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Abstract  In this paper, a pooled test statistic for testing the treatment contrasts has been proposed for which groups of 
experiments are conducted in two way design model with interactions in heterogeneous environments. The empirical 
distribution, percentile points and some other distributional properties of the proposed test statistic have been found using 
Monte Carlo study and the results have been compared with the studies of James and others. From the Monte Carlo 
simulation study, it has been observed that the distribution of the proposed test statistic was not following χ2 distribution or 
any other known exact distribution in all cases considered. Empirical pdf, cdf curves, percentile points and some other 
distributional characteristics as well as numerical illustrations along with real data have also been provided in this paper. 
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1. Introduction 
Experiments may be conducted with the aid of any 

suitable experimental designs. Researchers have to repeat 
their experiments several times across different locations, 
environments or seasons. The reason may be due to lack of 
space that would accommodate all the experimental plots or 
with the underlying condition that the experiments must be 
carried out at different locations (environment) or different 
seasons. Whatever may be the reason, the major aim was to 
do pooled analysis of the data obtained from these 
multi-environments instead of doing the analysis separately 
or individually (Albassam and Ali, 2014; Jamjoom and Ali, 
2011; Danbaba and Shehu, 2016) and one of the advantages 
of multi-environment analysis were that it increases the 
accuracy of evaluation of selection. The usual combined 
analysis does not always provide satisfactory information on 
the treatment contrasts, specially, when the experiments 
were conducted under heterogeneous environmental 
conditions. These heterogeneous environmental conditions 
along with other experimental conditions such as duration of 
experiments, different set of researchers involve in 
experiments, level of fertility, level of irrigation, doses of 
fertilizer, etc. may create unequal precision of the 
experiments location specific. The joy derived accuracy was  
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a function of several factors or treatments. The other reasons 
were estimation of consistency of treatments effects for a 
particular environment over large population of 
environments (Blouin et al., 2011). 

The unequal and unknown precision of the experiments 
may vitiate the test of significance of treatment contrasts 
during pooled analysis. These facts have been observed by 
Cochran (1937, 1954). Gomes and Guimaraes (1958) have 
found heterogeneous error variances in performing pooled 
analysis of two experiments and suggested approximate test 
of treatment contrasts. Bhuyan (1984) observed 
heterogeneous error variances in analyzing data of several 
groups of experiments conducted in different agricultural 
research stations in India and suggested approximate χ2-tests 
for treatment contrasts. Bhuyan (1984, 1986) has suggested a 
method of estimating and testing treatment contrasts in the 
way of combined analysis with interaction model under 
heterogeneous error variances based on the work of James 
(1951, 1954). Jamjoom and Ali (2011) and Albassam and 
Ali, (2014) have also considered the case when the 
individual experiments were laid out in completely 
randomized block designs (RBD) and latin square design 
where as Danbaba and Shehu, (2016) considered Sudoku 
square designs and Moore et. al. (2015) considered mixed 
effect model design. But they fail to give a unified approach 
for pooled analysis for the experiments conducted in 
heterogeneous environments. On the other hand no one 
considered unified approach for pooled analysis considering 
two way interaction model designs with heterogeneous 
environments in the available literature. For more detail 



 International Journal of Statistics and Applications 2017, 7(5): 258-267 259 
 

 

about the selection of interaction model one may refer to 
Aiken and West (1991) and Dawson (2014). 

The basic focus of the study was to estimate treatment 
contrast and suggest a unified pooled test statistic to test the 
treatment contrasts for which the groups of experiments 
were laid out in two ways analysis with interactions model 
with heterogeneous locations/environments. According to 
the conjecture of James (1954) the suggested test statistic 
may be distributed as approximate χ2 and for large error 
degrees of freedom it was exact χ2. But there was no limit of 
these large error degrees of freedom. Hence it was required 
to investigate the distributional properties of this suggested 
test statistic. The exact critical values of the suggested 
pooled test statistic, empirical pdf and cdf were simulated 
using Monte Carlo simulation technique and presented in 
this paper along with some other distributional properties. 

2. Derivation of the Test Statistic 
Suppose that, 𝜏𝜏1, 𝜏𝜏2, …, 𝜏𝜏𝑞𝑞  were the treatment effects of 

𝑞𝑞 treatments which were to be investigated. For this, groups 
of 𝑟𝑟 , two way design with interaction experiments were 
conducted with these same 𝑞𝑞 treatments. The main object of 
the analysis was to estimate the contrast of 𝜏𝜏𝑗𝑗 ’s (j = 1,2,3, …, 
𝑞𝑞) and to test the hypothesis that the treatment contrasts 
effects were independent of the locations specific. Also the 
object was to study the empirical pdf and cdf along with 
some other distributional properties of the test statistic. 

Consider the k-th (𝑘𝑘 = 1,2, … , 𝑟𝑟) yield of i-th block, j-th 
column of h-th place to be denoted by 𝑦𝑦ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  and the yields 
follows the linear two ways interactions model, 

𝑥𝑥ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇ℎ + 𝛼𝛼ℎ𝑖𝑖 + 𝛽𝛽ℎ𝑗𝑗 + 𝛾𝛾ℎ𝑖𝑖𝑖𝑖 + 𝜌𝜌𝑙𝑙 + 𝑒𝑒ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 

    

⎩
⎪
⎨

⎪
⎧
ℎ = 1,2, … ,𝑚𝑚
𝑖𝑖 = 1,2, … , 𝑝𝑝
𝑗𝑗 = 1,2, … , 𝑞𝑞
𝑘𝑘 = 1,2, … , 𝑟𝑟
𝑙𝑙 = 1,2, … ,𝑚𝑚

�             (2.1) 

where, 𝜇𝜇ℎ  = general mean of h-th place, 𝛼𝛼ℎ𝑖𝑖  = effect of i-th 
block at h-th place, 𝛽𝛽ℎ𝑗𝑗  = effect of j-th column at h-th place, 
𝛾𝛾ℎ𝑖𝑖𝑖𝑖  = interaction effect between i-th block and j-th 
treatment at h-th place, 𝜌𝜌𝑙𝑙  = l-th treatment effect location 
specific, and 𝑒𝑒ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  = random error. 

Assumed that 𝑒𝑒ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ~𝑁𝑁𝑁𝑁𝑁𝑁(0, 𝜎𝜎ℎ2). The usual restrictions 
for the above two ways interactions model were,  

∑ 𝛼𝛼ℎ𝑖𝑖
𝑝𝑝
𝑖𝑖=1 = ∑ 𝛽𝛽ℎ𝑗𝑗

𝑞𝑞
𝑗𝑗=1 = ∑ 𝜆𝜆𝑙𝑙

𝑞𝑞
𝑙𝑙=1 = 0, ∑ 𝛾𝛾ℎ𝑖𝑖𝑖𝑖

𝑝𝑝
𝑖𝑖=1 = 0,  

for all j and ∑ 𝛾𝛾ℎ𝑖𝑖𝑖𝑖
𝑞𝑞
𝑗𝑗=1 = 0, for all i. 

For details about the model and estimation of parameters, 
one can be referred to Jamjoom and Ali (2011) and Moore 
and Dixtion (2015). Let us denote the intra-block estimates 
of 𝑗𝑗-th treatment effect at ℎ-th place by 𝜏𝜏ℎ𝑗𝑗 , and by the 
usual least square method 𝜏𝜏ℎ𝑗𝑗  is given by 

𝜏𝜏ℎ𝑗𝑗 = 𝑥̅𝑥ℎ∙𝑗𝑗 ∙∙ − 𝑥̅𝑥ℎ∙∙∙∙ 

The suggested pooled estimate of treatment contrasts and 
test of the hypothesis was based on the pooled analysis of 
above experiments which were conducted individually in m 
heterogeneous environments/places. The suggested method 
of estimation and test was based on an adaptation of the work 
of James (1954) to the problem under consideration.  

Let 𝜔𝜔1, 𝜔𝜔2, …, 𝜔𝜔𝑚𝑚  be the location-specific vector of 𝑞𝑞 
treatments effect at 𝑚𝑚 different places respectively. Same 
sets of treatments were considered in each location. The 
problem was to test if the treatment effects were independent 
of the locations.  

So that we were interested to test the hypothesis as,  
H0 : 𝐶𝐶𝜔𝜔1 = 𝐶𝐶𝜔𝜔2 = ⋯ = 𝐶𝐶𝜔𝜔𝑚𝑚     (2.2) 

where,  

𝐶𝐶𝜔𝜔ℎ = �
1
1
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1
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⋮
0

0
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⋮
0

0
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⋯
⋯
⋮
⋯

0
0
⋮
−1
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(𝑞𝑞−1)×𝑞𝑞

�

𝜏𝜏ℎ1
𝜏𝜏ℎ2
⋮
𝜏𝜏ℎ𝑞𝑞

�

𝑞𝑞×1

. 

In the above, 𝜏𝜏ℎ𝑗𝑗  was the location-specific effect of 
treatment ′𝑗𝑗 ′ in the location ′ℎ′, ℎ = 1, 2, ..., 𝑚𝑚 and j = 1, 
2, ..., 𝑞𝑞. Let 𝜔𝜔�ℎ  be a solution to the normal equations, 

𝐴𝐴ℎ = 𝐵𝐵ℎ𝜔𝜔�ℎ ;   ℎ = 1, 2, …, 𝑚𝑚 
Since 𝐶𝐶𝜔𝜔ℎ  were contrasts so they were estimable and the 

best linear unbiased estimate of 𝐶𝐶𝜔𝜔ℎ  were 
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where, 𝜔𝜔�ℎ𝑗𝑗 = 𝑡𝑡ℎ𝑗𝑗  for j = 1, 2, …, 𝑞𝑞. For two ways 
interactions model, 

𝐶𝐶𝜔𝜔�ℎ = Γℎ

= �
1
1
⋮
1
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0
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0

0
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⋯
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⋯

0
0
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where, 𝑥̅𝑥ℎ∙𝑗𝑗 ∙∙ was the j-th (j = 1, 2, …, 𝑞𝑞) treatment mean of 
h-th (ℎ = 1, 2, …, 𝑚𝑚) place. 

It was observed that Γℎ~NID(𝐶𝐶𝜔𝜔ℎ ,𝑊𝑊ℎ𝜎𝜎ℎ2)  for ℎ  = 1, 
2, …, 𝑝𝑝; where 𝑊𝑊ℎ = 𝐶𝐶𝐵𝐵ℎ−𝐶𝐶′ was a non-singular of (𝑣𝑣 –1) 
order square matrix and was unique with respect to any 
choice of g-inverse 𝐵𝐵ℎ− of 𝐵𝐵ℎ . In practice 

𝑊𝑊ℎ =

⎣
⎢
⎢
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⎢
⎢
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𝑝𝑝
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1
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⋯
⋯
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⋯
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⎥
⎤
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where, 𝑝𝑝  was the number of blocks (replications) of the 
location specific experiment. Thus, for known 𝜎𝜎ℎ2  (ℎ =1, 
2, …, 𝑚𝑚), the suggested pooled test statistic for the null 
hypothesis (2.2) was given by 
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𝜏𝜏 = ∑ �(Γℎ−Γ)′  𝑊𝑊ℎ
−1(Γℎ−Γ)

𝜎𝜎ℎ
2 �𝑚𝑚

ℎ=1   

where,     Γ = ∑ 𝑊𝑊ℎ
−1𝑇𝑇ℎ/𝜎𝜎ℎ

2𝑚𝑚
ℎ=1
∑ 𝑊𝑊ℎ

−1/𝜎𝜎ℎ
2𝑚𝑚

ℎ=1
              (2.2) 

This test statistic (2.2) follow approximate χ2 distribution 
with (p–1)(q–1) d.f. when randomized block design or latin 
square design ( see, Ali et. al., 1999; Albassam and Ali, 2014) 
were consider for the experiments.  

The proof has been done in the same line of James (1954) 
and Albassam and Ali (2014). When 𝜎𝜎ℎ2 is unknown, then 
𝜎𝜎ℎ2 can be replaced by its usual unbiased estimate 𝜎𝜎�ℎ2, i.e., 
mean sum square error of the model (2.1) in h-th location.  

We know 𝑓𝑓ℎ𝜎𝜎�ℎ
2

𝜎𝜎ℎ
2  are independently distributed as χ2 with fh 

(ℎ = 1, 2, …, 𝑚𝑚) d.f. In our case, 𝜎𝜎�ℎ2 is the error mean sum 
of squares from ℎ-th experiment and all error degrees of 
freedom 𝑓𝑓ℎ ’s are equal having value (𝑝𝑝 − 1)(𝑞𝑞 − 1). Let 𝜏̂𝜏 
and Γ� be the estimated values of τ and Γ respectively after 
replacing 𝜎𝜎ℎ2 by its estimate 𝜎𝜎�ℎ2. Then, the test statistic (2.3) 
can be written as, 

𝜏̂𝜏 = ∑ �Γℎ−Γ��
′  𝑊𝑊ℎ

−1�Γℎ−Γ��
𝜎𝜎�ℎ

2
𝑚𝑚
ℎ=1   

where,  Γ� = (∑ 𝑊𝑊ℎ
−1𝑇𝑇ℎ/𝜎𝜎�ℎ2𝑚𝑚

ℎ=1 ) ∑ (𝑊𝑊ℎ
−1/𝜎𝜎�ℎ2)𝑚𝑚

ℎ=1⁄    (2.3) 
In view of James (1954) theorem it may be mention here 

that the statistic (2.3) may be follow χ2 distribution with 
(𝑝𝑝 − 1)(𝑞𝑞 − 1) d.f. provided that 𝑓𝑓ℎ  are large. For 𝑓𝑓ℎ  not 
large enough, the statistic (2.3) may be compared with 

𝜋𝜋0 = 𝜒𝜒1−𝛼𝛼; (𝑝𝑝−1)(𝑞𝑞−1)
2 [+ 3𝜒𝜒2+{(𝑝𝑝−1)(𝑞𝑞−1)+2}

2(𝑚𝑚−1)(𝑞𝑞−1){(𝑚𝑚−1)(𝑞𝑞−1)+2}
 

          ∑ 𝑓𝑓ℎ−1{1 − 𝜎𝜎�ℎ−2/∑ 𝜎𝜎�ℎ−2𝑚𝑚
ℎ=1 }2𝑚𝑚

ℎ=1 ]  

where 𝜒𝜒1−𝛼𝛼;(𝑝𝑝−1)(𝑞𝑞−1)
2  is the α% point of χ2-variate with 

(𝑝𝑝 − 1)(𝑞𝑞 − 1) d.f. The test statistic (2.3) can be computed 
easily and provides the pooled estimate of treatment 
contrasts. 

The hypothesis (2.2) may be presented in another way. 
Assume that 𝐶𝐶𝜔𝜔ℎ = 𝜔𝜔, for all ℎ = 1, 2, …, 𝑚𝑚. Then, the 
hypothesis can be written as, 

H01: 𝜔𝜔 = 0, against the alternative, H11: 𝜔𝜔 ≠ 0 
The test statistic is given by 
𝜑𝜑 = Γ′∑ 𝑊𝑊ℎ

−1𝜎𝜎ℎ−2𝑚𝑚
ℎ=1 Γ  ~ 𝜒𝜒𝑞𝑞−1

2 , if 𝜎𝜎ℎ2’s are known.  
If unknown 𝜎𝜎ℎ2’s were to be replaced by its estimates 𝜎𝜎�ℎ2 

then the test statistic is given by 

𝜑𝜑� = Γ�′∑ 𝜎𝜎�ℎ−2𝑊𝑊ℎ
−1𝑚𝑚

ℎ=1  Γ�  

Then 𝜑𝜑�  ~ 𝜒𝜒𝑞𝑞−1
2  under H01. For 𝑓𝑓ℎ  not large enough, the 

statistic 𝜑𝜑�  is to be compared with 

𝜋𝜋1 = 𝜒𝜒1−𝛼𝛼; 𝑞𝑞−1
2 [1 + 3𝜒𝜒2+(𝑣𝑣+1)

2(𝑣𝑣2−1)
  

           ∑ 𝑓𝑓ℎ−1{1 − 𝜎𝜎�ℎ−2/∑ 𝜎𝜎�ℎ−2𝑚𝑚
ℎ=1 }2𝑚𝑚

ℎ=1 ]  

where 𝜒𝜒1−𝛼𝛼; 𝑞𝑞−1
2  is the α% point of χ2-variate with (𝑞𝑞 − 1) 

d.f. The hypothesis implies that all (𝑞𝑞 − 1) contrasts are 
insignificant. But it is sometimes required to test the 
insignificancy of any one of the contrasts. For this, the test 

statistic is given by, 

𝜋𝜋� = ∑ (2𝜎𝜎�ℎ2/𝑞𝑞)−1Γℎ𝑗𝑗2𝑚𝑚
ℎ=1   

        −�∑ (2𝜎𝜎�ℎ2/𝑞𝑞)−1Γℎ𝑗𝑗𝑚𝑚
ℎ=1 �2{∑ (2𝜎𝜎�ℎ2/𝑞𝑞)−1𝑚𝑚

ℎ=1 }−1  

where, Γℎ𝑗𝑗 = 𝑡𝑡ℎ𝑗𝑗 − 𝑡𝑡ℎ𝑗𝑗 ′ , 𝑗𝑗 ′ ≠ 𝑗𝑗 = 1, 2, … , 𝑞𝑞 . The statistic 
 𝜋𝜋�  ~ 𝜒𝜒𝑞𝑞−1

2  provided 𝑓𝑓ℎ ’s are large. For 𝑓𝑓ℎ ’s not large 
enough, 𝜋𝜋� is to be compared with 

𝜋𝜋2 = 𝜒𝜒1−𝛼𝛼; 𝑚𝑚−1
2 [1 + 3𝜒𝜒2+(𝑝𝑝+1)

2(𝑝𝑝2−1)
  

           ∑ 𝑓𝑓ℎ−1{1 − 𝜎𝜎�ℎ−2/∑ 𝜎𝜎�ℎ−2𝑚𝑚
ℎ=1 }2𝑚𝑚

ℎ=1 ]  

where, 𝜒𝜒1−𝛼𝛼; 𝑚𝑚−1
2  is the α% point of χ2-variate with (𝑚𝑚 − 1) 

d.f.  
In every case, James (1954) conjecture that the test 

statistic follow a χ2 distribution if 𝑓𝑓ℎ ’s are large, but there 
was no definite indication of the value of large 𝑓𝑓ℎ . Thus, it 
was decided to study the distributional properties of the test 
statistic (2.3) for both small and moderately large values of 
𝑓𝑓ℎ  using Monte Carlo simulation technique. For this, sets of 
random normal samples were drawn. In order to find the 
exact critical values of the statistic, a Monte Carlo study was 
performed.  

In this study, attempts were made to find the exact critical 
values, pdf, cdf and some other properties of the distribution 
of the test statistic (2.3) under the null hypothesis. These 
were calculated with eliminating outliers and without 
withdrawing the outliers from the series of the statistic (2.3). 

For eliminating lower and upper outliers, the formulae are 
𝐹𝐹𝐿𝐿 − 1.5 𝑑𝑑𝐹𝐹 and 𝐹𝐹𝑈𝑈 + 1.5 𝑑𝑑𝐹𝐹 where, 𝐹𝐹𝐿𝐿 = first quartile, FU 
= third quartile and dF = FU – FL.  

For a particular value of 𝜎𝜎ℎ2 and for different values of 𝜏𝜏𝑗𝑗  
(j=1,2,…,𝑞𝑞) sets of 𝑞𝑞 (= 2, 3, 4, 5, …) normal observations 
were generated. A set of 𝑞𝑞  observations for a particular 
value of 𝜏𝜏𝑗𝑗  have been considered as the observations of j-th 
treatment of 𝑝𝑝  blocks. The set of 𝑞𝑞  observations for 
different values of 𝜏𝜏𝑗𝑗  were considered the observations from 
a two ways interactions design. For different values of 𝜎𝜎ℎ  (h 
= 1, 2, …, 𝑚𝑚), the observations of 𝑚𝑚 two ways interaction 
designs were generated. The samples were generated to 
calculate the test statistic (2.3) under the null hypothesis. 
These processes were repeated 20,000 times and obtained 
20,000 values of the test statistic (2.3). From these test 
statistic values, exact critical values corresponding to the 
nominal sizes 1%, 2%, 2.5%, 5%, 10%, 90%, 95%, 97.5%, 
98%, 99% were calculated first from the original values and 
then eliminating outliers under the null hypothesis. Beside 
these, some other distributional characteristics such as mean, 
median, variance, skewness, kurtosis, empirical pdf and cdf 
were calculated for different df (degrees of freedom) of the 
test statistic. In each case, percentile points and other 
distributional characteristic were studied. Empirical fitted 
pdf and cdf curve of the distribution of the test statistic were 
also presented to observe the trend with the change of df of 
the statistic and error df of designs. For computer 
programming and simulation, MATLAB R2015a version 
was used. 
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3. Monte Carlo Study 
In section 2, the derivation of the test statistic as well as 

the simulation procedure of obtaining percentile values, 
distributional characteristics, empirical fitted pdf and cdf 
curve of the test statistic (2.3) were discussed and they are 
presented in tabular form in this section.  

3.1. Percentile Values 

Simulated percentile values for the nominal sizes 1%, 2%, 
2.5%, 5%, 10%, 90%, 95%, 97.5%, 98%, 99% are presented 
in to two tables and they are: 

Table 3.1: Simulated percentile points of the test statistic 
(2.3) under the null hypothesis. 

Table 3.2: Simulated percentile points of the test statistic 
(2.3) after elimination of outliers under the null hypothesis. 

The entries of these tables are 𝜏̂𝜏𝑚𝑚(𝑞𝑞) , where, 𝑝𝑝 = 
 Pr[𝜏̂𝜏 ≤ 𝜏̂𝜏𝑚𝑚(𝑞𝑞)] = ∫ 𝑔𝑔(𝜏̂𝜏) 𝑑𝑑𝜏̂𝜏𝜏𝜏�𝑚𝑚 (𝑞𝑞)

0 , significance levels, p = 
0.01, 0.02, 0.025, 0.05, 0.10, 0.90, 0.95, 0.975, 0.98, 0.99 
and degrees of freedom (df), 𝜈𝜈 = 1, 2, 3, 4, 6, 8, 9, 10, 12, 16, 
18, 20, 24, 28, 32, 40, 50, 60.  

Table 3.1.  Simulated percentile points of the test statistic (2.3) under H0 

𝑝𝑝 = Pr[𝜏̂𝜏 ≤ 𝜏̂𝜏𝑚𝑚(𝑞𝑞)] = ∫ 𝑔𝑔(𝜏̂𝜏) 𝑑𝑑𝜏̂𝜏𝜏𝜏�𝑚𝑚 (𝑞𝑞)
0   

𝑝𝑝 

Degrees of freedom ( 𝜈𝜈) 

1 2 3 4 5 6 7 8 9 10 12 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

0.010 

0.020 

0.025 

0.050 

0.100 

0.900 

0.950 

0.975 

0.980 

0.990 

0.000 

0.000 

0.000 

0.001 

0.006 

1.051 

1.612 

2.170 

2.344 

3.089 

0.008 

0.016 

0.020 

0.039 

0.078 

1.876 

2.482 

3.195 

3.433 

4.139 

0.023 

0.037 

0.044 

0.071 

0.118 

1.290 

1.626 

1.975 

2.081   

2.422 

0.030 

0.043 

0.048 

0.070 

0.106 

0.796 

0.969 

1.135 

1.195 

1.355 

0.114 

0.156 

0.171 

0.229 

0.320 

1.851 

2.216 

2.578 

2.701 

3.015 

0.118 

0.154 

0.165 

0.217 

0.294 

1.457 

1.729 

1.967 

2.058 

2.313 

0.332 

0.419 

0.456 

0.576 

0.760 

3.255 

3.812 

4.351 

4.528 

5.025 

0.269 

0.339 

0.362 

0.449 

0.580 

2.256 

2.620 

2.981 

3.081 

3.405 

0.352 

0.429 

0.459 

0.557 

0.696 

2.492 

2.888 

3.286 

3.404 

3.757 

0.480 

0.564 

0.606 

0.743 

0.913 

3.038 

3.485 

3.921 

4.080 

4.477 

0.451 

0.524    

0.547 

0.650 

0.783   

2.347 

2.671   

2.964 

3.058   

3.308 

fh 8 18 72 81 162 108 216 135 84 168 180 

𝜎𝜎ℎ2’s 1,2 1,2 1,2 1,2,3 1,2 1,2,3 1,2 1,2,3 1,2,3,4 1,2,3 1,2,3,4 

Table 3.1.  (Continue) 

𝑝𝑝 

Degrees of freedom ( 𝜈𝜈) 

16 18 20 24 28 32 40 50 60 

(12) (13) (14) (15) (16) (17) (18) (19) (20) 

0.010 

0.020 

0.025 

0.050 

0.100 

0.900 

0.950 

0.975 

0.980 

0.990 

0.594 

0.668 

0.699 

0.802 

0.937 

2.389    

2.653 

2.919 

3.011    

3.282 

5.7474    

6.4751    

6.7537    

7.7144 

8.9851   

22.3712   

25.0399   

27.3914 

28.1436   

30.2853 

1.949 

2.193 

2.291 

2.585 

2.972 

6.978 

7.808 

8.536 

8.745 

9.419 

3.051 

3.386 

3.483    

3.867 

4.415 

9.562   

10.553 

11.457 

11.690 

12.472 

3.619 

3.927 

4.065    

4.488 

5.040 

10.252 

11.236 

12.110 

12.355 

13.088 

4.838 

5.287   

5.425 

5.999 

6.697   

12.939 

14.007 

15.116 

15.460 

16.312 

5.586 

6.002 

6.113    

6.638 

7.290 

13.014 

14.003 

14.998 

15.304 

16.052 

10.895 

11.618 

11.883 

12.783 

13.860 

23.458 

25.150 

26.651 

27.107 

28.593 

11.808 

12.537 

12.746 

13.551 

14.591 

23.599 

25.173 

26.585 

27.073 

28.304 

fh 225 80 120 140 192 216 270 264 308 

𝜎𝜎ℎ2’s 1,2,3,4,5 1,2,3 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3 
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Table 3.2.  Simulated percentile points of the test statistic (2.3) after elimination of outliers under H0 

𝑝𝑝 = Pr[𝜏̂𝜏 ≤ 𝜏̂𝜏𝑚𝑚(𝑞𝑞)] = ∫ 𝑔𝑔(𝜏̂𝜏) 𝑑𝑑𝜏̂𝜏𝜏𝜏�𝑚𝑚 (𝑞𝑞)
0   

𝑝𝑝 

Degrees of freedom ( 𝜈𝜈) 

1 2 3 4 5 6 7 8 9 10 12 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

0.010 

0.020 

0.025 

0.050 

0.100 

0.900 

0.950 

0.975 

0.980 

0.990 

0.000 

0.000 

0.000 

0.001 

0.005 

0.670 

0.859 

0.978 

1.011 

1.077 

0.008 

0.015 

0.019 

0.036 

0.074 

1.533 

1.875 

2.108 

2.164 

2.288 

0.022 

0.036 

0.042 

0.069 

0.114 

1.119 

1.335 

1.492 

1.526 

1.599 

0.030 

0.043 

0.047 

0.068 

0.104 

0.729 

0.853 

0.942 

0.962 

1.012 

0.112 

0.155 

0.169 

0.226 

0.315 

1.726 

1.992 

2.187 

2.237 

2.367 

0.117 

0.151 

0.164 

0.215 

0.290 

1.373 

1.572 

1.730 

1.767 

1.851 

0.329 

0.415 

0.450 

0.572 

0.753 

3.100 

3.508 

3.834 

3.904 

4.129 

0.268 

0.338 

0.361 

0.446 

0.575 

2.154 

2.447 

2.663 

2.723 

2.856 

0.351 

0.426 

0.455 

0.554 

0.691 

2.384 

2.683 

2.931 

2.994 

3.149 

0.477 

0.562 

0.600 

0.740 

0.908 

2.909 

3.260 

3.536 

3.607 

3.782 

0.449 

0.522 

0.545 

0.647 

0.779 

2.272 

2.540 

2.733 

2.786 

2.907 

fh 8 18 72 81 162 108 216 135 84 168 180 

𝜎𝜎ℎ2’s 1,2 1,2 1,2 1,2,3 1,2 1,2,3 1,2 1,2,3 1,2,3,4 1,2,3 1,2,3,4 

Table 3.2.  (Continue) 

𝑝𝑝 

 Degrees of freedom ( 𝜈𝜈) 

16 18 20 24 28 32 40 50 60 

(12) (13) (14) (15) (16) (17) (18) (19) (20) 

0.010 

0.020 

0.025 

0.050 

0.100 

0.900 

0.950 

0.975 

0.980 

0.990 

0.590 

0.666 

0.696 

0.798 

0.934 

2.333 

2.553 

2.734 

2.787 

2.906 

5.7430    

6.4591    

6.7360    

7.6915 

8.9565   

21.8629   

24.0173   

25.7707 

26.2102   

27.2976 

1.946 

2.189 

2.288 

2.579 

2.964 

6.821 

7.497 

8.066 

8.183 

8.532 

3.042 

3.371 

3.476 

3.861 

4.401 

9.388 

10.233 

10.897 

11.079 

11.517 

3.613 

3.920 

4.057 

4.483 

5.031 

10.100 

10.957 

11.638 

11.817 

12.236 

4.833 

5.279 

5.414 

5.985 

6.678 

12.747 

13.736 

14.524 

14.746 

15.287 

5.578 

5.998 

6.107 

6.625 

7.281 

12.881 

13.767 

14.503 

14.725 

15.267 

10.888 

11.607 

11.866 

12.767 

13.844 

23.219 

24.714 

25.916 

26.209 

27.050 

11.795 

12.531 

12.735 

13.542 

14.571 

23.385 

24.785 

25.889 

26.223 

27.073 

fh 225 80 120 140 192 216 270 264 308 

𝜎𝜎ℎ2’s 1,2,3,4,5 1,2,3 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3 

 
 
3.2. Distributional Characteristics 

Further, a table indicating some distributional 
characteristics of the test statistic (2.3) is also presented in 
this section. This table includes mean, median, variance, 
skewness and kurtosis of the test statistic (2.3). This table 

will help to understand and unfold the properties of the test 
statistic (2.3). It will also help for preparation of a 
comparative study regarding the performance of the test 
statistic (2.3) and corresponding exact 𝜒𝜒2 test. 
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Table 3.3.  Simulated distributional characteristics of the test statistic (2.3) under H0 

df p fh Mean Median Variance Q1 Q3 Skewness Kurtosis 

1 2 8 0.396 0.160 0.423 0.035 0.481 4.257 36.012 
2 2 18 0.807 0.534 0.771 0.211 1.098 2.501 13.220 
3 2 72 0.613 0.477 0.266 0.246 0.828 1.773 7.746 

4 3 81 0.406 0.341 0.084 0.194 0.547 1.447 6.183 
          
5 2 162 1.002 0.871 0.405 0.536 1.327 1.284 5.481 

6 3 108 0.813 0.723 0.228 0.463 1.063 1.191 5.116 
7 2 216 1.886 1.702 1.033 1.144 2.434 1.053 4.481 
5 2 162 1.011 0.867 0.437 0.531 1.338 1.389 5.970 

          
7 2 216 1.873 1.690 1.040 1.129 2.414 1.170 5.207 
8 3 135 1.344 1.233 0.466 0.841 1.722 1.047 4.794 

9 4 84 1.525 1.404 0.537 0.994 1.935 1.009 4.570 
10 3 168 1.893 1.762 0.738 1.271 2.370 0.956 4.452 
          

12 4 180 1.513 1.429 0.389 1.065 1.871 0.827 4.043 
16 5 225 1.617 1.546 0.335 1.201 1.959 0.750 3.903 
20 5 120 4.872 4.696 2.565 3.720 5.818 0.725 3.908 

24 5 140 6.842 6.622 4.161 5.388 8.069 0.633 3.597 
          

28 5 192 7.523 7.358 4.229 6.031 8.769 0.543 3.349 
32 5 216 9.667 9.442 6.069 7.916 11.193 0.516 3.394 
40 6 270 10.042 9.848 5.146 8.449 11.464 0.505 3.533 

50 6 264 18.492 18.238 14.307 15.800 20.870 0.432 3.296 
60 7 308 18.971 18.743 12.531 16.485 21.209 0.403 3.291 

 
 

4. Discussion and Interpretation 
In view of AlBassam and Ali (2014), Jamjoom and Ali 

(2011) and Bhuyan (1986) based on James (1954) conjecture, 
the suggested test statistic (2.3) should be distributed as 𝜒𝜒2 
when error degrees of freedom 𝑓𝑓ℎ = 𝑝𝑝𝑝𝑝(𝑟𝑟 − 1), h = 1, 2, 
3, …, m  were large. But the critical values obtained from 
the simulated distribution of the test statistic differ 
significantly from those corresponding exact 𝜒𝜒2  even for 
large error degrees of freedom. These may be observed by 
comparing the percentile points and the distributional 
characteristics of the test statistic (2.3) for different values of 
𝑓𝑓ℎ  with those corresponding 𝜒𝜒2-distribution. The following 
comparisons will make this point clear. 

From the below comparison (Table 4.1) it is observed that 
for 5% level of significance and for 𝑓𝑓ℎ = 8, the critical value 
of the simulated distribution is 1.612 (without eliminating 
outliers) and is 0.859 (with eliminating outliers). The 
corresponding value of 𝜒𝜒2-distribution is 3.841. Here, error 
degrees of freedom, 𝑓𝑓ℎ = 8, is small. Similar phenomenon 
was also observed by studying the mean, median, variance, 
skewness and kurtosis. However, James (1954) conjecture 
was to compare the calculated value of 𝜏̂𝜏 with the value of 
𝜋𝜋0. But the 5% value of 𝜋𝜋0 was significantly differ compare 
to the simulated 5% value of 𝜏̂𝜏 . This means that if the 
calculated value of 𝜏̂𝜏  lies between 0.859 (eliminating 

outliers) and 1.042 (=𝜋𝜋0 ) or 1.042 and 1.612 (without 
eliminating outliers), the researcher will wrongly accept or 
reject the null hypothesis of homogeneity of treatment 
contrasts. The conclusion of the researcher will not be 
disturbed in the case when calculated of 𝜏̂𝜏 will either be less 
than 0.859 or greater than 1.612. The percentile points at 
lower tail of the simulated distribution of the test statistic 
were however observed to be close to those corresponds of 
the exact 𝜒𝜒2-distribution and the corresponding value of 𝜋𝜋0. 
If we increase 𝑓𝑓ℎ  one step further the aforementioned 
problems remains more or less same. The following example 
will make it clear: 

Consider the moderately large error degrees of freedom of 
individual experiment, i.e., 𝑓𝑓ℎ =72, the distribution 𝜏̂𝜏 will 
not follow the exact 𝜒𝜒2 distribution. Of course the fact was 
also observed by studying the mean, median, variance, 
skewness and kurtosis of the distribution of 𝜏̂𝜏. James (1954) 
conjecture was to compare the calculated value of 𝜏̂𝜏 with the 
value of 𝜋𝜋0. But the critical value of  𝜏̂𝜏 differ from the value 
of 𝜋𝜋0 for different level of significance. The difference in 
the critical value of 𝜏̂𝜏 and in the value of 𝜋𝜋0 increases with 
the decrease in the level of significance of the test. The value 
of 𝜋𝜋0 and the critical value of 𝜏̂𝜏 were not same even for  
90% level of significance. This means that the problem of 
test using the value of 𝜋𝜋0  as critical value will not be 
obviated if the error degrees of freedom of individual 
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experiments were increased still further. This may be 
observed from the following comparisons. 

The below Table 4.3 represents the percentile points of the 
simulated distribution of 𝜏̂𝜏 based on large error degrees of 
freedom. According to James (1954) conjecture this 𝜏̂𝜏 
should be distributed as exact 𝜒𝜒2. But the mean, median, 
variance, skewness and kurtosis of 𝜏̂𝜏  do not support the 
James (1954) theory. The same was shown in the empirical 

pdf and cdf (from Fig 1 to Fig 18) of the test statistic 𝜏̂𝜏 (2.3). 
The percentile points of 𝜏̂𝜏  also differ with those of 
𝜒𝜒2-distribution. This study thus indicates that the suggested 
test statistic (2.3) is not distributed as 𝜒𝜒2 even for large error 
degrees of freedom will also be misleading. However, for 
valid conclusion using the statistic 𝜏̂𝜏 one can consult the 
percentile points of the simulated 𝜏̂𝜏 provided in this paper. 

 

 

Figure 4.1.  Empirical probability density function (pdf) and cumulative distribution function (cdf) of test statistic 𝜏̂𝜏 (2.3) for various df and error degrees 
of freedom fh (from Fig 1 to Fig 18) 
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Table 4.1.  df = 1, p = 2, fh = 8 

 Level of significance (1-α) Distributional Characteristics 
 0.99 0.95 0.90 0.05 0.01 Mean Variance Skewness Kurtosis 

χ2 values 0.000 0.004 0.016 3.841 6.635 1.000 2.000 8.000 15.000 
𝜏̂𝜏 values 0.000 0.001 0.006 1.612 3.089 0.396 0.423 4.257 36.012 

𝜏̂𝜏 values eliminating outliers 0.000 0.001 0.005 0.859 1.077 0.239 0.075 1.386 04.125 
𝜋𝜋0 values 0.000 0.002 0.004 1.042 2.531 - - - - 

Table 4.2.  df = 3, p = 2, fh = 72 

 Level of significance (1-α) Distributional Characteristics 
 0.99 0.95 0.90 0.05 0.01 Mean Variance Skewness Kurtosis 

χ2 values 0.115 0.352 0.584 7.815 11.345 3.000 6.000 2.667 7.000 
𝜏̂𝜏 values 0.114 0.229 0.320 2.216 3.015 0.613 0.266 1.773 7.746 

𝜏̂𝜏 values eliminating outliers 0.022 0.069 0.114 1.335 1.599 0.542 0.150 0.874 3.082 
𝜋𝜋0 values 0.118 0.370 1.072 9.132 16.738 - - - - 

Table 4.3.  df = 20, p = 5, fh = 120 

 Level of significance (1-α) Distributional Characteristics 
 0.99 0.95 0.90 0.05 0.01 Mean Variance Skewnews Kurtosis 

χ2 values 8.260 10.851 12.443 31.410 37.566 20.000 40.000 0.400 3.600 
𝜏̂𝜏 values 1.949 2.585 2.972 7.808 9.419 4.872 2.565 0.725 3.908 

𝜏̂𝜏 values eliminating outliers 1.946 2.579 2.964 7.497 8.532 4.793 2.180 0.385 2.759 
𝜋𝜋0 values 3.218 5.307 7.027 19.122 22.832 - - - - 

 
 

5. Application of the Method to Real 
Data Set 

The data comes from a group of three experiments 
conducted for testing 10 varieties of wheat in three 
experimental places at i) Jamalpur, ii) Ishurdi, and ii) Jessore 
by Bangladesh Agricultural Research Institute (BARI) in 
Bangladesh in the year 1979-80. The experiments were 
conducted through two way interaction design in blocks of 
40 plots each. In the experiments, N:P:K = 100:60:40 kg/ha 
was given as basal manure. The plot size was 4×5 meters and 
the yield in kg/ha was recorded. 

The object of the study was to test the significances of 
variety effects for all places. The analytical results of the 
three individual experiments are presented in Table 5.1. 

The estimates of treatment effects and the contrasts of the 
type th1-thj (h=1,2,3; j′ =2,3, ...,10) obtained from three 
individual places are presented in Table 5.2.  

Using estimated error variance (𝜎𝜎�ℎ2 ; h=1,2,3) Bartlett’s 
(1937) χ2-test was performed and observed that the error 
variance were heterogeneous. Thus to test the significance of 
the treatment effects, the test statistic (2.3) was computed as 
𝜏̂𝜏 = 18.246. According to James (1954) the statistic 𝜏̂𝜏 was to 
be compared with either the tabulated value of χ2 with 
(p-1)(q-1)=18 d.f. or with the critical value given by the 
statistic 𝜋𝜋0 . The tabulated value, 𝜒𝜒1−𝛼𝛼; (𝑝𝑝−1)(𝑞𝑞−1)

2 =
𝜒𝜒0.95; 18)

2 =28.87 and 𝜋𝜋0 =29.081. The tabulated value based 
on the simulated distribution of  𝜏̂𝜏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is 7.6915 (from 
Table 3.2, coln. 13). From the analysis it was observed that 
the wheat variety contrasts were insignificant were as on the 
basis of the exact simulated percentile points of the statistic, 
the contrasts were observed as significant. In this case 
Jame’s (1954) suggestion distorted the conclusion on wheat 
variety effect. 

 

Table 5.1.  ANOVA analysis of individual places 

Sum Squares 
Places 

d.f. 
Jamalpur Ishurdi Jessore 

Total 12130997.50 10044437.50 7220014.77 119 

Variety 4150362.50 3412741.50 1012025.51 9 

Block 1247505.50 62532.00 100347.59 3 

Bock × Variety 1450212.01 122976.50 1203875.10 27 

Error S.Sq 5282917.50 6446187.50 4903766.57 80 

MSE (𝜎𝜎�ℎ2) 66036.47 80577.34 61297.08  



266 M. A. Ali et al.:  Pooled Test Statistic for Treatment Contrast under Heterogeneous  
Environment and Two Way Interaction Design Model 

 

Table 5.2.  Estimates of treatments with their contrasts of individual places 

Sl. # 
Jamalpur Ishurdi Jessore 

Treatment 
effects Contrasts T1 

Treatment 
effects Contrasts T2 

Treatment 
effects Contrasts T3 

1 -29.75 -720.00 253.75 475.00 -406.57 -718.75 

2 690.25 680.00 -221.25 612.00 312.17 -268.75 

3 -709.75 -350.00 -358.75 -237.50 -137.82 -787.75 

4 320.25 -285.00 481.25 162.50 380.92 -293.75 

5 225.25 -97.50 91.25 -50.00 -112.82 -397.00 

6 67.75 272.50 303.75 700.00 -9.57 -118.75 

7 -302.25 -7.50 -446.25 362.50 -287.82 -431.25 

8 -22.25 50.00 -108.75 462.50 24.67 -518.75 

9 -79.75 160.00 -208.75 50.00 112.17 -531.25 

10 -189.75  203.75  124.67  

 
 

6. Summary and Conclusions 
The results obtained from the analysis of a single 

experiment, however accurate, can provide information only 
for a particular place or season and hence were not of much 
practical importance especially when the concern of the 
investigation becomes wider and more general in agricultural, 
industrial, scientific and medical fields. Thus the 
investigators were lead to repeat their experiments in 
heterogeneous environment over years/seasons or over 
centre’s/places to make more valid and realistic conclusion 
which may either cover a reasonably longer time span or a 
wider geographical area with heterogeneous agro-climatic 
and/or other important conditions. The objective of the 
investigators can be served better with usual combine 
analysis which is simple and straightforward in case of 
homogeneity of places/seasons. In the case when 
experiments were conducted over heterogeneous 
environment or over times/seasons with much varying 
characteristics the pooled analysis was complicated. The 
analysis becomes much more complicated if places 
significance with treatments interaction were observed in 
addition to the aforementioned heterogeneity of 
environments/seasons.  

In case of mixed effect heteroscedastic model, the 
presence of places with treatments interaction term makes 
the analysis a bit more complicated and in fact no exact test 
was possible even for known weights. Bhuyan (1984) and 
AlBassam and Ali (2014) in such a situation, suggested 
performing combined analysis of those treatments conducted 
in randomized block design and latin square design 
respectively whose were stable over places. This procedure 
was a bit lengthy and at the same time was not free of 
criticism.  

In this approach, individual experiments are conducted in 
two ways design model with interaction and a unified pooled 
test statistic is suggested to test treatment contrasts. 

According to James (1954) conjecture the suggested test 
statistic (2.3) will be distributed as an exact 𝜒𝜒2-distribution 
if it is based on large error degrees of freedom. He however 
did not mention the limit of degrees of freedom beyond 
which one can consider it to be large. In this paper an attempt 
was made to find out exact critical values of the test statistic 
(2.3) through a Monte Carlo study for different parametric 
conditions. This was done under the null hypothesis in 
presence of outliers and after eliminating the outliers. 
Empirical pdf, cdf and some other distributional 
characteristics were also simulated and presented in this 
paper.  

From the Monte Carlo study, it is observed that the 
distribution of the statistic (2.3) was not distributed as 𝜒𝜒2 
even for large enough error degrees of freedom. The 
percentile points of the simulated distribution of the statistic 
differ significantly from those of corresponding 
𝜒𝜒2 -distribution and from James (1954) suggested 
approximate critical values 𝜋𝜋0 for both small and large error 
degrees of freedom. As the convergence of the distribution of 
the test statistics (2.3) towards 𝜒𝜒2 -distribution was not 
properly substantiated by the Monte Carlo study and the 
approximate critical values expressed in terms of the critical 
values of the exact 𝜒𝜒2-distribution were not vary to the exact 
critical values for small error degrees of freedom. Same also 
follows to the all distributional characteristics. It is very 
likely that the investigators will wrongly reject or accept the 
null hypothesis if they take decision on the basis of those 
approximate critical values. This fact was observed in 
practical problems. However for valid inference using the 
statistic 𝜏̂𝜏 one should be more careful and may consult the 
simulated critical values of the distribution of the statistic 𝜏̂𝜏 
embodied in this paper. 
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