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Abstract  Logistic regression is widely used because it is a less restrictive than other techniques such as the discriminant 

analysis, multiple regression, and multiway frequency analysis. Because of it, many researchers do think that LR has no an 

assumption at all. The objective of this paper was to perform a complete LR assumptions testing and check whether the PS 

were improved. Agriculture data collected from 878 corn farmers were used. Six assumptions of LR were tested which 

included a sample size; expected cell frequencies; linearity in the logit; multicollinearity; outliers and influential cases; as 

well as the independence of residuals. A comparison of models was performed by comparing a model with the constant 

plus predictors with a model that had only the constant. Later, a model with only some predictors against the model with all 

predictors (full model) was compared to find out whether they were statistically significant. Findings have revealed that the 

two methods (significance of a variable testing and odds ratio) gave different variables to be included in the model. A 

statistically significant variable method gave better propensity scores than odds ratio method. An inclusion of only 

variables with an odds ratio >= 1 in the model, increased the dispersion of propensity scores when compared to the scores 

generated by the significant variables. Based on findings it is therefore recommended that all logistic regression 

assumptions, should be tested to ensure they hold in order to achieve better propensity scores for matching. Moreover, it is 

also recommended that variables which are to be included in the model should be based on significance testing. 

Keywords  Propensity Score Matching (PSM), Propensity Scores (PS), Weighted data, Un-weighted data, Logistic 

Regression (LR)  

 

1. Introduction 

Logistic regression (LR) is widely used as a multivariate 

statistical method for analysis of data of one level nominal 

(dichotomous) dependent variable against predictors [11]. 

The method is increasingly applied in different specialization 

such as health, social sciences, educational research, etc. LR 

was introduced in the 1970s to overcome the limitations of 

ordinary least squares (OLS) in analyzing dichotomous 

outcomes [10]. 

LR is widely used because it is more flexible (less 

restrictive) than other techniques such as the discriminant 

analysis, multiple regression and multiway frequency 

analysis [15]. It is flexible in the sense that, it does not 

require data to be normally distributed with an equal 

variance and covariance for all variables. LR makes no 

assumptions on the distribution of the explanatory data 

contrasting to the discriminant analysis. These methods are 

not different in  their functional forms.  Nonetheless, LR is  
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appropriate and better in all other situations except when 

normality assumptions are fulfilled. Moreover, it fits well 

with many types of distribution [11]. 

Propensity Scores are the estimated probability of the unit 

of analysis receiving the treatment given by the 

pre-treatment characteristics [16]. It is a probability of a unit 

which receives the treatment, given a set of the observed 

variables [3]. PS are used to compare (matching) treatment 

units in observational studies in order to determine the causal 

effects. During a PS matching, statistical techniques are used 

to assess effects of treatment by comparing the treated and 

untreated units. The interest of matching is to find if PS are 

the same for the control and treatment units. 

PS are mean generated based on certain variables. These 

variables are selected in such a way that, they are not affected 

by the treatment. They are used when treatment assignment 

is not random, as well as to reduce the bias in estimating the 

treatment effects and allow investigators to reduce the 

likelihood of confounding when analyzing nonrandomized 

observational data [6]. They are also used to estimate the 

causal impact of a treatment or intervention when units are 

not randomly assigned [7]. There are at least four PS 
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methods which are used to remove the effects of 

confounding when establishing a causal effect of a 

non-experimental. These include the propensity score 

matching (PSM), stratification (or sub-classification) on the 

propensity score, inverse probability of treatment weighting 

(IPTW) by using the propensity score, and covariate 

adjustment by using the propensity score [1]. 

PS typically are computed by using a logistic regression 

(LR) [3]. LR has been widely used as a statistical modeling 

in generating PS, especially, when dependent variable has a 

binary response. It is used in model fitting in order to 

examine the relationship between the dichotomous 

dependent variable and independent variables [12]. 

Despite the fact that, LR does not assume normality, a 

constant variance of residuals, no linear relationship between 

the dependent and independent variables, many researchers 

do think that LR has no assumptions at all. Logistic 

regression assumptions on multivariate normality and 

linearity among predictors are tested as suggested [15]. 

These assumptions, are tested because a linear combination 

of predictors is used to form exponent. Moreover, continuous 

independent variables (IVs) are linear to logit of the 

dependent variable. If these assumptions are met, the power 

of the model is enhanced. 

The objective of this paper was to perform a complete LR 

assumptions testing and check whether PS are improved. In 

addition to the methodological contribution on PS estimation, 

this paper provides knowledge for researchers on LR 

assumptions procedures. Most researchers, jump into data 

analysis without putting much attention in model 

assumptions testing. 

2. Procedures and Methods 

This section discusses procedures and methods used to 

assess the variables to be included in the LR model, through 

testing its assumptions. Agriculture data collected from 878 

corn farmers were used. Six assumptions of LR were tested 

which include: a sample size; expected cell frequencies; 

linearity in the logit; multicollinearity; outliers and 

influential cases; as well independence of residuals. 

Thirteen predictors were used to generate odds of being 

participated in agriculture intervention (dependent variable). 

Farmers participating in agriculture intervention were coded 

1 while farmers not participating were coded 0. Predictor 

variables included: sex, age, type of farmer, marital status, 

education, household size, land owned, distance to corn farm, 

district headquarters, distance to tarmac road, climatic 

condition (weather), soil type and membership in other 

Participatory Farmer Groups (PFG). 

After testing the LR assumptions, a comparison of models 

was performed by comparing the model with the constant 

plus predictors, with the model that had only the constant. 

Later, the model with only some predictors against the model 

with all predictors (full model) was compared to find out 

whether they were statistically significant. 

3. Results and Discussions 

3.1. Testing Assumptions of Logistic Regression Model 

This section assesses the requirements needed to be 

fulfilled before running a logistic regression model.  

3.1.1. Sample Size  

A logistic regression analysis, requires large samples be 

compared to a linear regression analysis because the 

Maximum Likelihood (ML) coefficients are large sample 

estimates. ML is efficient for large samples because it 

involves all moments [13]. In their experiment, which found 

out that, by committing type I errors does not change 

substantially, as the sample size decreases but the risk of 

committing type II errors is increased dramatically when the 

sample size is small and the number of regressors increases 

[5].  

There are rules of thumb which are used to determine the 

number of cases necessary for testing the correlation and 

testing the individual predictors in regression [15]. One of 

the rules of thumb is that 50N  + {8 x the number of 

Independent Variables, (IVs)} is the required sample size if 

the interest is to test the multiple correlations. If the study 

was to use a multiple regression analysis, then it required a 

sample size of 154N (note IVs = 13).  

If the interest was to test the individual predictors, then 

11713104104  IVsofnumbertheN would 

be required. For this case, a sample size of 154 could suffice 

both the overall correlation and the individual IV. More 

complex for the rules of thumb that consider the effects size 

are discussed by [4].  

For a logistic regression analysis generally a minimum of 

50 cases per predictor is recommended. Since thirteen 

variables were considered to determine the number of 

farmers to participate in agriculture intervention, a sample 

size of at least 650 cases was required. That is 13 x 50 = 650. 

The sample size of the study was 878 which indicated that, 

the ratio of cases to variables was highly satisfactory.  

3.1.2. Expected Cell Frequencies 

In order to use the goodness of fit test of the model, it is 

recommended that the expected frequencies should not be 

too small [15]. The expected cell frequencies are values 

which represent the frequencies expected to be found in cells 

if the null hypothesis was true. They are calculated from the 

marginal totals. Equation (1) is a formula to calculate the 

expected cell frequencies. 

N
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
                   (1) 

where 
ijE  is the expected frequency for the cell in the 

thi  

row and the 
thj  column, 

iT
 

is the total number of subjects 

in the 
thi  row, jT  is the total number of subjects in the 

thj  column, and N  is the total number of subjects. 
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The expected frequencies need to be > 5 and no more 

than 20% to count less than five. If this assumption is 

violated, the statistics chi-square value tends to be large 

with more frequency. This leads to an overestimation of the 

statistical significance, especially for small data. Thus, it is 

also very crucial to evaluate the expected cell frequencies. 

All pairs of all categorical variables including the outcomes 

were evaluated. The variables include sex, type of farmer, 

marital status, weather, soil type, member of other PFG and 

the experimental group. 

In examining the expected frequencies of sex and type of 

farmers, the odds ratio was used because the variables are 

nominal with only two possible responses each, 

(male/female and small/medium scale). Pairs of these two 

variables had no any cell with the expected count less than 

5. The odds ratio for sex was 1.341 which showed that a 

male had 1.341 times the odds of being a small-scale farmer 

than a female. The relative risk of the farmer to be a small 

scale farmer was 1.004 while that of being a medium scale 

farmer was 0.749. 

The expected frequencies of sex and marital status 

showed that none of the cells had the expected count less 

than 5. The minimum expected count was 8.99 while the 

expected frequencies of sex and climatic condition showed, 

2 cells had expected the count less than 5, which constituted 

14.3%. Although the percentage was lower than 20%, the 

two cells with less than 5 counts, were found in the category 

of the average rainfall and sunshine. In order to improve the 

expected frequencies, the category was merged with 

sufficient rainfall. By so doing, none of the cells had 

expected frequencies of less than 5 as the minimum count 

was 12.85. 

The pair of sex and soil type generated 2 cells which 

counted less than 5 which formed 20%. Saline and peaty 

soil type were merged to get rid of the problem. This 

resulted in 0 (0%) cells which had counts less than 5. The 

variables sex and members in other PFG had also 0 (0%) 

cells, which counted the expected frequency with less than 

5.   

The expected cell frequencies for sex and participating in 

agriculture intervention were as required. The pair of the 

type of farmers and marital status generated 4 cells (40.0%) 

with an expected count less than 5. In order to achieve the 

required expected cell frequencies, the separated and 

divorced marital categories were merged. The same applies 

to widows and singles. Despite merging of these categories, 

33% of the expected frequencies counted less than 5. 

Furthermore, after merging the marital status categories to 

have only two (married and not married), the expected cell 

frequencies remained high at 25%. When evaluated with 

other variables, it was found out that, the variable had 

expected the cell frequencies higher than 20%. 

The evaluation of the expected cell frequencies of marital 

status and climatic condition showed that 22 (62.9%) had 

counts less than 5, while marital status and soil type were at 

40%. The control was done by re-categorizing variable 

marital status to two categories which were married and not 

married. Thereafter the expected cell frequencies between 

marital status and the variables climatic condition, soil type, 

membership of the other PFG and participation of farmers 

to the intervention were 8.3%, 12.5%, 0% and 0% 

respectively. 

For the pair of the two variables climatic condition and 

soil type, 5 cells (20.8%) had expected to count less than 5. 

To improve the frequency of the cell, peaty, clay and saline 

categories were merged and thus, none of the cell frequency 

counted less than 5. The expected cells frequencies for the 

pair of the climatic condition and the member of the other 

PFG variables and that of the climatic condition and 

experimental group each counted 0% for less than 5.  

The expected cell frequencies for the soil type against the 

members of the other PFG and experimental group counted 

0% for less than 5. The variables members of the other PFG 

and participation in intervention counted 0% for less than 5 

too. 

3.1.3. Linearity in the Logit 

Table 1.  Logistic Regression Output for Interaction between Predictors 
and their Natural Logarithm   

Variable B S.E. Wald df Sig. Exp(B) 

ln_age .000 .002 .055 1 .814 1.000 

ln_education -.011 .012 .920 1 .338 .989 

ln_household_size .020 .011 3.089 1 .079 1.020 

ln_land .012 .006 3.558 1 .059 1.012 

ln_distance_corn_farm -.026 .022 1.361 1 .243 .974 

ln_distance_disctrict .002 .001 1.948 1 .163 1.002 

ln_distance_tarmac .004 .001 16.712 1 .000 1.004 

Sex .381 .170 5.009 1 .025 1.463 

Type_of_Farmer -.921 .764 1.452 1 .228 .398 

Marital_Status .777 .245 10.012 1 .002 2.174 

Weather .182 .054 11.258 1 .001 1.200 

Soil_type -.342 .128 7.114 1 .008 .710 

Member_other_PFG -2.213 .226 95.926 1 .000 .109 

Constant 2.475 1.044 5.624 1 .018 11.886 

Key: ln_age = natural logarithm of age, ln_education = natural logarithm of 

level of education, ln_household_is natural logarithm of household size, ln_land 

= natural logarithm of land owned, ln_distance_corn_farm = natural logarithm 

of distance to corn farm (km), ln_distance_disctrict = natural logarithm of 

distance to district headquarters, ln_distance_tarmac = natural logarithm of 

distance to tarmac road (km), sex  = sex of respondents, Type_of_Farmer = type 

of farmer, Marital_Status = marital status of respondents, weather = climatic 

condition, soil_type = soil type and Member_other_PFG = Farmer participated 

in other PFG.  

Although there are no assumptions about the linear 

relationship among predictors, logistic regression assumes a 

linear relationship between the continuous predictors and the 

logit transform of the dependent variables (equation 2). 
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The assumption is tested by adding new variables 

(interactions between each continuous predictor and its 
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natural logarithms), against the experimental group 

(dependent variable). This transformation is called 

Box-Tidwell [variable*ln x (variable)]. From Table 1, it can 

be observed that the additional variable ln_distance_tarmac 

is statistically significant. An assumption is violated which 

suggest that the variable requires improvement. 

In order to improve results, the variable “type of farmer” 

which failed to count less than 20% of the expected cell 

frequencies of less than five was dropped. The variable 

distance to tarmac road was also investigated and found that, 

there were five mild outliers (Figure 1).  

After running the logistic regression, results showed that 

the variable ln_distance_tarmac was no longer statistically 

significant (p = .072) which implied that, the assumption of 

linearity in the logit was not violated (Table 2). This being 

the case, there was no reason for transforming the variable. 

 

Figure 1.  Box Plot for Distance to Tarmac Road 

Table 2.  Logistic Regression Output for the Interaction between 
Predictors and Their ln after Modifications 

 B S.E. Wald df Sig. Exp(B) 

Sex       

ln_age .000 .001 .002 1 .964 1.000 

Marital_Status .797 .244 10.630 1 .001 2.219 

ln_education -.017 .011 2.100 1 .147 .984 

ln_household_size .022 .011 3.692 1 .055 1.022 

ln_land .008 .006 1.501 1 .220 1.008 

ln_distance_corn_farm -.041 .023 3.228 1 .072 .960 

ln_distance_disctrict .002 .001 2.203 1 .138 1.002 

ln_distance_tarmac .003 .001 3.282 1 .070 1.003 

Weather .120 .052 5.378 1 .020 1.127 

Member_other_PFG -2.252 .224 101.357 1 .000 .105 

Constant 1.502 .735 4.178 1 .041 4.491 

3.1.4. Multicollinearity 

Logistic regression is a very sensitive to extreme high 

correlation among IVs. The standard errors for the “B” 

coefficients were examined, to test for multicollinearity. 

From Table 3, it can be found out that, there was no evidence 

of multicollinearity because none of the independent 

variables had a standard error larger than 2.0.   

Table 3.  Standard Errors for B Coefficients  

Variable B S.E. Wald df Sig. Exp(B) 

Sex(1) -.448 .182 6.085 1 .014 .639 

Age .005 .008 .408 1 .523 1.005 

Marital_Status(1) -.830 .266 9.764 1 .002 .436 

Education -.016 .028 .309 1 .578 .984 

HH_Size .064 .034 3.526 1 .060 1.066 

Land -.004 .021 .034 1 .853 .996 

Distance_to_corn_Farm -.111 .054 4.160 1 .041 .895 

Distance_to_District .061 .008 51.510 1 .000 1.063 

Distance_to_tarmac -.033 .007 20.249 1 .000 .967 

Weather   61.089 5 .000  

Weather(1) 1.291 .409 9.947 1 .002 3.637 

Weather(2) -2.196 .413 28.213 1 .000 .111 

Weather(3) .621 .287 4.670 1 .031 1.861 

Weather(4) .521 .250 4.360 1 .037 1.684 

Weather(5) 1.010 .485 4.328 1 .037 2.745 

Soil_type   10.988 2 .004  

Soil_type(1) .185 .245 .569 1 .451 1.203 

Soil_type(2) -.505 .230 4.808 1 .028 .603 

Member_other_PFG(1) 2.319 .250 86.313 1 .000 10.169 

Constant -1.566 .516 9.205 1 .002 .209 

3.1.5. Outliers and Influential Cases 

By excluding the outliers from the analysis substantially, 

an accuracy of the model is improved. A poor fit of the 

model occurs also when the category of outcome shows a 

high probability of being in another category. An outlier is 

checked by examining residuals.  

Residuals for each case are computed and then 

standardized, to assist in the evaluation of the fit of the model 

to each case. Influential cases are identified through Cook’s 

distances test as recommended [15]. 

Outliers were checked by comparing the accuracy rates of 

the model that included outliers and the one which excluded 

the outliers. After running the residuals, it was revealed that 

there were eight outliers which had standardized residuals of 

 -2.58. Furthermore, it showed that there were seven 

outliers with a large positive standardized residuals ( 2.58). 

For the case of Cook’s value, the output showed that no case 

had a value distance  1. This indicated that there were no 

any influential cases. 

Since the outliers were found, the logistic regression 

model which excluded outliers was performed. A 

classification accuracy rate of the model which included 

outliers was 73.6% (Table 4) while the rate of the model 

which excluded outliers was 74.7% (Table 5). 
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Table 4.  Classification Accuracy Rate of the Baseline model  

Observed 

Predicted 

Experimental group Percentage 

Correct Control Treatment 

Experimental 

group 

Control 447 72 86.1 

Treatment 160 199 55.4 

Overall Percentage 73.6 

The cut value is .500 

The classification accuracy of the model which included 

all cases (baseline model) was 1.1% less than the 

classification accuracy for the model which excluded 15 

cases found to be outliers. Since the accuracy rate of the 

revised model was less than 2% more accurate, logistic 

regression computations were based on the baseline model.    

Table 5.  Classification Accuracy Rate of the Revised Model  

Observed 

Predicted 

Experimental group Percentage 

Correct Control Treatment 

Experimental 

group 

Control 440 71 86.1 

Treatment 147 205 58.2 

Overall Percentage 74.7 

The cut value is .500 

3.1.6. Independence of Residuals 

Independence of errors was tested to observe if the 

responses of different cases were independent of each other. 

If errors are not independent it means that logistic regression 

produces an overdispersion (great variability) effects. 

Because of this, it was necessary for the assumption to be 

tested. 

 

Figure 2.  Residual Lag Plot 

Independence of errors in logistic regression assumes a 

between-subjects design. The plot of residual and lag of 

residual in Figure 2 showed that there was a slight pattern of 

errors indicating that, a variance was non-random. The 

severity of the problem of an over-dispersion was assessed 

basing on Pearson and Deviance statistics. A Pearson value 

was found out to be 923.544 while Deviance statistic was 

886.319. Coefficient of variation (CV) of the two values was 

found to be 0.029 obtained from 







 

904.93
26.32

μ
σCV . 

Since 1CV , it indicates that discrepancy of Pearson 

and Deviance was low (923.544 - 886.319 = 37.225). This 

suggests that an over-dispersion was not a problem. 

3.2. Assessment of Contribution of Variables in the 

Model 

This section discusses the importance of variables to the 

model. Two inferential tests were used: the tests of a model 

and the individual predictors.   

3.2.1. Goodness of Fit of Models 

At first, the independent variables were tested by 

comparing with the constant only model with the full model 

(constant and all variables), to find out whether they 

contributed to the prediction of the outcome. The two models 

were compared through -2log-likelihoods (equations 8 and 

9), Akaike Information Criterion (AIC) (equation 10) and 

Chi Square.  

All these tests are used to find out which model 

approximate the reality given to the set of data. The idea of 

comparing models was to find out the model with a minimal 

loss of information than others. Statistical significance 

difference between the models indicates the relationship 

between the predictors and the outcome [15]. 

Log-likelihood is calculated basing on summing the 

probabilities associated with the predicted and the actual 

outcomes for each case: 

     
1

ˆ ˆlog ln 1 ln 1
N

i i i i
i

likehood Y Y Y Y


 
  

     (3) 

Log-likelihood is multiplied by -2 in order to have a 

statistic that is distributed as chi-square.  
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AIC originated from Kullback-Leibler Information (KLI). 

It represents the information lost when the reality is 

approximated [8]. Through AIC, the relationship between 

the Maximum Likelihood and KLI information is established 

which is defined as; 

KlikelihoodAIC 2)(log2         (5) 

Whereby K, is the number of estimated parameters 

included in the model (variables and constant).  

The output showed that AIC value for the baseline model 

(a model which contained only a constant) was 1,189.846 

while for the full model (model contained constant and 

variables) was 923.125. Since the full model had a lower 

value than the constant model, there were indications that, 

the full model was a better fit. -2log-likelihoods values were 
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found to be 1187.846 for the baseline model when compared 

to 885.125 for the full model. Like AIC, the lower value 

indicated a model fit. There were indications that, a full 

model fitted data well when compared to the baseline model. 

Furthermore, it was found out that, the baseline model was 

accurate by 59.1%. This indicated that by nature the model 

had a predictive power. Omnibus tests of the model 

coefficients showed further that, the chi-square was 

significant; 000.0,17,527.3012  pdf  at 

0.05. This is an indication that, there was a significant 

difference between the log-likelihoods between the baseline 

model and the new model (full model).  

Because the difference was significant, it implied that the 

new model was improved as it had significantly reduced 

-2LL compared to the baseline model. Variance in the 

outcome variable is more explained in the new model. 

Nagelkerke 2R suggests that the model explains about 39% 

of the variation in the outcome. The Hosmer-Lemeshow 

statistic, indicates a good fit because 175.0,8,502.112  pdf  

(A significant test indicates that the 

model is not a good fit and a non-significant test indicates a 

good fit). The tests show that the new model adequately fits 

the data. The classification rate accuracy of the new model 

was improved as it stood at 73.6% when compared to 59.1% 

of the baseline model.  

3.2.2. Tests of Individual Variables 

In order for any model to be lively, apart from other things, 

it requires to contain variables which have enough 

contribution. Besides to this, outcomes generated will be of 

doubt. There are several ways of testing whether the 

variables included in the model have required contribution. 

One of the most common methods of testing variables to be 

included in the model is through the p-value.  

Despite of being widely used, p-values suffer several 

shortcomings. They simply give a cut-off beyond which the 

conclusion is reached whether to reject a null hypothesis or 

not. [2] argue that non-significant results do not imply that 

there is no effect. Statistical significant results also do not 

necessarily imply that the effect is physical. The importance 

of variables in the model is determined by size of the effects 

and not statistical significance.  

Effects size also known as the standardized mean 

difference, are measured in various ways such as an absolute 

risk reduction, relative risk reduction, relative risk, odds ratio 

[2]. An odds ratio is used for binary or categorical outcomes 

[9].   

The examination of variables in the model was done by 

basing on the p-values and odds ratio. Thereafter, propensity 

scores were generated to observe if there was any significant 

difference. From Table 6, it can be seen that, out of the 

twelve variables included in the model, seven were 

significant since their p-values were less than 0.05. These are 

sex (p = 0.002), marital status (p=0.000), household size 

(p=0.029), distance to corn farm (p=0.001), distance to 

district (p=0.000), distance to tarmac (p=0.023) and 

participation in other PFG (p=0.000). This statistical 

significance of the coefficients was based on Wald test, that 

is, 

2

2

j

B j

B

SE
Wald              (6) 

Odds ratio (OR) shows that, out of the twelve variables, 

seven had odds ratio values greater than or equal to 1 which 

indicated that, their contribution to the model was positive. 

The variables are sex (OR =1.672), Age (OR = 1.000), 

marital status (OR = 2.557), household size (OR = 1.073), 

land (OR = 1.020), distance to district (OR = 1.023) and 

weather (OR = 1.072). 

Results show that, it is not necessary for a variable to be 

significant and at the same time having an odd ratio of 1 or 

above. Only four variables were both significant and had 

positive odds ratio namely; sex, marital status, household 

size and distance to a district. The significant variables are 

bolded as presented in Table 6. 

Table 6.  Variables in the Model 

Variable B S.E. Wald df Sig. Exp(B) 
95% C.I. for EXP(B) 

Lower Upper 

Sex .514 .168 9.399 1 .002 1.672 1.204 2.322 

Age .000 .007 .004 1 .951 1.000 .986 1.014 

Marital_Status .939 .244 14.846 1 .000 2.557 1.586 4.122 

Education -.044 .027 2.724 1 .099 .957 .909 1.008 

HH_Size .071 .032 4.781 1 .029 1.073 1.007 1.144 

Land .020 .019 1.028 1 .311 1.020 .982 1.059 

Distance_to_corn_Farm -.155 .049 10.186 1 .001 .856 .778 .942 

Distance_to_District .023 .006 13.915 1 .000 1.023 1.011 1.036 

Distance_to_tarmac -.015 .006 5.164 1 .023 .985 .973 .998 

Weather .070 .054 1.667 1 .197 1.072 .965 1.191 

Soil_type -.146 .119 1.521 1 .217 .864 .685 1.090 

Member_other_PFG -2.263 .224 102.194 1 .000 .104 .067 .161 

Constant 1.925 .809 5.663 1 .017 6.855   
 

175.0,8,502.112  pdf
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However, the propensity scores of the three models were 

examined to observe the differences (Table 7). The first 

model contained thirteen variables, while the second 

contained only those variables which were significant. 

Furthermore, the third model contained variables with odds 

ratio  1. Propensity scores were compared based on control 

and the treatment group by using the independent t test.  

Before comparing scores of the control and treatment 

groups, a balance of matching was examined through 

univariate and multivariate balance statistics. A matching 

balance is checked for a model containing significant 

variables and the variables with positive odds.  

For a model which involves significant variables only,  

an overall chi square balance test, is not significant

965.0,908.1)7(
2  p . Multivariate imbalance 

measure 
1L  for the unmatched solution (before matching), 

was 0.936 while after matching was 0.920. Both Chi square 

test and multivariate imbalances showed that, there were no 

imbalances after matching. Multivariate imbalance indicated 

that, there was no imbalance because the value for matched 

sample was small (0.920) than unmatched sample (0.936).  

 

Figure 3.  Standardized Mean Differences based on Significant Variables 

The standardized mean difference shows that, all 

covariates are balanced as 25.0d . The magnitude of 

the standardized mean differences before and after matching 

is presented in Figure 3 which shows that, the propensity 

scores of the variables after matching are very close to the 

middle column (dashed line) compared to propensity scores 

before matching. This indicates that, there is an improvement 

of the magnitude of the mean difference.   

After ensuring that the scores were balanced, an 

independent t test was performed to assess the difference 

between the scores of control and treatments (Table 7) after 

the six variables which were not significant and then were 

dropped from the logistic model.   

For the model with variables which achieved the odds 

ratio of 1 and above, the overall chi square balance test was 

not significant 409.0,191.7)7(
2  p . Multivariate 

Imbalance Measure 
1L  for the unmatched solution (before 

matching) was 0.976 while after matching was 0.981. On the 

other hand, the chi square test shows that, there was no 

imbalances after matching, multivariate imbalance test 

indicated that, there was imbalance because the value had 

increased from 0.976 to 0.981. Unbalanced covariates test 

shows further that, no covariate exhibit a large an imbalance 

i.e. .25.0d   

The magnitude of the standardized mean differences 

before and after matching is presented in Figure 4 which 

shows that, there was no improvement of the magnitude of 

the mean difference rather, the dispersion of propensity 

scores to the dashed column was large when compared to 

Figure 3. All tests were not holding to ensure that, there were 

no imbalances of scores. Despite of this, the difference of 

scores between the control and treatment were computed.  

 

Figure 4.  Standardized Mean Differences based on Odds Ratio  

The differences in the mean of propensity scores for all 

cases were not significant as shown in Table 7. By observing 

at the standard errors, it can be found out that, the last two 

models had small errors when compared to the first model 

which showed that, the two models produced more statistical 

accurate estimates.   
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Table 7.  Comparison of Propensity Score Matching 

 t df p-value 
Std. error 

difference 

Scores of thirteen 

variables 
0.081 460 0.936 0.017169 

Scores of significant 

variables 
0.185 500 0.854 0.002943 

Score of variables with 

odds ratio  1 
0.119 620 0.906 0.001027 

The study was more interested to observe to what extent 

the propensity score of the two new models affected results 

on the welfare of farmers (Table 8). Welfare is used to test 

performance of the models.  

The study showed that, neither of the factors was 

significant. Since the t values were positive, it indicated that 

there was an increase of earning from corn production, the 

value of livestock, households assets and farm assets of 

farmers participated in the agriculture intervention when 

compared to whom did not. Nonetheless, the increase is not 

significant.  

Table 8.  Welfare Assessment Basing on New Models  

Welfare 

measure 

Model with significant 

variables 

Model with odds 

ratio >= 1 

t df p-value t df p-value 

Earnings 

from corn 

production 

0.514 500 0.608 0.564 620 0.573 

Value of 

livestock 

owned 

1.265 500 0.207 0.256 620 0.798 

Value of 

household 

assets 

owned 

0.516 500 0.606 0.047 620 0.963 

Value of 

farm assets 

owned. 

0.074 500 0.941 0.671 620 0.502 

4. Conclusions  

Following the above discussions, it is revealed that, by 

reducing or merging some categories of the variable 

expected cell frequencies improved. Another finding is that, 

when a variable with a high percentage of the expected cell 

frequencies is dropped, the result is further improved. 

It is not necessary for the variable to be significant and at 

the same time, having an odds ratio of 1 or above. [14] says 

that the presence of a positive OR for an outcome given to a 

particular exposure does not necessarily indicate that, the 

association is statistically significant. 

If a variable exhibits the extreme values (outlier) and is 

excluded in the analysis, the accuracy of the model is 

substantially improved. Furthermore, another discovery is 

that the two methods (significance of a variable testing and 

odds ratio) give different variables to be included in the 

model. The significance of the variable method gives better 

propensity scores than odds ratio method. The inclusion of 

the only variables with odds ratio >= 1 in the model, 

increases the dispersion of propensity scores compared to 

the scores generated by the significant variables. 

Based on the findings it is therefore recommended that; 

(i)  All logistic regression assumptions, should be tested 

to ensure they hold in order to achieve a better 

propensity scores for matching.  

(ii)  Because the model which contained variables with 

odds ratio >= 1 only gave a poor propensity scores 

than the model contained significant variables only, 

it is recommended that variables to be included in 

the model should be based on the significance 

testing. 
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