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Abstract  Linear models along with multiple imputation method have become powerful tools for prediction and 
estimating missing data points. In this research, the collaboration between these two tools will be studied and then the tools 
will be deployed to estimate shrimp effort (actual hours of fishing per trip) in the Gulf of Mexico (GOM) for the years 2007 
through 2014 using a simple form of a general linear model (GLM). Since there was a need for handling missing vessel 
lengths and the price per pound, multiple imputation method was deployed and missing data points including missing vessel 
lengths were estimated. An ad-hoc method was also used to estimate the missing vessel lengths and the results were compared 
with those obtained from the imputation method. As an application, a GLM was developed and used to estimate shrimp effort 
in the GOM for the years 2007 through 2014. The GLM included a few continuous and categorical variables. Additionally, 
the model was revised by including year as an independent variable and compared the results with the case of year-by-year 
estimates. 
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1. Introduction 
The primary objective of this research was to address the 

missing data points and handle those using proper statistical 
techniques. As an application, a general linear model (GLM) 
with a few covariates was developed and applied to the 
shrimp fishery data and estimated the fishing efforts (actual 
hours of fishing per trip) for the years 2007 through 2014. 
For estimating missing data points, multiple imputation 
method was selected and used. The method takes advantage 
of the Monte Carlo simulation along with statistical models 
in estimating missing data points [1]. Along with the 
objective mentioned above, the intention was also to show 
how imputation would produce compelling results in case of 
missing data points.   

General linear models have been addressed by many 
authors such as [2], for example. There has been (and 
continue to be) advances made on this topic. The model has 
been extended to include stepwise regression, logistic 
regression, and general and generalized linear mixed models 
among others. There is no need to address this theory again 
here and  it is assumed that  the reader is familiar with this  
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concept.  
Due to the lack of familiarity and/or computational 

challenges, some researchers have relied on the ad-hoc 
approaches such as removing or replacing missing data 
points with the average of the existing points. These 
approaches may ultimately produce results far from the true 
values [3] and [4].  

Consider a set of an ordered pairs of numbers (x, y) as   
(2, 6), (3, 7), (4, 8), (5, .), and (6, 10). Notice that the pair 
before the last is missing the y-component. The average of 
the existing y values is 7.75. On the contrary, one imputation 
method produces 9 for the missing value which is a much 
more reasonable value for the missing data point (given the 
pattern). It is a fact that replacing the missing value with the 
average of the existing y values relied only on the y values. 
The imputation method on the other hand, took advantage of 
an additional piece of information (that is, the x values) to 
produce an estimated value for the missing data point. We 
must use every piece of information available to us when 
trying to estimate a missing value (s). 

Many research studies have addressed multiple imputation 
including [5-9]. Depending on the circumstances, for 
example, the pattern of missing data points, proper 
imputation models have been selected carefully and used 
here.  

Data for the shrimp effort estimation come from dealers, 
port agent interviews, United States Coast Guard, (USCG) 
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and Electronic Logbook (ELB) devices installed on vessels. 
The major data contributors to this research were the 
following three files: Shrimp data files (2007-2014), 
AllocZoneLands files (2007-2014), and the United States 
Coast Guard Vessel file. The Shrimp data file available from 
the National Marine Fisheries Service (NMFS) is based both 
upon landings as reported to NMFS port agents by dockside 
dealers and agent interviews with shrimpers who are in port 
[10]. The Shrimp data files included several fields of interest 
to this study. Table 1 gives the fields used in this research 
and the corresponding descriptions. 

The two additional files used in this research included the 
Alloczonelands and the Vessel files. The first contained 
Electronic Logbook Box number (ELB), edate, a 
combination of statistical subarea and fathomzone (zone), 
actual days fished (towdays), shrimp landings (landings), 
and port. The appropriate data points in this file were 
interviewed and recorded by the port agents at the designated 
ports. The second file called the Vessel file here was the US 

Coast Guard file containing vessel id number (vessel), ELB 
number, and the corresponding vessel lengths (length) 
among other pertaining information not used in this research.  

To assist in the assignment of fishing locations, scientists 
have subdivided the U.S. Gulf of Mexico into 21 statistical 
subareas (Figure 1). Statistical subareas 1–9 represent areas 
off the west coast of Florida, 10–12 represent 
Alabama/Mississippi, 13–17 denote Louisiana, and 18–21 
represent Texas. These subdivisions are used by the port 
agents and the state-trip-ticket system to assign the location 
of catches and fishing effort expended by the shrimp fleet on 
a trip-by-trip basis [11]. Each statistical subarea is further 
divided into five-fathom depth increments (Table 2). This 
table also includes fathomzones and the corresponding depth 
zones. The twenty-one statistical subareas are placed into 
four areas (1 through 4), and twelve-fathom zones are placed 
into three depths (1 through 3). Figures 1 and 2 display the 21 
statistical subareas (1 through 21) and 12 area-depth 
combinations (Figure 3).  

Table 1.  Description of fields in the shrimp data file used in this research 

Field name Description 

Port 
Vessel id 
yearU, monthU, dayU 
subarea 
 
fathomzone 
 
daysfished 
pounds 
priceppnd 
value 
SEDAR 

The shrimp port of delivery 
US Coast Guard vessel identification number 
Date of unloading shrimp at a designated port. The concatenation of these three was generated and call edate 
Division of the GOM into 21 statistical subareas (Figure 1 below) 
(1 to 9, 10 to 12, 13 to 17, and 18 to 21) 
Depth of water where the shrimp was caught 
(1 to 2, 3 to 6, and 7 to 12 fathoms) 
Actual hours of fishing per trip  (24 hours per day) 
Pounds of shrimp harvested 
Average real price per pound of shrimp in the year data was collected 
Dollar value of landings 
Statistical and depth division 

 

Figure 1.  The Gulf of Mexico is divided into twenty-one statistical subareas (1-21) as shown 
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Table 2.  Fathomzones (1-12), fathom, and corresponding depth zones (1-3) 
in the Gulf of Mexico 

Fathomzone Fathom Depth zone (depth) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

00-05 
06-10 
11-15 
16-20 
21-25 
26-30 
31-35 
36-40 
41-45 
46-50 
51-55 
>55 

1 
1 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 

 

Statistical area          area Fathom zone         depth 

�
1 − 9

10 − 12
13 − 17
18 − 21

�             �

1
2
3
4

� �
1 − 2
3 − 6

7 − 12
�                �

1
2
3
� 

Figure 2.  Conversion of statistical subareas (1-21) and fathomzones (1-12) 
in the Gulf of Mexico to areas (1-4) and depths (1-3) respectively 

 

 

Figure 3.  Combination of areas (1-4) and depths (1-3) in the Gulf of Mexico called SEDAR cells 

 
2. Method 
2.1. Year-by-year  

As described in [12], the following steps were taken to 
prepare the data for statistical analysis. First, for each year, 
the offshore data in the Shrimp data file was converted to 
“Trips” based on vessel id number (vessel), edate (edate), 
and port (port) along with the weighted average price per 
pound per trip (wavgppnd) and total pounds per trip (totlbs). 
In the next step, the three files Trips, AllocZoneLands, and 
Vessel were matched based on the common fields listed in 
Table 3 grouped by the zone field from the AllocZoneLands 
file to create the “Match” file. For the purpose of effort 
estimation later, the next step was to revisit the shrimp data 
file and convert it to “Trips” but this time grouped by the 
SEDAR field. In this research, the calendar year was also 
placed into three trimesters (January-April, May-August, 
and September-December). 

Table 3.  Common fields used in creating the Match file 

Files Common field (s) 

Shrimp (Trips), Vessel 
Shrimp (Trips), AllocZoneLands 

AllocZoneLands, Vessel 

vessel 
port, port 
box (ELB) 

2.2. Year as a Covariate 

Here, the process again involved several steps. First, all 
the Shrimp files were merged to create one file consisting of 
579,818 records (offshore data only). It was decided to 
impute the files for a few missing data points in the price per 
pound field prior to merging. The resulting file then was 
converted to “trips” based on vessel id number (vessel), edate 
(edate), and port (port). The new file called “Trips” had 
82,856 records. At the same time, the weighted average  
price per pound using pounds as the weight (wavgppnd) and 
total pounds per trip (totlbs) were computed. Next, all the 
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AllocZoneLands 2007-2014 files were merged creating a 
new file with 13,908 records. Similar to the case of 
year-by-year, the three files Trips (created above), new 
AllocZoneLands, (described above) and the Vessel file were 
matched based on the common field (s) listed in Table 3 and 
grouped by the field zone from the AllocZoneLands file. The 
resulting match file consisted of 61,232 records. For the 
purpose of effort estimation later, again the appended shrimp 
files described in the first step was converted to trips using 
Table 3 and grouped by the SEDAR field. The generated file 
consisted of 137,039 records (trips).  

Real datasets often have missing data of one kind or 
another, an unpleasant reality that must be faced. The 
variable vessel length (length) was included in the model as a 
continuous predictor [12]. Due to the inclusion of length in 
this study, in the next step, the United States Coast Guard file 
(USCG) was used to locate as many vessel lengths as 
possible. Table 4 shows the number of trips generated and 
the percentage of missing lengths in the corresponding Trips 
files for each year.  

Table 4.  Number of trips and percentage of missing lengths in the Trips 
file (year-by-year) in the Shrimp file 

Year Number of trips 
Percentage of missing vessel 

lengths (percentage with respect to 
the number of trips) 

2007 
2008 
2009 
2010 
2011 
2012 
2013 
2014 

23,272 
18,363 
20.350 
16,168 
16,893 
18,640 
17,797 
15,555 

5% 
7% 
10% 
8% 
8% 
9% 
9% 
9% 

The main contributor to the issue of missing data points 
was the vessel length (length). Reference [13] developed a 
simple linear regression between the vessel length and its 
horsepower. From a statistical perspective, this method is a 
good one as long as a satisfactory model can be established. 
In this research efforts in finding a simple or a multiple linear 
model between the known vessel lengths and variables such 
as pounds in the shrimp fisheries (2007-2014) did not 
produce a satisfactory result (R-Squared ranged from 0.03 to 
0.08 with high absolute values of residuals). Therefore, the 
multiple imputation method was selected and used in 
estimating missing data points.  

To estimate missing vessel length values throughout this 
article, multiple imputation was deployed. For comparison 
purposes only, an ad-hoc method (replacing missing lengths 
with the average of existing lengths) was also used in the 
study.  

2.3. Handling Missing Data Points via Imputation 

As mentioned above, in this article, the imputation method 
was selected as a mean for estimating the missing values. 
Using this method one can estimate a missing value 
statistically while considering the variability generated due 

to the selection of a value for the missing data point [1]. 
Since missing vessel length pattern could not be predicted 
from any other meaningful variable such as pounds, it was 
assumed that the missing pattern here was missing 
completely at random (MCAR), that is, missingness was not 
related to any factor, known or unknown [4]. In other words, 
P (𝑅  | 𝑦 obs , 𝑦mis , 𝛾 )= P(𝑅  | 𝛾 ) where the vector 𝑦 
represented the observed and missing vessel lengths (length), 
and 𝛾 represented the totlbs with all known values and 𝑅 a 
vector with elements 1 if a vessel length was missing and 0 
otherwise. For a detailed definition of MCAR, the reader is 
referred to [14]. The 2008 data with moderate missing vessel 
lengths (7%) was selected and checked for the MCAR 
pattern. To confirm the MCAR pattern, Little’s test [15] was 
applied to the same data set producing χ2 = 0.509 with 
p-value 0.476. Little’s test was also applied to the 2007 data 
for a confirmation of the pattern which produced χ2 = 3.378 
with p-value 0.066 (close to being significant using the 
threshold 0.05, but still non-significant). Therefore, it was 
assumed that the missing pattern was MCAR in all data sets 
used in this research. One could have also assumed the MAR 
condition (missing at random) as the missing pattern.   

Imputation methods offers different models or 
mechanisms depending on the missing data pattern as 
discussed below. The reader is referred to an article by [16] 
for a comparison of different imputation methods. 

2.4. Missing Data Pattern 

Before applying a multiple imputation to the data sets, it 
was important to identify the missing pattern(s) in the data 
set. In this paper, I identified two patterns: Monotone and 
Non-monotone (Arbitrary). As appeared in [17], a data set is 
said to have a monotone pattern if a triangle consisting of 
cells with missing value can be formed in the lower right 
corner (Figure 4a). In other words, if in the ith row, Yj is 
missing, all entries on this row following Yj and subsequent 
columns below must also be missing. An arbitrary 
(non-monotone) pattern does not follow any specific missing 
pattern (Figure 4b). 

Monotone pattern offers flexibilities and some interesting 
features. Among those, it allows the user to impute missing 
values sequentially and to use regression model to impute 
variables. The restriction however is that the imputed 
variables must be continuous. To take advantage of 
monotone pattern, some researchers suggest that enough 
variables are imputed to make the data follow monotone 
patterns first [17].  

For the 2007-2014 fishery data, the individual shrimp files 
contained some zero values the priceppnd (See Table 5).  

The percentage of missing or 0 values in the priceppnd 
field in 2008 and 2014 were higher than the corresponding 
values in the other years. The corresponding values in the 
value field were also either missing or 0. In each case, the 
proper imputation method (monotone or arbitrary) was 
deployed and the missing points were filled via imputation 
with the imputed values. 
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Figure 4a.  A monotone (.= missing value)              Figure 4b.  An arbitrary pattern (.= missing value) 

Table 5.  Percentage of missing or 0 data points in pounds or priceppnd 
field, years 2007-2014 

Year 
Percentage of 0 or 

missing data points in 
the field priceppnd* 

Percentage of 0 or 
missing data points in 

the field pounds* 

2007 
2008 
2009 
2010 
2011 
2012 
2013 
2014 

2007-2014 

0.02 
0.12 
0.01 
0.02 
0.03 
0.00 
0.01 
0.17 
0.04 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

*: Figures are rounded to two decimal places. 

2.5. Imputation Method 

Multiple Imputation involves three distinct steps for each 
missing value. 

Step I. The missing data are estimated m times 
(imputations) resulting in m complete data sets. 

Step II. Each complete data set is analyzed by using 
standard statistical models such as regression. 

Step III. The imputed values from the m complete data 
sets are averaged to get a value for the missing data point.  

In what follows, I will explain each step very briefly. 
Step I. In performing Step I, one needs to select a 

statistical model for the imputation. Depending on the 
missing patterns in the data set, several methods can be 
deployed.  

2.5.1. Data Set with Monotone Pattern 

A number of statistical models have been proposed when 
the data set has a monotone pattern and the variable is 
continuous. In the following, I briefly introduce a few of 
these models. 

2.5.2. Propensity Score Method 

As described in [17] and [18] in detail, the propensity 
score method is an imputation method applied to continuous 
variables when the data set has a monotone missing pattern. 
The propensity method does not use the correlations among 
variables, but focuses on the covariate information related to 
the missing value. It is not appropriate for analyses involving 

relationships among variables such as a regression analysis 
[19]. In addition, it should not be used when the predictors 
have missing values [20].  

2.5.3. Discriminant Function Method 

This model of imputation is the standard imputation 
method for categorical variables in a data set with a 
monotone missing pattern [17].  

2.5.4. Logistic Regression Method for Monotone Missing 
Data  

The logistic regression model is applied to categorical 
(binary) or ordinal variables and is considered an alternative 
to the discriminant function method [17]. 

2.5.5. Data Sets with Arbitrary Missing Pattern 

For an arbitrary missing pattern and continuous variables, 
the well-known model is called Markov Chain Monte Carlo 
(MCMC). In this model, it is assumed that the joint 
distribution of missing and known values is normal [19]. 
Using the properties of Markov chains, the method 
constructs a chain repeatedly until the distribution of interest 
stabilizes. In the case of categorical or continuous variables, 
an alternative model is known as Fully Conditional 
Specification (FCS) can be deployed. In the FCS, it is 
assumed that we have the joint distribution for all variables 
[21]. For each imputed variable, the model involves two 
phases: The “fill-in” phase where the missing values are 
filled sequentially providing initial values for the second 
phase called “imputation.” In the latter phase, the missing 
values are imputed sequentially for a number of iterations 
called burn-in iterations.  

Step II. In this step, each of m complete imputed data sets 
is analyzed separately using any statistical model. In general, 
most researchers use the same model as the one used in step I, 
but some also use different statistical models in this step 
[19]. 

Step III. Pooling m compete data sets  
Assume that the variable Q with missing values is to be 

imputed m times. This produces m estimates for Q and its 
corresponding variance U, say, Q1, Q2,…, Qm and U1, 
U2,…,Um. As mentioned earlier, in Step II each imputation is 
analyzed using any standard statistical model. In Step III, the 
imputed values are averaged to get a value for the missing 
data point. More formally, the posterior distribution of Q is 
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the average of complete data posterior distributions of Q for 
the complete data (Yo,Ym) 

P(Q|Yo)=∑𝑃(Q|Ym,Yo)P(Ym|Yo)    (3) 
This is equivalent to the formula used by [22], page 476. 
Then the sample mean and sample variance for the 

variable Q can be written as: 

𝑄 = (1/m)∑ 𝑄� i
𝑚
𝑖=1      and   𝑈 = (1/m)∑ 𝑈�i

𝑚
𝑖=1     (4) 

The within imputation variance 𝑈 is the variance where 
we do not account for the missing values and is found by 
averaging the variance estimates from each complete set of 
imputed data. Another quantity of interest is the variance 
between imputations (B), where 

B= (1/m-1) ∑ 𝑄� i
𝑚
𝑖=1

2- 𝑄 2    (5) 
This quantity measures the variation among imputed data 

sets. A small value for B indicates that the point estimates do 
not vary significantly from one imputation to the next. The 
average of B and T weighted by m imputations is called the 
total variance and is given by 

T= (1+ (1/m)) B+𝑈 = ((m+1)/m) B+𝑈    (6) 
A 100(1-α) % confidence interval for Q is given by  

 𝑄  ± tdf,1-𝛼 √𝑇     (7) 
where, 

 df=(m-1)((m+1)2+m2𝑈2)/((m+1)2B2)     (8) 

The pair (𝑈, B) determine the variability of  𝑄. The ratio 
B/𝑈 indicates how much information is missing. That is, the 
fraction of missing information shown by δ. The relative 
efficiency of the estimate (RE) is defined as: 

 (1+ δ/m)-1      (9) 
where m is the number of imputations and δ is the fraction of 
missing information [1]. For example, for an efficiency of 
100%, an infinite number of imputations are needed. Table 6 
helps guide the choice of value that should be used for m 
upon the selection of δ and the desired efficiency by the user. 
For other values not listed in the table, given the desired 

efficiency and δ, one can use the Goal Seek option provided 
in Microsoft Excel (2) to determine m.  

2.6. The Model 

2.6.1. Year-by-year  

A GLM was developed to estimate shrimp effort in the 
Gulf of Mexico for the years 2007 through 2014. The vessel 
length (in feet) was used as a continuous predictor in the 
GLM and was implemented as a continuous variable [12]. 
The model considered for this study was a linear model 
where natural logarithm for variables with high variability 
was used. 

towdays = exp {β0 + β1 length + β2 ln (totlbs)  
+ β3 wavgppnd*wavgppnd + β4 area  
+ β5 depth + β6 trimester + ε}                    (1) 

or in a more convenient (matrix) form after converting to a 
logarithmic equation 

y = x β + ε                 (2) 

where, y is a column matrix of the natural logarithm of 
towdays, 𝑥 = [xij] is an n x m matrix of repressors relating 
the vector of responses 𝑦  =[y1,y2.y3,… yn]’ to 𝛽=[β1, β2, 
β3,…, βm]’, and the vector of fixed and unknown parameters, 
𝜀 = [ε1, ε2, ε3,… εn]’ the error term. The vector 𝜀 is assumed 
to be a normally, independently, identically distributed (iid) 
random variable with E (𝜀) = 0 and Var (𝜀) = Ώ. In this model 
length is the vessel length, ln(totlbs) is the natural logarithm 
of total pounds of shrimp per trip, wavgppnd is the weighted 
average price per pound of shrimp per trip, area (a 
categorical variable with four levels), and depth and 
trimester are categorical variables with three levels. The 
response variable is towdays. 

2.6.2. Year as a Predictor 

The model considered here was similar to the case of 
year-by-year except year was added to the model as an 
additional covariate. 

Table 6.  Some selected efficiency values for the number of imputations needed- m is the number of Imputations, δ fraction of missing information. 
Numbers in the body of the table represent desired efficiencies 

     
δ 

    

 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

m 
         

2 0.952 0.909 0.87 0.833 0.8 0.769 0.741 0.714 0.69 
3 0.968 0.938 0.909 0.882 0.857 0.833 0.811 0.789 0.769 
4 0.976 0.952 0.93 0.909 0.889 0.87 0.851 0.833 0.816 

5 0.98 0.962 0.943 0.926 0.909 0.893 0.877 0.862 0.847 
6 0.984 0.968 0.952 0.938 0.923 0.909 0.896 0.882 0.87 
7 0.986 0.972 0.959 0.946 0.933 0.921 0.909 0.897 0.886 

8 0.988 0.976 0.964 0.952 0.941 0.93 0.92 0.909 0.899 
9 0.989 0.978 0.968 0.957 0.947 0.938 0.928 0.918 0.909 
10 0.99 0.98 0.971 0.962 0.952 0.943 0.935 0.926 0.917 
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3. Analysis/Results 
3.1. Year-by-year 

The model given in (1) was fitted to the corresponding 
Match file for each year and Table 7 shows the results of 
ANOVA where non-significant parameters and R-Squared 
values are listed (overall Fstat =16,832.2, p-value<0.0001). 
Subscripts following each categorical variable represent the 
levels of the corresponding variable. Due to a large number 
of parameters, only the non-significant ones (p-value>0.05) 
were included in the table 7.  

Table 8 displays the efforts generated via the GLM model 
for the years 2007 through 2014 depending on different ways 
of handling missing vessel length and Figure 5 is the display 
of the same. To preserve the integrity of the data sets, all 
calculations have been carried out to at least two decimal 

places and some rounded at the end to two decimal places 
(such as estimated vessel lengths). 

Table 7.  Non-significant GLM parameters and the R-Squared values 
(year-by-year). Subscripts represent the levels of the corresponding 
categorical variables 

Year GLM parameters 
with p-value>0.05 R-Squared Overall Fstat 

2007 
2008 
2009 
2010 
2011 
2012 
2013 
2014 

area1, area2 
area1 

area1, area2 
area1 

depth1, area1 
-------- 

depth1, depth2 
-------- 

0.85 
0.87 
0.85 
0.85 
0.86 
0.85 
0.70 
0.78 

3,221.42 
4,802.09 
5,265.99 
3,709.63 
5,116.79 
4,064.70 
643.54 
4926.36 

 
 

Table 8.  Effort generated via the GLM model for the years 2007 through 2014 year-by-year for different choices of missing vessel lengths using the 
monotone regression imputation method 

Year No. of trips 
% of vessel 

missing 
lengths 

Average 
length over 10 

imputations 

Average of 
existing lengths 

Effort using 
average length 

over 10 
imputations 

Effort using 
average of 

existing 
lengths 

Effort using 
one 

imputation 

2007 
2008 
2009 
2010 
2011 
2012 
2013 
2014 

23,272 
18,363 
20.350 
16,168 
16,893 
18,640 
17,797 
15,555 

5% 
7% 
10% 
8% 
8% 
9% 
9% 
9% 

71.15 
70.72 
70.98 
71.48 
70.04 
70.04 
70.69 
72.01 

71.19 
70.74 
71.14 
71.58 
70.12 
70.91 
70.77 
72.04 

66,642 
53,972 
67,194 
51,320 
55,725 
63,627 
48,548 
53,944 

66,640 
53,971 
67,181 
51,319 
55,723 
63,562 
48,452 
53,942 

66,435 
53,738 
66,604 
51,240 
55,597 
62,919 
48,235 
53,659 

 

 

Figure 5.  Effort generated via GLM for the years 2007 through 2014 for different missing vessel length choices (one imputation, ten imputations or the 
average of existing vessel lengths) using the monotone regression imputation method 

To assure the accuracy of the model given in (1), the 
empirical rule was used to check the necessary normality 
condition of the error term. Table 9 shows that the normality 

assumption of the error term was satisfied (empirical rule 
1-sigam, 2-sigma, and 3-sigma).  

 

Effort 
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Table 9.  Observed and expected percentages using empirical rule (1-sigma, 
2-sigma, and 3-sigma), in the case of year-by-year, for checking the 
normality assumption of the error term in the GLM 

Year Observed percentages Expected percentages 

2007 
2008 
2009 
2010 
2011 
2012 
2013 
2014 

79%, 96%, 99% 
74%, 95%, 99% 
75%, 96%, 99% 
73%, 94%, 99% 
74%, 96%, 99% 
76%, 95%, 99% 
76%, 96%, 98% 
79%, 96%, 98% 

68%, 95%, 99% 
68%, 95%, 99% 
68%, 95%, 99% 
68%, 95%, 99% 
68%, 95%, 99% 
68%, 95%, 99% 
68%, 95%, 99% 
68%, 95%, 99% 

3.2. Year as a Predictor 

The model with year as a predictor was fitted to the related 
Match file created earlier. Out of several parameters in the 
model, the following were not significant (p-value>0.05): 
area1, year4, and year6. The remaining parameters were 
significant with R-Squared=0.82 and Fstat = 16,832 and at 
p-value<0.0001. In order to measure the impact of using 
different imputation models used in this paper, efforts were 
generated using these models. Figure 6 displays the total 
effort estimates for a few imputation models defined in this 
paper.  

 

 

Figure 6.  Impact of imputation models on effort (year as a predictor): regression, MCMC, FCS, and monotone propensity 

In order to compare the efforts produced using the 
year-by-year method, and those of year as a predictor, the 
total effort in the latter was broken into year-by-year. Table 
10 displays the efforts produced in both cases. A comparison 
of year-by-year versus year as a predictor using a simple 
t-test under either equal or unequal variances showed that the 
two groups were not statistically different (tstat = 0.33, tcrit = 
2.14, and p-value = 0.74 under equal variances). 

Table 10.  Comparison of efforts produced year-by-year versus year as a 
predictor 

year 
Effort produced in 
year-by-year model  
(One imputation) 

Effort year as a predictor 
(One imputation) 

2007 
2008 
2009 
2010 
2011 
2012 
2013 
2014 

66,435 
53,738 
66,604 
51,240 
55,597 
62,919 
48,235 
53,659 

62,708 
50,072 
60,981 
48,062 
52,391 
58,433 
58,726 
58,764 

Furthermore, the normality assumption of the error term in 
the GLM model was approximately satisfied. Table 11 

shows the results of empirical rule applied to the residuals. 
The average effort over the period of eight years (2007-2014) 
in case of year-by-year was 57,303 and that of year as a 
predictor in the model was 56,267 for a difference of 1,036 
towdays. In addition, in case of year as a predictor, the 
between variance over 10 imputations was 0.00009706 
indicating that the imputed data points were estimated is a 
satisfactory manner. This was again due to a low percentage 
of vessels with missing lengths (8%).  

Table 11.  Observed and expected percentages using empirical rule (year as 
a predictor) for checking the normality assumption of the error term in the 
GLM 

Empirical rule Observed Expected 
1-Sigma 
2-Sigma 
3-Sigma 

76% 
96% 
99% 

68% 
95% 
99% 

Again, in the case of year as a predictor, the between 
variance, the within variance, show that accounting for the 
missing values increased the variance by 7.3% as compared 
to performing the analysis without the missing values. A 
narrow confidence interval and very high relative efficiency 
were all indication of the fact that 10 imputations were 
sufficient to produce stable estimates (Table 12). 
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Table 12.  Variance information associated with vessel length with m=10 imputations (year as a predictor) 

Variance 
between 

Variance 
within 

Total 
variance df 

Relative 
increase in 
variance 

Fraction 
missing 

information 

Relative 
efficiency 

Estimated 
length 

95% Confidence 
interval 

0.000083354 0.001253 0.001345 1908.5 0.073181 0.069152 0.992088 70.70 (70.63,70.77) 

 

For additional analysis, in the next step, three options were 
considered. The first option (I) was to impute all the missing 
or 0 values in the pounds, priceppnd fields, and the vessel 
length (length) in the combined shrimp data files where the 
year was used as a covariate. Effort generated in this option 
were displayed in Figure 6 and repeated again in Table 12. 
The second option (II) was to delete all the records in the 
combined shrimp data files where there were 0 or missing 
values in the pounds or priceppnd fields and estimated effort 
as in option I. The third was to remove all the records from 
the same data file where either pounds, priceppnd or length 
was 0 or missing and estimate effort again. The results are 
summarized in Table 13.  

Table 13.  Efforts generated under Options I, II, and III for the years 
2007-2014 

Option Regression MCMC FCS Monotone 
propensity 

I 
II 
III 

450,138 
449,315 
418,404+ 

450,252 
449,247 
418,404+ 

450,155 
449,083 
418,404+ 

480,800 
451,550 
418,404+ 

 + : No imputation. 

In the ANOVA table, the Fstat was significant (Fstat = 10.31, 
p-value = 0.0066) causing at the least, one of the effects to be 
significant. Analysis showed that there was no significant 
difference among the four imputation methods (Fstat = 1.25, 
p-value = 0.3731). However, the three options mentioned 
above differed significantly (Fstat = 23.91, p-value = 0.0014). 
Further, pairwise comparisons of Options I, II, and III placed 
Options I and II in one category and III in a separate category 
implying that the imputations of some data points in the 
pounds and priceppnd fields did not play a significant role in 
generating efforts.  

4. Discussion 
The main objective of this work was to introduce the 

imputation method to the fisheries data and use it to estimate 
the missing data points in the Gulf of Mexico shrimp data 
files. The issue of missing data points was briefly addressed 
in [12] where imputation was deployed in handling such 
points.  

The contributor to the issue of missing data points was 
primarily the vessel length (length). One potential approach 
was to remove all the records with missing data points. This 
method has not been a popular approach among researchers 
as it reduces the sample size and results in a higher standard 
error (sample size n is in the denominator of the standard 

error formula). Alternatively, the missing data points could 
have been replaced with the average of the existing data 
points (Table 8 and Figure 5). For a comparison/contrast, this 
method was implemented here and the results were close to 
those of imputation. This was due to the low percentage of 
missing data points (Table 4). However, such substitution 
could have produced an estimate close to the actual value or 
something far away from it.  

As mentioned earlier, efforts in finding a simple or a 
multiple linear model between the known vessel lengths and 
variables such as pounds in the shrimp fisheries (2007-2014) 
did not produce a satisfactory result (R-Squared ranged from 
0.03 to 0.08). Such relation, if satisfactory, could have been 
used to estimate the missing data points. Regression models 
with low R-Squared and high residuals would likely produce 
unreliable estimates. Reference [23] in his article argued that 
“Though the correlation coefficient, 0.18, differed 
significantly (P< 0.05) from zero, the correlation was not a 
strong one, and it was not considered to be of practical 
significance.” It was ultimately decided to deploy the 
imputation method in handling the missing vessel length 
values and other missing data points. Following the 
imputation of missing data points, a general linear model was 
developed and used to estimate shrimp effort in the GOM for 
the years 2007 through 2014. In the following, I will discuss 
the year-by-year and year as a predictor results respectively. 

4.1. Year-by-year 

The analysis for the case where yearly data were analyzed 
separately suggested that the variable vessel length was 
statistically significant in the model estimating shrimp effort 
(p-value<0.0001) (See Table 6). Due to the low percentage 
of missing length, the estimated effort slightly changed when 
the model was run for different choices for the missing vessel 
lengths (Table 8 and Figure 5).  

To compare the impact of the ad-hoc methods and 
imputation, the model was run for different years using these 
methods. The analysis showed that the methods considered 
here generated about the same total effort per year (Table 8, 
Figure 5). Due to a low rate of missing vessel lengths and the 
closeness of the generated efforts, it was unrealistic to 
compare the impacts of imputation and ad-hoc methods. 
However, as mentioned earlier, the imputation method takes 
advantage of many features and produces a more reliable 
estimate (s) as displayed via an example earlier.  

4.2. Year as a Predictor 

Similar to the case of year-by-year, the vessel length was a 
significant variable in the effort estimation model (tstat = 
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-35.56, p-value < 0.0001) and the missing vessel lengths did 
not play a significant role in the estimation process due to the 
low percentage of missing values (Table 4).  

To measure the impact of different statistical imputation 
models on the shrimp effort estimation, four imputation 
models were deployed in the case of year as a predictor only 
(regression, MCMC, FCS, and monotone propensity). The 
monotone propensity model produced slightly higher 
towdays (662) over the period of eight years. As displayed in 
Table 12, Options I and II were placed in one category 
implying that the imputation of a few missing data points in 
either pounds or priceppnd fields did not play a significant 
role in the analysis.  

5. Concluding Remarks 
In this research, a few imputation models for handling 

missing vessel lengths were discussed. As mentioned earlier, 
replacing the missing vessel lengths with the average of the 
existing vessel lengths could produce estimates far from the 
true values. Of course, when there are few missing values, 
most (if not all) methods would do well. However, there is no 
guarantee that this is always the case. There is a likelihood of 
facing a large number of missing data points. Therefore, one 
needs to explore all the possibilities and select the most 
appropriate method by considering the tradeoffs between the 
complexity and accuracy. Although the generated efforts 
were very close, among several imputation models presented 
in this paper, due to its flexibility, a monotone imputation is 
preferred assuming that the necessary condition (s) is 
satisfied.  

The analysis showed that the GLM model adequately 
represented the data sets in cases of year-by-year or year as a 
covariate. Reference [12] analyzed the same data using 
different statistical models. The model used in this article 
was much simpler involving fewer covariates. There is 
always a tradeoff between the complexity of the model and 
its accuracy or simplicity (Model parsimony). In this article, 
the main objective was to apply the imputation method to 
estimate missing data values in fisheries data.  

In both cases of year-by-year and year as a covariate, the 
missing vessel lengths did not significantly change the total 
effort due to the low percentage of missing values. The 
necessary normality condition for the error term in the model 
was checked using the empirical rule. In either case, it was 
concluded that the proposed model represented the data 
adequately and estimated the total effort within the expected 
range. Furthermore, analysis with year as a predictor versus 
year-by-year produced similar results. In addition, the efforts 
produced under different imputation models were similar 
with one model producing a slightly higher estimate. 

Although the application of the imputation method was 
limited to the shrimp data, it could be easily applied to other 
data sets. Missing data is common issue among data sets and 
this paper should be helpful in other areas of research. 
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