
International Journal of Statistics and Applications 2018, 8(2): 53-58 
DOI: 10.5923/j.statistics.20180802.03 

 

Analysis of Nigeria Stock Market Using Bayesian 
Approach in Stochastic Volatility Model (2012 – 2016) 

Yakubu Anjikwi1,*, Jibasen Danjuma2 

1Department of Agricultural Economics, University of Maiduguri, Maiduguri, Nigeria 
2Department of Statistics and Operations Research, School of Physical Science, Modibbo Adama University of Technology Yola,       

Yola, Nigeria 

 

Abstract  This research was conducted to analyzed volatility in Nigeria stock market using Bayesian approach in 
stochastic volatility model. The sample data used for this study were daily and weekly closing prices of All Share Index over 
the period of January 30th, 2012 to December 8th, 2016. The analysis was carried out based on posterior credible interval 
estimates produced by running MCMC algorithm for 10,000 iterations, with a burn-in of 1000000 and the first 1000 iterations 
discarded. The result of the study revealed evidence of significant variation in the price movement, as shown by the large 
differences between minimum (-4.35316) and maximum (7.984833) with mean estimate (0.018). The result for unit root test 
based on Posterior means and 95% posterior intervals for ϕ and ρ shows that there is a significant evidence for unit-root in 
log- volatility model for All share index (the corresponding 95% posterior intervals include the point 1) i.e [0.9995,1.0]. The 
inter-correlation among the Posterior parameters revealed that there is a less or no collinearity between the parameters of 
estimate. Mean estimate for β were found to be 0.7504 and 2.286 respectively for daily and weekly share price, indicating 
volatility clustering in the series. The study that revealed volatility persistence were significantly high with mean estimated 
close to unity for daily and weekly series respectively. The estimate for leverage parameter showed -0.566 and -0.561 for 
daily and weekly respectively. Arising from this study, stochastic volatility model could be used to test price movement in 
Nigerian stock market to make it better utilized by financial experts, econometrician and researcher.  
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1. Introduction 
All over the world, capital market segment of the financial 

market plays a vital role in the process of economic growth, 
through the mobilization of long term funds for future 
investment.  

A well-functioning stock market fosters growth and profit 
incentives and helps in risk management more efficiently 
than the bank-based system does [34] and [29]. [30] 
expounds theoretically that a more developed stock market 
may provide liquidity that lowers the cost of the foreign 
capital essential for development, especially in low-income 
countries that cannot generate sufficient domestic savings. 
[35], [33] and [28] envisaged that stock market development 
is vital for economic growth.  

The fluctuation of general stock market index expresses 
the level of economic growth, the degree of trade openness 
and the financial depth in a developing or developed country. 
In Nigeria, for instance, the stock market helps in long term 
financing of government development projects, serves as a  

 
* Corresponding author: 
y.anjikwi@gmail.com (Yakubu Anjikwi) 
Published online at http://journal.sapub.org/statistics 
Copyright © 2018 Scientific & Academic Publishing. All Rights Reserved 

source of fund for private sector long term investment and 
served as a catalyst during the 2004/2005 banking system 
consolidation. Market capitalization as a percentage of 
nominal Gross Domestic Product (Nominal GDP) stood 
above 100% from 2007 to 2008, reflecting high market 
valuation and activities. However, according to [31] 
statistical Bulletin, the All Share Index (ASI), which shows 
the price movement of quoted stocks moved from 61,833.56 
index points in the first quarter of 2008 to 20,244.73 index 
points in fourth quarter of 2011, suggesting some level of 
fluctuations in the stock market, especially since the 
occurrence of the 2008/2009 financial crisis. 

An increase or decrease in the value of stock tends to have 
a corresponding effect on the economy. An increase in stock 
prices stimulates investment and increases the demand for 
credit, which eventually leads to higher interest rates in the 
overall economy (Spiro, 1990). According to Fischer (1981) 
high interest rate is a potential danger to the economy since 
the variance of inflation positively responds to the volatility 
of interest rate. 

That is why issues of volatility in stock market behaviour 
are of importance as they shed light on the data generating 
process of the returns [11]. As a result, such issues guide 
investors in their decision -making process because not only 
are the investors interested in returns, but also in the 
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uncertainty of such returns. Efforts toward financial sector 
reforms would be an exercise in futility if volatility of stock 
market is not addressed.  

A volatile stock market weakens consumer confidence and 
drives down consumer spending [17]. It affects business 
investment because it conveys a rise in risk of equity 
investment [1].  

A plethora of studies on the Nigerian capital market have 
attempted an investigation into this problem.  

[3] Studied the volatility of the stock market and its 
relationship with market fluctuations. They showed that 
high persistence of shocks to volatility would increase the 
fluctuation in the volatility which caused the market to 
plunge. [12] modeling asymmetric volatility in the Nigerian 
stock exchange by applying EGARCH (1,1) and GRJ- 
GARCH (1,1) models to NSE daily stock return series from 
January 2nd 1996 to December 30th 2011, they found strong 
evidence supporting asymmetric effects in the NSE stock 
returns but with absence of leverage effect. Researchers 
have been interested in modeling the time dependent feature 
of unobserved volatility. A model that is commonly used to 
model such features, is known as the Autoregressive 
Conditional Heteroscedastic (ARCH) model [8]. However, 
[2] and [23] independently proposed the extension of ARCH 
model with an Autoregressive Moving Average (ARMA) 
formulation, with a view to achieving extreme care in 
spending money.  

The model is called the Generalized ARCH (GARCH), 
which models conditional variance as a function of its lagged 
values as well as squared lagged values of the disturbance 
term. Although GARCH model has proven useful in 
capturing symmetric effect of volatility, it is bedeviled by 
some limitations, such as the violation of non-negativity 
constraints imposed on the parameters to be estimated.  

Some extensions of the original GARCH model were 
proposed. This includes asymmetric GARCH family models 
such as Threshold GARCH (TGARCH) proposed by [25], 
Exponential GARCH (EGARCH) proposed by [16] and 
Power GARCH (PGARCH) proposed by [5].  

However, in ARCH and GARCH family models, given 
the past observations (returns), volatility is a deterministic 
function of the past observations. This feature may not be 
appropriate for some real data sets such as stock market, 
where we expect the volatilities to vary stochastically as a 
function of past observations [14]. An alternative approach is 
to use Stochastic Volatility (SV) models.  

The stochastic volatility (SV) model introduced by [21] 
and [22] is used to describe financial time series. It offers an 
alternative to the ARCH-type models of [8] and [2] for the 
well-documented time-varying volatility exhibited in many 
financial time series. The SV model provided a more realistic 
and flexible modelling of financial time series than the 
ARCH-type models, since it essentially involves tow noise 
processes, one for the observations, and one for the latent 
volatilities. The so-called observation errors assess variation 
in the underlying volatility dynamics [24] and [19] for the 
comparative advantages of the SV models is over ARC-type 

models.  
Since the seminar paper of [8] on volatility modelling, 

several empirical works have been done especially in finance, 
even though a number of theoretical issue are still unresolved 
[9]. However, according to [18] SV models have been used 
less frequently than ARCH models in empirical applications. 
This is due to the difficulties associated with the estimation 
of SV models. Unlike ARCH models, where the likelihood 
function can be evaluated exactly, the likelihood function of 
an SV model is hard to construct. Several propositions have 
been made as to how the full likelihood function may be 
evaluated. [15] show how the likelihood can be constructed 
when a mixture of normal is used to approximate the density 
of the disturbances. [12] have proposed a Bayesian approach 
to the estimation of SV models using the Monte Carlo 
Markov chain (MCMC) technique. [10] show how the 
extended Kalman filter can be used to perform numerical 
integration. Finally, [4] suggested that accurate 
approximations to the likelihood function can be obtained by 
means of importance sampling. Recently, [20] and [6] 
designed methods for constructing the likelihood function 
for general state space models using Monte Carlo simulation 
techniques; thereafter referred to as Monte Carlo likelihood 
(MCL). The aim of this study therefore was to apply 
Bayesian approach in stochastic volatility model, alternative 
to GARCH model as an indication of efficacy of adopting 
best forecasting volatility model for the Nigerian stock 
market and to help investors in decision making.  

2. Method  
Data Source, Transformation and Test Procedures  

This study used the daily and weekly all share index (ASI) 
of Nigeria stock market. The ASI spans January 30th, 2012 to 
December 8th, 2016, totaling 1,206 data points. The data 
were obtained from ww.africanfinancialmarkets.com.  

The daily ASI were transformed to daily stock returns, R𝑡, 
expressed as 

𝑅𝑡 = ln � 𝑃𝑡
𝑃𝑡−1

�  × 100            (1) 

Where, 𝑅𝑡 is the return at time t, Pt is the price at time t; 
Pt-1 is the lagged price and ln is the natural logarithm. 
The Stochastic Volatility (SV) Model  

The widely used SV models can be described in its 
simplest form as follows. 

Let rt denote the mean corrected return observed at time t. 
As an example of return data rt, first consider pt which 
denotes, say, the Nigeria value of stock market at time t = 1, 
2,…,n. Then mean corrected return, rt, can be computed as 

𝑟𝑡 =  log 𝑝𝑡
𝑝𝑡−1

−  1
𝑛

 ∑ (log 𝑝𝑡
𝑝𝑡−1

)𝑛
𝑖=1         (2) 

Let Vt = Var(rt) be the unobserved volatility at time t. In 
SV models it is customary to model the log volatilities, ht = 
logVt in contrast to ARCH and GARCH models. The SV 
model is represented as, 
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𝑟𝑡 = 𝑢𝑡𝑒
1 
2ℎ𝑡                             (3) 

ℎ𝑡 − 𝜇 = 𝜙(ℎ𝑡−1 − 𝜇) +  𝜎𝜂𝑡, = 2, … ,𝑛  
ℎ1 = 𝜇1 + 𝜎1𝜂1  

where 𝜂𝑡′𝑠 and 𝑢𝑡 's are assumed to be a sequence of iid 
realizations from a distribution with mean zero and variance 
one. The parameters 𝜇1 and 𝜎1 of the initial distribution are 
chosen (as a function of 𝜙 and 𝜎) appropriately, so as make 
the process ht stationary when 𝜙 < 1. When 𝜙 = 1, we set 
𝜇1 = 𝜇 and 𝜎1 =  𝜎 . Note that stationarity of the process ht 
implies stationarity of the process rt . In this work the ut's and 
𝜂𝑡′𝑠 are also assumed to be independent. However several 
extensions of the above model (3), are possible. For instance, 

[13], [14], [18] consider a SV model where ut's and 𝜂𝑡′𝑠 are 
assumed to be correlated. To fixed the idea, let 𝑝(𝜃) be the 
prior distribution of the unknown parameter 𝜃 =
 (�𝜇,𝜙,𝜎2, 𝑟�  or ( 𝜎2, 𝑟)  in the unit root case), y = 
(y1, · · · ,yn) the observation vector, h = (h1, · · · , hn) the 
vector of the latent variables. Exact maximum likelihood 
methods are not possible because the likelihood 𝑝(𝒚|𝜃) 
does not have a closed-form expression. Bayesian methods 
overcome this difficulty by the data-augmentation strategy 
[26], namely, the parameter space is augmented from θ to   
(θ, h). By successive conditioning and assuming prior 
independence in θ, the joint prior density is 

 
𝑝�𝜇,𝜙,𝜎2, 𝑟,𝐡� = 𝑝�𝜇)𝑝(𝜙)𝑝(𝜎2)𝑝�𝑟�𝑝(𝐡𝟎�∏  𝑛

𝑡=2 𝑝(𝐡𝒕|𝐡𝒕−𝟏,𝜃).                   (4) 

The likelihood function is 
𝑝(𝑦|𝜃,𝐡)  = ∏  𝑛

𝑡=2 𝑝(𝐲𝒕|𝐡𝒕).                                    (5) 
Obviously, both the joint prior density and the likelihood function are available analytically provided analytical 

expressions for the prior distributions of θ are supplied. By Bayes’ theorem, the joint posterior distribution of the 
unobservables given the data is given by, 

𝑝�𝜇,𝜙,𝜎2, 𝑟,𝐡|𝐲� ∝ 𝑝�𝜇)𝑝(𝜙)𝑝(𝜎2)𝑝�𝑟�𝑝(𝐡𝟎�∏  𝑛
𝑡=2 𝑝(𝐡𝒕|𝐡𝒕−𝟏,𝜃)∏  𝑛

𝑡=2 𝑝(𝐲𝒕|𝐡𝒕).         (6) 

Bayesian approach to parameter estimation in stochastic volatility models with posterior computations performed by Gibbs 
sampling.  

Gibbs sampler is a widely used MCMC method, to obtain dependent samples from the posterior distribution P(𝜃|𝑟), one 
obtains the full conditional densities, i.e. the conditional density of a component of the vector of parameters given the other 
components and the observed data. Specifically, the conditional densities derive, 

𝑓�𝜇�𝜙,𝜎2, h, 𝑟�, 𝑓�𝜎2�𝜇,𝜙,ℎ, 𝑟�, 𝑓�𝜙�𝜇,𝜎2,ℎ, 𝑟�,𝑎𝑛𝑑 𝑓�ℎ𝑡�𝜇,𝜙,𝜎2,ℎ−𝑡 𝑟�             (7) 

as the full conditional densities of 𝜇,𝜎2,𝜙 𝑎𝑛𝑑 ℎ𝑡  in model (2) respectively. Here ℎ−𝑡  is the vector of unobserved 
log-volatilities excluding the one at time t. The full conditional densities of 𝜇,  𝑎𝑛𝑑 𝜎2 are Normal and Inverse Gamma 
densities respectively. 

The full conditional density of ℎ𝑡 is obtained as, 
𝑓�ℎ𝑡�𝜇,𝜙,𝜎𝜂2,ℎ𝑡−1 𝑟� ∝ 𝑓�𝑟𝑡�ℎ𝑡)𝑓(ℎ𝑡|ℎ𝑡−1 ,𝜇,𝜎𝜂2,𝜙�𝑓�ℎ𝑡+1 �ℎ𝑡 ,𝜇,𝜎𝜂2,𝜙�           (8) 

In this expression  
𝑓�𝑟𝑡�ℎ𝑡) 𝑎𝑛𝑑 𝑓(ℎ𝑡|ℎ𝑡−1 ,𝜇,𝜎𝜂2,𝜙�,  were the probability density functions of  
𝑁(0, 𝑒ℎ𝑡)𝑎𝑛𝑑 𝑁(𝜇(1 − 𝜙) +  𝜙ℎ𝑡 ,𝜎2), respectively. 
When we use a flat prior distribution, which is in the form of U(a,b) with b > 1 for the parameter 𝜙, the full conditional 

density of 𝜙 is given by, 

𝑓�𝜙�𝜇,𝜎2,ℎ, 𝑟� ∝  �1 − 𝜙2𝑒  −
1

2𝜎2�𝜙
2{�ℎ1−𝜇 �

2+∑ (𝑛
𝑡=2 ℎ𝑡−1−𝜇)2}−2𝜙∑ (𝑛

𝑡=2 ℎ1−𝜇 )(ℎ𝑡−1−𝜇)�
         (9) 

When we use a mixed prior for  𝜙 with a constant mixing probability p, full conditional density of this parameter is given 
by, 

𝑓�𝜙�𝜇,𝜎2,ℎ, 𝑟, 𝑏� ∝ �
[∏ 𝑓(ℎ𝑡|ℎ𝑡−1 ,𝜇,𝜎2𝑛

𝑡=2 )]𝑓�ℎ1�𝜇,𝜎ℎ1
2 �𝑝 𝑖𝑓 𝜙 = 1 

[∏ 𝑓(ℎ𝑡|ℎ𝑡−1 ,𝜇,𝜙,𝜎2)𝑛
𝑡=2 ]𝑓�ℎ1�𝜇,𝜎ℎ1

2 �(1 − 𝑝) 𝑖𝑓 𝜙 < 1
�          (10) 

Where, 𝜙, 𝜇 𝑎𝑛𝑑 𝜎2 are parameter to be estimated,  
ℎ and 𝑟, are vector of unobserved log-volatilities and observed mean corrected return respectively, 
𝑏= constant, 

�  
𝑛

𝑡=2

= 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, 

𝜎ℎ1
2 =  𝜎2 𝑓𝑜𝑟 𝜙 = 1 and it is 𝜎2/(1 − 𝜙2) for 𝜙 < 1., 

p = mixing probability. 
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Testing the unit-root hypothesis 
In order to test for the unit-root hypothesis H0: 𝜙 = 1 

versus Ha:  |𝜙|  < 1. Equation (3), extending the use of 
posterior credible interval approach in [14]. The test rejects 
the null hypothesis if the marginal posterior interval of 95% 
confidence level for  𝜙 does not include the unity. Rejection 
of the unit-root hypothesis implies that the volatility process 
is stationary and hence one can proceed with the application 
of inferential techniques in SV models that are developed 
under the stationarity assumption. On the other hand failure 
(if the null hypothesis is not rejected) to reject the null 
hypothesis implies that the volatility process is nonstationary 
and shocks to volatility have long-term effects. Therefore, 
this paper applied U (0, 1+c) type of prior density for 𝜙 at  
c = 0.0, 0.00001, 0.0001, 0.0002 and 0.001. 

3. Results  
Descriptive Statistics  

Table 1 shows the descriptive statistics for All Share Index 
(ASI) and Returns to All Share Index (RASI). The notable 
difference in RASI is between its maximum 7.9% and 
minimum -4.4% values as well as when these values are 
compared with the mean value 0.018%, suggest some sort of 
variation in the series however, positive mean returns, 
indicate that, on the average, investors recorded gains more 
than loss during the sample period.  

Table 1.  Descriptive Statistics of ASI and RASI 

statistics ASI RASI (%) 

Mean 31346.08 0.018207 

Median 30318.32 -0.00506 

Maximum 43039.42 7.984833 

Minimum 20123.51 -4.35316 

Std. Dev. 6289.256 1.036059 

Skewness 0.103348 -0.26411 

Kurtosis 1.881483 8.941250 

Jarque-Bera 65.01365 1786.285 

Probability 0.000000 0.000000 

Observations 1206 1205 

Source: winBUG generated Output; 

Similar evidence can also be deduced from ASI statistics 
based on the minimum, maximum and mean values of the 

series. However, the magnitude of fluctuations in RASI 
indicates higher volatility than ASI as shown by the standard 
deviation 1.03, which measures the riskiness of the 
underlying assets. The higher the standard deviation, the 
higher the volatility of the market and the riskier the equity 
traded.  

Again, considering the very high Jarque-Bera value 
(1786.285) and the very small corresponding p-value (0.000), 
the null hypothesis of normality was rejected for the series. 
To support the Jarque-Bera inference, the absolute value of 
skewness (-0.26411) is greater than 0 (skewness of a normal 
distribution is 0) and the kurtosis (8.941250) is higher than  
3 (kurtosis of a normal distribution is 3). The negative 
skewness is an indication that the lower (left) tail of the 
distribution is thicker than the upper tail meaning that returns 
drop more often than its rises thus, the returns series is not 
symmetric. As expected of a volatile series, all the series as 
well as their returns are leptokurtic in nature which is an 
indication of fat tails than the normal distribution.  
Unit Root Test  

The results from Table 2 indicated significant evidence  
of unit-root for RASI (the corresponding 95% posterior 
intervals include the point 1) meaning stock prices are 
non-stationary. This implies that the effect of volatility in the 
stock market stays for a long period of time. This result 
suggested that rational investor should constantly change the 
weighting of assets whenever a volatility shock arrives.  

The posterior credible intervals for 𝜌  imply that 
correlation between the error in the return and the error in the 
volatility may be ignorable, which were less than or equal to 
0.2412 for different prior value. In this case, equation (3) is 
an overfit due to small value of correlation term.  

Table 2.  Posterior Means and 95% Posterior Intervals for 𝜙 and  𝜌 

Convergence 
time 

Prior for 𝜙 𝜙 𝜌 

320 U(0,1.0) 0.9998(0.99
97,1.0) 

0.002455(-0.95
39,0.9498) 

396 U(0,1.00001) 0.9997(0.99
93,1.0) 

0.2412(-0.2378
, 0.7125) 

515 U(0,1.0001) 0.9997(0.99
93,1.0) 

0.2412(-0.2378
, 0.7125) 

566 U(0,1.0002) 0.9997(0.99
93,1.0) 

0.2412(-0.2378
, 0.7125) 

Sources: winBUG generated Output 

Table 3.  Bayesian estimation of Posterior parameter for daily 

 Daily series Weekly 
Parameter Mean Sd MC error PI(95%) Mean Sd MC error PI(95%) 

𝛽 0.7504 0.05082 0.001673 0.6571 0.8552 2.286 0.3942 0.01396 1.629 3.165 
𝜇 0.5789 0.1352 0.004431 0.3128 0.8399 0.0579 2.6180 0.0299 -5.261 5.1180 
𝜙 0.9999 0.000049 0.000001 0.9996 1.0000 0.9998 0.000059 0.000001 0.9995 1.0000 
𝜎 0.5055 0.05625 0.005704 0.414 0.6374 0.7245 0.1057 0.009219 0.5357 0.9431 
𝜌 -0.566 0.1458 0.005677 -0.851 -0.271 -0.561 0.1411 0.005715 -0.839 -0.2818 

Time  1266s     76s    

Sources: winBUG generated Output; 
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Parameter Estimates of Stock Volatility Clustering for Daily 
and Weekly Series  

The mean estimate of β were found to be 0.7504 and 
2.286 respectively for daily and weekly share price 
respectively, indicating volatility clustering in the series 
Table 3.  

This parameter β  does not only measured volatility 
clustering but it also indicated that news about volatility 
from the previous time periods has an explanatory power on 
current volatility. In contrast to the finding of [27] which 
recorded low value (β  = -0.03) using GARCH model 
implying volatility clustering takes less time to predict. A 
major economic implication of this finding is that investors 
of the Nigeria stock market though is volatile but increases 
or decreases of price movement is predictable over time. 

The Parameter (μ) estimated the mean of annualized 
returns which carried positive sign 0.5789 and 0.0579 for 
daily and weekly respectively, meaning that, annually on the 
average, investors recorded gain more than loss during the 
sample period. The small value of annualized return may be 
attributed to the economic crisis experience in the last decade. 
Again whenever markets were volatile return to investment 
tend to decrease sharply, this result suggested that investors 
should be updated or constantly monitor day to day 
transaction of stock markets.  

The mean estimate for parameter (σ) were 0.5505 and 
0.7245 respectivetly for daily and weekly transaction. This 
measured variation of conditional returns distributed about 
the direction of price movement. The results of this findings 
revealed that the mean returns for investment were not 
normally distributed for the period of study. This recurrent 
fluctuation can only help investors’ to make decision for a 
short period of time.  

Leverage effect measured riskiness of a firm in relation to 
stock price movements. The model exhibited mean estimate 
of negative values for both series. The finding suggested that 
equal magnitude of bad news (negative shocks) have 
stronger impact on the volatility of stock index returns than 
good news (positive shocks). That is when stock prices are 
falling the value of equity decreases and the debt to equity 
ratio increases. Which cause firm to be more risky and 
induces a high future volatility. 

4. Conclusions and Recommendations 
Stochastic volatility model could be used to test price 

movement in Nigerian stock market to make it better utilized 
by financial experts, econometrician and researcher.  

The study revealed there were significant variation in 
price movement of Nigerian stock market. There were 
significant presence of volatility clustered, leverage effects 
were exhibited by the mode.  
Recommendation 

It is recommended that Stochastic Volatility (SV) models 
could be appropriate for real datasets such as stock market 
prices. This approach could be used to test the randomness in 

price movement of stock market. There were no significant 
difference between the means leverage effects for daily and 
weekly returns.  
Suggestion for Further Studies 

Further study should focus on selecting companies at 
random not in a generalized form in analyzing price 
movement in stock market.  

Companies should also be group into sectors (Oil and Gas, 
Banking sector, beverages, Insurance etc) before applying 
stochastic volatility model. Simulation should be carried out 
for different values of prior density for 𝜙 to test unit root 
based on posterior interval in order to reinforce or buttress 
the result obtained in this study.  
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