly educated mothers (graduates) were also associated 
with lower prevalence rates of childhood overweight and 
obesity compared to households with less educated mothers 
(secondary or below) in Republic of Congo from 2005 to 
2012. 
Nonlinear Effects 

Figure 2, Figure 5, and Figure 9 show the summary of 
observed nonlinear effects of child’s age on childhood 
stunting, overweight, and obesity, respectively in Republic 
of Congo from 2005 to 2012. On one hand, I noticed that 
child’s age exhibited a U-shaped pattern of effects on HAZ 
such that childhood stunting rapidly increased as child’s age 
increased from birth to about 24 months (in the first 2 
months), then remained stationary between ages 24 months 
and 36 months, and then finally started decreasing (coming 
back to normal nutritional status) from 36 months up to 59 
months. On the other hand, I observed that child’s age 
exhibited an inverse U-shaped pattern of effects on BMIAZ 
such that childhood overweight and obesity rapidly increases 
for children aged between 36 and 48 months. 

Figure 3, Figure 6, and Figure 10 show the summary of 
observed nonlinear effects of preceding birth interval on 
childhood stunting, overweight, and obesity, respectively in 
Republic of Congo from 2005 to 2012. I noticed that shorter 
preceding birth intervals were associated with increased 
childhood stunting whereas longer preceding birth intervals 
were associated with reduced childhood stunting in Republic 
of Congo from 2005 to 2012. Similarly, I observed that 
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shorter preceding birth intervals were associated with 
increased childhood overweight and obesity whereas longer 
preceding birth intervals were associated with reduced 
childhood overweight and obesity in Republic of Congo 
from 2005 to 2012. 

Figure 7 and Figure 11 show the summary of observed 
nonlinear effects of mother’s BMI on childhood overweight 
and obesity, respectively in Republic of Congo from 2005 to 
2012. It was found that children whose mothers had higher 
BMIs were more likely to be either overweight or obese than 
childhood whose mothers had lower BMIs in Republic of 
Congo from 2005 to 2012. 

Spatial Effects 

Figure 4, Figure 8, and Figure 12 show the summary of 
observed spatial effects on childhood stunting, overweight, 
and obesity, respectively in Republic of Congo from 2005 to 
2012.  

Maps on the left show distributions of posterior means for 

spatial effects on childhood stunting, overweight, and 
obesity. A band of colours ranging from black (strongest 
negative effect) to yellow (strongest positive effect) were 
used to display the intensity of spatial effects within regions 
of Republic of Congo. 

Maps on the right show significance of observed spatial 
effects on childhood stunting, overweight, and obesity. Only 
three colours were used for discriminating significance of 
observed effects. Firstly, black colour (-1) corresponded to 
significant negative spatial effects on HAZ or BMIAZ. 
Secondly, yellow colour (+1) corresponded to significant 
positive spatial effects on HAZ or BMIAZ. Lastly, purple 
colour (0) corresponded to non-significant spatial effects on 
HAZ or BMIAZ. 

It was observed that most of the regions in Republic of 
Congo had significant spatial effects (some negative and 
others positive) on childhood stunting, overweight, and 
obesity. Note that only four regions were used for 2005 DHS 
data set in Republic of Congo. 
 

CHILDHOOD STUNTING 

Table 2.  Fixed effects on childhood stunting in Republic of Congo 

 2005 2012 

Variable Posterior mean 95% Credible interval Posterior mean 95% Credible interval 

(Intercept) -39.57 -39.65, -39.50 -55.28 -55.35, -55.21 

Rural residence -10.04 -10.13, -9.94 -7.89 -8.01, -7.76 

Poor water source -8.58 -8.67, -8.48 -1.12 -1.23, -1.00 

Poor toilet facility -28.44 -28.52, -28.37 -3.89 -4.00, -3.77 

Television available 1.27 1.17, 1.38 -1.96 -2.04, -1.88 

Male household head -26.49 -26.57, -26.42 -37.37 -37.44, -37.30 

Male child -24.95 -25.03, -24.87 -24.67 -24.77, -24.57 

Poor household -15.87 -15.98, -15.76 -14.83 -14.93, -14.74 

Middle household -16.36 -16.48, -16.25 -3.89 -4.03, -3.74 

Richer household -13.26 -13.40, -13.13 -3.95 -4.14, -3.77 

Richest household -8.42 -8.57, -8.27 11.14 10.95, 11.32 

Primary education mother -32.21 -32.31, -32.11 -38.62 -38.71, -38.53 

Secondary education mother -13.17 -13.26, -13.08 -21.91 -22.00, -21.82 

Higher education mother -1.59 -1.99, -1.18 2.20 2.20, 2.63 

 

 
Figure 2.  Nonlinear effects of child’s age in months on childhood stunting in Republic of Congo 
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Figure 3.  Nonlinear effects of preceding birth interval in months on childhood stunting in Republic of Congo 

 
Figure 4.  Spatial effects on childhood stunting: posterior means (left); significance at 95% level (right) 

CHILDHOOD OVERWEIGHT 

Table 3.  Fixed effects on childhood overweight in Republic of Congo 

 2005 2012 

Variable Posterior mean 95% Credible interval Posterior mean 95% Credible interval 

(Intercept) 3.88 3.85, 3.91 0.44 0.44, 0.45 

Urban residence 2.11 2.08, 2.14 0.23 0.22, 0.24 

Poor water source 2.35 2.32, 2.38 0.17 0.07, 0.10 

Poor toilet facility 3.31 3.28, 3.34 0.09 0.15, 0.18 

Television available 1.70 1.66, 1.74 0.14 0.13, 0.15 
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 2005 2012 

Variable Posterior mean 95% Credible interval Posterior mean 95% Credible interval 

Male household head 3.49 3.47, 3.52 0.38 0.37, 0.39 

Male child 3.33 3.30, 3.36 0.20 0.18, 0.21 

Poor household 3.22 3.17, 3.27 0.31 0.30, 0.32 

Middle household 2.63 2.58, 2.67 0.19 0.17, 0.20 

Richer household 2.74 2.70, 2.79 0.24 0.22, 0.26 

Richest household 2.62 2.56, 2.67 0.26 0.24, 0.29 

Primary education mother 3.06 3.02, 3.10 0.37 0.36, 0.38 

Secondary education mother 2.40 2.36, 2.43 0.35 0.34, 0.36 

Higher education mother 3.21 3.07, 3.35 0.01 -0.04, 0.07 

 

 

Figure 5.  Nonlinear effects of child’s age in months on childhood overweight in Republic of Congo 

 

Figure 6.  Nonlinear effects of preceding birth interval in months on childhood overweight in Republic of Congo 

 
Figure 7.  Nonlinear effects of mother’s BMI in 𝑘𝑔/𝑚2 on childhood overweight in Republic of Congo 
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Figure 8.  Spatial effects on childhood overweight: posterior means (left); significance at 95% level (right) 

 

CHILDHOOD OBESITY 

Table 4.  Fixed effects on childhood obesity in Republic of Congo 

 2005 2012 

Variable Posterior mean 95% Credible interval Posterior mean 95% Credible interval 

(Intercept) 9.25 9.17, 9.33 4.84 4.81, 4.86 

Urban residence 4.55 4.45, 4.65 2.29 2.25, 2.34 

Poor water source 5.09 4.99, 5.20 1.42 1.38, 1.47 

Poor toilet facility 7.75 7.67, 7.84 0.65 0.61, 0.70 

Television available 3.20 3.09, 3.32 1.28 1.25, 1.31 

Male household head 7.85 7.77, 7.94 3.90 3.88, 3.93 

Male child 7.38 7.29, 7.48 1.64 1.60, 1.68 

Poor household 7.38 7.23, 7.53 3.07 3.03, 3.11 

Middle household 5.41 5.27, 5.54 2.11 2.05, 2.17 

Richer household 6.49 6.34, 6.63 2.42 2.35, 2.48 

Richest household 6.13 5.96, 6.71 2.60 2.53, 2.68 

Primary education mother 6.59 6.47, 6.71 3.83 3.79, 3.86 

Secondary education mother 5.31 5.21, 5.41 3.55 3.52, 3.58 

Higher education mother 6.71 6.31, 7.10 1.08 0.93, 1.23 
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Figure 9.  Nonlinear effects of child’s age in months on childhood obesity in Republic of Congo 

 

Figure 10.  Nonlinear effects of preceding birth interval in months on childhood obesity in Republic of Congo 

 
Figure 11.  Nonlinear effects of mother’s BMI in 𝑘𝑔/𝑚2 on childhood obesity in Republic of Congo 
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Figure 12.  Spatial effects on childhood obesity: posterior means (left); significance at 95% level (right) 

 

4. Discussion 
In this study, the spatio-temporal quantile interval 

regression models were fitted for childhood stunting, 
overweight, and obesity using the newly proposed weighted 
mean estimation for the first time. The indicators of 
childhood undernutrition are stunting, wasting and 
underweight. However, only childhood stunting was 
assessed in this study because it has always been the most 
prevalent undernutrition status among children under-five in 
sub-Saharan Africa [1, 4]. The indicators of childhood 
overnutrition are overweight and obesity. Note that I 
managed to analyse both in this study. 

The primary aim of this study was to fit country-specific 
spatio-temporal quantile interval models in Republic of 
Congo which are more appropriate than mean regression 
models when modeling nutritional status. 

For childhood stunting, I analysed the height-for-age 
𝑍-scores (HAZ) in the quantile interval 𝜏∗ ± ∆ 𝜏∗ = 0.15 ±
0.05  i.e. [𝜏∗ − ∆ 𝜏∗, 𝜏∗ + ∆ 𝜏∗] = [0.10, 0.20]  where 
𝜏∗ = 0.15  was the desired quantile interval median of 
interest and ∆ 𝜏∗ = 0.05  was the desired quantile 
bandwidth. 

For childhood overweight, I analysed the childhood body 
mass index-for-age 𝑍 -score (BMIAZ) in the quantile 
interval 𝜏∗ ± ∆ 𝜏∗ = 0.90 ± 0.05  i.e. [𝜏∗ − ∆ 𝜏∗, 𝜏∗ +
∆ 𝜏∗] = [0.85, 0.95]  where 𝜏∗ = 0.90  was the desired 
quantile interval median of interest and ∆ 𝜏∗ = 0.05 was the 

desired quantile bandwidth. 
For childhood obesity, I analysed the childhood body 

mass index-for-age 𝑍 -score (BMIAZ) in the quantile 
interval 𝜏∗ ± ∆ 𝜏∗ = 0.97 ± 0.02  i.e. [𝜏∗ − ∆ 𝜏∗, 𝜏∗ +
∆ 𝜏∗] = [0.95, 0.99]  where 𝜏∗ = 0.97  was the desired 
quantile interval median of interest and ∆ 𝜏∗ = 0.02 was the 
desired quantile bandwidth. 

The inference used in this study was fully Bayesian. The 
posterior marginal distributions were estimated using 
R-INLA package [37, 38] in R version 3.4 [39]. The INLA 
approach was chosen because it is generally faster than 
MCMC approach for quantile models [23, 27]. 

Despite a few minor differences in terms of statistical 
approaches, most of the findings in this study were very 
similar to those reported in most related studies in 
sub-Saharan Africa [11, 12, 40, 41, 42]. For example, 
childhood stunting was analysed in two sub-Saharan African 
countries; Tanzania and Zambia in 2005 using 1992 DHS 
datasets [11] and childhood stunting was analysed in Nigeria 
in 2008 using the 2005 DHS dataset [12]. They both also 
found that rural residence, poor source of drinking water, 
poor type of toilet facility, male-headed household, male 
child, higher household wealth index, and lower mother’s 
formal education were significantly associated with 
increased childhood stunting in these countries. Furthermore, 
all of them also observed U-shaped patterns of nonlinear 
effects of child's age on childhood stunting which was the 
same finding I observed in our study. 
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However, a few differences are as follows. Firstly, they 
used MCMC simulation techniques to estimate the posterior 
mean effects whereas I used INLA direct computation 
techniques to estimate the posterior mean effects. Secondly, 
they analysed mean responses of childhood stunting by using 
Bayesian semi-parametric geo-additive models whereas I 
analysed quantile interval responses of childhood stunting in 
the quantile interval 0.10 ≤ 𝜏 ≤ 0.20  by using Bayesian 
spatio-temporal quantile interval models. Note that my 
approach is more appropriate than their approaches because 
it is more appropriate to model severe childhood stunting 
than to model the average childhood stunting. 

5. Conclusions 
The prevalence of childhood stunting in Republic of 

Congo, though still considerably high, decreased from   
28.1% in 2005 to 26.5% in 2012. The prevalence of 
overweight decreased from 10.3% in 2005 to 4% in 2012. 
Similarly, the prevalence of overweight also decreased from 
3.1% in 2005 to 0.9% in 2012. 

In general, I found that rural residence, poor source of 
drinking water, poor type of toilet facility, male-headed 
household, male child, higher household wealth index, and 
lower mother’s formal education were significantly 
associated with increased childhood stunting in Republic of 
Congo from 2000 to 2012. 

I observed that urban residence, poor source of drinking 
water, poor type of toilet facility, availability of TV, 
male-headed household, and male child significantly 
increased childhood overweight and obesity in Republic of 
Congo over the period from 2005 to 2012. In addition, richer 
households were associated with reduced childhood 
overweight and obesity compared to poor households. 
Furthermore, households with highly educated mothers 
(graduates) were associated with lower prevalence rates of 
childhood overweight and obesity compared to households 
with less educated mothers (secondary or below) in Republic 
of Congo in 2012. 

In general, it was observed that childhood stunting, 
overweight, and obesity increased as age of child increased 
whereas childhood stunting, overweight, and obesity 
decreased as preceding birth interval increased. I also found 
out that childhood overweight and obesity increased as 
mother’s BMIs increased. Finally, I noticed that most of the 
regions exhibited significant spatial effects on childhood 
stunting, overweight, and obesity in Republic of Congo from 
2005 to 2012. 

I recommend that scaling-up nutrition programmes, food 
security programmes, and childhood malnutrition policy 
makers should consider timely interventions based on 
important socio-demographic factors, child age, maternal 
factors, temporal and spatial variation of childhood stunting, 
overweight, and obesity in Republic of Congo as reported in 
this paper. 
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