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Abstract  In public health and in applied research in general, analysts frequently use automated variable selection methods 
in order to identify independent predictors of an outcome. However, the use of these methods result in spurious noise 
variables being mistakenly identified as independent predictors of the outcome as well as overestimation of effect sizes and 
underestimation of estimated standard errors and p values. Although there are methods for correcting p values for automated 
variable selection limited to forward selection (Taylor and Tibshirani, 2015) and for a wide range of automated variable 
selection methods (Brombin et al., 2007), they are not yet directly available in any software for the users to correct their p 
values. We assess the performance of epidemiologic logistic regression models selected by forward, backward and stepwise 
variable selection methods against models selected by forced entry using multiple bootstrap samples following the initial 
selection of potential predictors by univariate logistic regression from a list of candidate variables and subsequent screening 
for eliminating collinear variables. This approach of variable selection by forced entry regression based on multiple bootstrap 
samples was shown by Harrell (2001) as a simple and acceptable method for variable selection. The metrics estimated for 
evaluating our model performance were effect sizes (odds ratios) and p values. This analysis was demonstrated using sample 
from an original Framingham study, for predicting the odds of an incident cardiovascular event using 10 potential predictors. 
SAS macros were provided to perform the analyses. The results showed that a noise predictor (VLDL cholesterol) was 
selected by only the forward variable selection method. There was overestimation in regression coefficients and effect sizes 
for the independent predictors selected by automated methods. The degree of overestimation was higher for forward variable 
selection compared to the other two automated variable selection methods. The given method provides a convenient way for 
assessing independent predictors selected by automated methods and their estimated effect sizes. The SAS macros provided 
are easy to follow and implement and can be easily adapted to different datasets involving a range of predictors and any 
binary outcome variable. 

Keywords  Automated methods, Model assessment, Bootstrapping, Forced entry, SAS macros, Framingham cohort 

 

1. Introduction 
In public health and in applied research in general, 

analysts frequently use automated variable selection 
methods such as backward elimination or forward selection 
in order to identify independent predictors of an outcome or 
for developing parsimonious regression models [1-3]. 
Automatic variable selection methods in regression results in 
spurious noise variables being mistakenly identified as 
independent predictors of the outcome [4, 5]. Furthermore, 
the use of these methods can result in the selection of 
non-reproducible regression models [6] with the p-values 
and estimated  standard errors of  regression  coefficients  
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biased downwards and regression coefficients biased further 
away from zero resulting in stronger associations than 
actually is [7]. Despite these methodological problems, 
automated methods continue to be used unabatedly in 
various areas of public health and medical research. The 
popularity of automated techniques have arisen because they 
are discussed in nearly all elementary textbooks on applied 
statistics and implemented in almost all commercial 
statistical software packages. Although there are some 
methods for correcting p values for forward selection [8] and 
a range of automated variable selection methods [9], they are 
not yet directly available in any software for users to correct 
their p values. Also, these methods do not provide 
corrections for effect sizes. So, the analysts who are using 
automated methods for variable selection cannot correct their 
p values and effect sizes without doing programming. This 
means they need to be very cautious while interpreting the 
results for their variable selection. The analysts need to at 
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least compare the variables selected by automated methods 
to a variable selection method which is likely to select the 
true predictors of an outcome, and assess overfitting 
(selecting more predictors than there actually is) and 
overestimation in effect size.  

In this article, we assess the performance of epidemiologic 
logistic regression models selected by automated variable 
selection against models selected by forced entry using 
multiple bootstrap samples. The latter variable selection 
method is not novel. In fact, Harrell in 2002 [10] showed the 
use of simple bootstrap methods for variable selection. 
Harshman and Lundy [11] and Freedman et al. [12] also 
thought that simple bootstrapping may be a solution. This 
method is relatively simple compared to existing shrinkage 
and machine learning methods for variable selection and is 
therefore easier for clinicians and medical practitioners to 
grasp, however, its practical implementation in a computer 
software remains unavailable. To facilitate the practical 
application of the given method we provide computer 
programs (SAS macros) using examples from cardiovascular 
disease risk prediction. The SAS macros given in this article 
can be adapted for outcomes other than CVD incidence as 
required by the user. It is not the aim of the current paper to 
compare the performance of the given bootstrap method 
against existing shrinkage and machine learning methods. 
This could be the scope for another paper. The intended 
audience for this article are those who are using automated 
variable selection methods and would like to continue doing 
so in future despite its various shortcomings. 

For automated variable selection, we apply the most 
commonly used methods, namely, forward selection, 
backward elimination and stepwise selection. We compare 
the significant predictors selected by automated variable 
selection to the significant predictors which occur more than 
half the times by forced entry based on 1000 bootstrap 
samples. This would enable us to detect any evidence of 
overfitting. We also compare the effect size or odds ratio of 
the significant predictors selected by automated variable 
selection to the average effect size or odds ratio of these 
predictors obtained from fitting the same regression model 
by forced entry using 1000 bootstrap samples. This will 
indicate the extent of overestimation or underestimation in 
the effect size for the significant predictors selected by 
automated variable selection. To check for the stability of 
our bootstrap regression approach, we examine the direction 
of all regression coefficients. If they are either all positive or 
all negative then it can be an indication of stability of our 
bootstrap regression approach as has been suggested by 
Austin and Tu [13].  

1.1. Shrinkage and Machine Learning Methods for 
Variable Selection 

Over the past decade, there has been a tremendous amount 
of research into the use of shrinkage and machine learning 
approaches for selecting variables in prognostic models. In 
this section, we very briefly review these methods.  

The lasso or Least Absolute Shrinkage and Selection 
Operator [14] type models have become popular methods for 
variable selection when there are many predictors analyzed 
due to their property of shrinking variables with very 
unstable estimates to exactly zero. By shrinking to zero, the 
LASSO model can effectively exclude some irrelevant 
variables and produce sparse estimations. Theory states that 
lasso type methods are able to do consistent variable 
selection, but it is hard to achieve this property in practice. In 
practice, the LASSO model creates excessive biases when 
selecting significant variables and is not consistent in terms 
of variable selection [15, 16]. This consistent variable 
selection highly depends on the right choice of the tuning 
parameter. This can only be obtained under certain 
conditions [17, 18]. The second reference is in the context of 
epidemiological association studies.  

Variable selection by machine learning models has 
become the focus of much research in areas of application for 
which datasets with tens or hundreds of thousands of 
variables are available. The machine learning models not 
only find main effects variables, but interactions between 
variables and subsets of variables. There are three main 
categories of variable selection in machine learning: 

(i) Filter: These methods search for significant variables 
by looking at the characteristics of each individual variable 
using an independent test such as the information entropy 
and statistical dependence test. Following the classification 
of Kohavi and John [19], variable ranking is a filter method 
and is a pre-processing step which is independent of the 
choice of the predictor. 

(ii) Wrapper or embedded method: These methods apply a 
specific machine learning algorithm such as the decision tree 
or support vector machine or linear discriminant analysis 
(LDA) or a multi-class version of Fisher’s linear 
discriminant [20] or multi-class SVMs (see, e.g., Weston et 
al. [21]) and utilizes the corresponding classification 
performance to guide the variable selection. These methods 
depend upon the capability of the classifier used to handle 
the multi-class case.  

(iii) Hybrid methods: These combine the advantages of 
filter and wrapper methods.  

Details of machine learning methods for variable selection 
are described elsewhere [22]. 

1.2. Methods for Correcting P Values for Automated 
Variable Selection 

We mainly discuss here methods which provide closed 
form solutions for corrected p values. One method is a recent 
development by Taylor and Tibshirani [8] which provides 
selection-adjusted p values for forward variable selection. 
Brombin et al. [9] has proposed a nonparametric permutation 
solution that is exact, flexible and potentially adaptable to 
most types of automated variable selection. The correction 
becomes more severe when many variables are processed by 
the stepwise machinery. There are also sampling based 
methods under development, using Markov-chain Monte 
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Carlo and bootstrapping, that can provide improvements in 
power [23]. 

1.3. Bootstrap Methods for Variable Selection 

In the well-known bootstrapping method, bootstrap 
samples of the same size as the original sample are drawn 
with replacement from the original sample, reflecting the 
drawing of samples from an underlying population. In an 
attempt to select variables for a multiple logistic regression, 
Austin and Tu [13] proposed a model selection method based 
upon using backward elimination in multiple bootstrap 
samples. An empirical examination of this method found that 
it does not perform better than standard backward 
elimination [24]. This implies that backward elimination 
incorporating bootstrapping does not improve model 
selection compared to standard backward elimination. 

Harrell [7] has exhibited how bootstrap methods can be 
used for variable selection. This included simple 
bootstrapping and bootstrapping incorporating automated 
methods. Since the latter does not improve variable selection 
which we have discussed above [24], we implement in this 
article a simple and practical implementation of simple 
bootstrapping for variable selection.  

2. Methods 
Forced entry regression using multiple bootstrap samples 

is implemented through several steps. First, a model is 
constructed in the original sample by selecting predictors 
from a larger set of candidate predictors using an automated 
variable selection method. Then this model is compared to 
the model selected by forced entry using bootstrap samples. 
With a bootstrap regression, first a specific model is 
repeatedly fitted using each bootstrap sample. Bootstrapping 
is used to assess the distribution of an indicator variable 
denoting the statistical significance of a specific predictor 
variable in a model where all candidate predictors were 
initially selected by univariate regression and found to have 
no collinearity problems. One would expect that variables 
that truly were independent predictors of the outcome would 
be identified as independent predictors by forced entry in a 
majority of the bootstrap samples, while noise variables 
would be identified as independent predictors in only a 
minority of samples. This approach has also been discussed 
by Harrell [10]. Using the results of the bootstrap sampling, 
we created a series of candidate models for predicting CVD 
incidence. They contained the variables that were selected in 
100%, 90%, 80% and 70% of the bootstrap samples using 
forced entry logistic regression. The use of both the full 
sample and sub-samples to implement the bootstrap 
regression models helped to assess their stability. This 
approach was used by Austin and Tu [13] for assessing the 
stability of significant predictors selected by automated 
variable selection for logistic regression. The methodology is 
discussed in detail by Harrell [10]. 

For building a multivariate logistic regression model for 
predicting the occurrence of a CVD event, we considered a 
list of 12 sociodemographic, dietary and laboratory risk 
factors, namely, age (in years), sex (0=male, 1=female), low 
calorie diet, low fat diet, VLDL cholesterol, HDL cholesterol, 
total cholesterol, diabetes (0=no, 1=yes), systolic blood 
pressure, diastolic blood pressure, triglycerides and body 
mass index.  

2.1. Datasets Used  

The data used for our epidemiologic model building was a 
subset of the sample drawn from Framingham Heart Study 
(FHS). The FHS was established in 1948 that followed a 
cohort of 5209 adults from Framingham, Massachusetts, to 
examine the relationship between health risk factors and 
subsequent CVD. Although we will not use it in this study, a 
further 5124 people who were offspring of the original 
participants joined the original cohort in 1971 and were 
known as the ‘offspring cohort’. This provides the only 
health data which allow very long-term regular follow-up of 
participants with health examinations conducted by health 
professionals and with enough study participants to provide 
the statistical power to examine detailed epidemiological 
hypotheses. The design, selection criteria and examination 
procedures of FHS have previously been elaborated in detail 
[25-29]. The outcome of interest is the occurrence of first 
CVD which includes stroke, myocardial infarction, angina 
pectoris, coronary insufficiency and sudden death. The study 
cohort consisted of people from examination 1 (1971–1975) 
of the offspring cohort and from examinations 10 and 11 
(1968–1971) of the original cohort for whom high-density 
lipoprotein (HDL) cholesterol levels were measured for the 
first time. For the original cohort, in most cases (81.3%), 
HDL was measured for the first time at examination 11, 
while for some cohort members, it was examination 10. 
Follow-up was performed through the 22nd examination 
cycle, a span of approximately 24 years. For the offspring 
cohort, risk factor measurements were from the first 
examination cycle (1971–1975), whereas follow-up was 
performed through the sixth examination cycle, 
approximately 24 years later. Participants were considered 
eligible if at the baseline they were aged 30–49 years, were 
free of CVD (CHD and stroke), and had complete 
information on covariates. After exclusions, the study 
included 964 persons (493 events, 471 non-events).   

3. Results 
The results of univariate logistic regression analysis are 

presented in Table 1. These indicate that 10 out of 12 
potential predictors are statistically significant at 25% level 
of significance. These are: age, sex, systolic blood pressure, 
diastolic blood pressure, HDL cholesterol, VLDL 
cholesterol, total cholesterol, triglycerides, diabetes and 
body mass index. 
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Table 1.  The p-values of candidate predictors based on univariate logistic 
regression analysis 

Variables P value 

Low calorie diet 
Low fat diet 

Systolic blood pressure 
Diastolic blood pressure 

Total cholesterol 
HDL cholesterol 

VLDL cholesterol 
Diabetes 

Triglycerides 
Body mass index 

Age 
Sex 

0.4417 
0.6701 

<0.0001 
<0.0001 
<0.0001 
<0.0001 
0.0119 

<0.0001 
0.0004 

<0.0001 
<0.0001 
<0.0001 

There was no evidence of any significant collinearity as 
the variance inflation factor did not exceed 10 for any of the 
potential predictors. This is demonstrated in Table 2. 

Table 2.  Variance inflation factor of the candidate predictors selected by 
univariate logistic regression 

Variable VIF 

Age 
Sex 

Systolic blood pressure 
Diastolic blood pressure 

Total cholesterol 
HDL cholesterol 

VLDL cholesterol 
BMI 

Diabetes 
Triglycerides 

1.22845 
1.26838 
2.43037 
2.35022 
1.35486 
1.50237 
1.48576 
1.19002 
1.02818 
1.28845 

For multivariate logistic regression analysis, the variables 
which were found to be independent predictors of the 
outcome by the three automated variable selection methods 
are summarised as follows. Backward elimination variable 
selection identified five significant predictors, namely, sex, 
systolic blood pressure, total cholesterol, HDL cholesterol 
and diabetes. Forward variable selection identified five 
significant predictors, namely, sex, systolic blood pressure, 
total cholesterol, HDL cholesterol and VLDL cholesterol. 
Stepwise variable selection identified five significant 

predictors, namely, sex, systolic blood pressure, total 
cholesterol, HDL cholesterol and diabetes. 

Based on forced entry logistic regression using 1000 
bootstrap samples selected from the full observed sample, 
the most commonly occurring (more than 50% times) 
significant predictors are systolic blood pressure (99.4% 
times), total cholesterol (99.2% times), sex (98.8% times), 
HDL cholesterol (81.4% times) and diabetes (62.2% times). 
These results are unchanged for 90%, 80% and 70% 
subsamples. These are summarised in Table 3. Comparing 
these results to those by automated variable selection we see 
that forward selection includes a noise predictor, namely, 
VLDL cholesterol. It is a noise predictor since it is found to 
be a significant predictor less than 50% times (23.8% based 
on 100%, 90%, 80% and 70% samples) by forced entry 
bootstrapping. Backward elimination and stepwise variable 
selection do not select any noise predictor.  

Table 3.  Relative frequency (%) with which each candidate variable was 
selected using forced entry model selection in 1000 bootstrap samples 
drawn from the Framingham original cohort 

Variable Full 
sample 

90% 
sample 

80% 
sample 

70% 
sample 

Age 
Sex 

Systolic BP 
Diastolic BP 

Total cholesterol 
HDL cholesterol 

VLDL cholesterol 
Diabetes 

BMI 
Triglycerides 

16.4 
98.8 
99.4 
27 

99.2 
81.4 
23.8 
62.2 
29.4 
3.8 

16.4 
98.8 
99.4 
27 

99.2 
81.4 
23.8 
62.2 
29.4 
3.8 

16.4 
98.8 
99.4 
27 

99.2 
81.4 
23.8 
62.2 
29.4 
3.8 

16.4 
98.8 
99.4 
27 

99.2 
81.4 
23.8 
62.2 
29.4 
3.8 

The effect size in terms of odds ratios of the significant 
predictors selected by automated variable selection clearly 
indicates evidence of overestimation. This is more prominent 
for diabetes and sex which are categorical variables. The 
degree of overestimation seems to be higher for forward 
variable selection compared to the other two automated 
variable selection methods. Between backward elimination 
and stepwise variable selection, there is no difference in the 
degree of overestimation. These results are presented in 
Table 4. 

Table 4.  Estimates of relative odds for each selected independent predictor by automated variable selection methods and the proposed bootstrap regression 
approach 

Variable Backward 
elimination 

Forward  
selection 

Stepwise 
selection 

Forced entry 
bootstrapping 

Sex 
Systolic blood pressure 

Total cholesterol 
HDL cholesterol 

Diabetes 
VLDL 

0.526 
1.019 
1.008 
0.985 
1.970 

--- 

0.396 
1.011 
1.013 
0.969 

--- 
0.991 

0.526 
1.019 
1.008 
0.985 
1.970 

--- 

0.734 
1.023 
1.009 
0.985 
1.377 
0.994 
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The signs of all bootstrap regression coefficients are 
shown in Table 5. The results show that all bootstrap 
regression coefficients are either all positive or all negative. 
This is an indication of stability of our bootstrap regression 
approach.   

Table 5.  Distribution of signs of all bootstrap regression coefficients for 
the true predictors selected by the proposed bootstrap regression approach   

Variable Forced entry 
bootstrapping 

Sex 
Systolic blood pressure 

Total cholesterol 
HDL cholesterol 

Diabetes 
VLDL 

All –ves 
All +ves 
All +ves 
All -ves 
All +ves 
All -ves 

4. Conclusions 
The importance of using theory in choosing variables 

whenever available has long been a practice in many 
practical applications of regression models. However, in 
situations when they are unavailable automated variable 
selection methods have been very popular. These fields 
include public health and medical research among others. 
However, automated variable selection methods have been 
widely criticised by statisticians due to various 
methodological reasons. The criticisms include producing 
downwardly biased p-values (overfitting), overestimating 
regression coefficients as well as effect sizes and producing 
narrower confidence intervals than they actually are. Despite 
these methodological problems, automated methods 
continue to be used unabatedly in various areas of public 
health and medical research. The methods for correcting the 
p values for an automated variable selection method are not 
directly available in softwares. So, the analysts need to be 
very cautious while using automated methods for variable 
selection. The analysts need to at least compare the results of 
automated methods to a variable selection method which is 
likely to select the true predictors of an outcome. This will 
assist them greatly to identify any noise predictor selected by 
automated methods. If analysts report the regression 
coefficients and/or effect sizes of the predictors selected by 
automated methods, then they need to assess the degree of 
bias in the regression coefficients and/or effect sizes 
obtained by automated methods. To provide these we discuss 
a bootstrapping based regression approach discussed by 
Harrell [7] in which a specific model is repeatedly fitted 
using each bootstrap sample in order to assess the 
distribution of an indicator variable denoting the statistical 
significance of a specific predictor variable in a model where 
all candidate predictors were initially selected by univariate 
regression and found to have no collinearity problems. One 
would expect that variables that truly were independent 
predictors of the outcome would be identified as independent 
predictors by forced entry in a majority of the bootstrap 

samples, while noise variables would be identified as 
independent predictors in only a minority of samples. Using 
data from the well-known Framingham heart study we 
provide an example of variable selection for logistic 
regression when the outcome is the occurrence of an incident 
cardiovascular event. We apply the most commonly used 
automated variable selection methods, namely, forward 
selection, backward elimination and stepwise selection. We 
compare the significant predictors selected by automated 
variable selection to the significant predictors which occur 
more than half the times by forced entry based on 1000 
bootstrap samples. We also compare the effect size of the 
significant predictors selected by automated variable 
selection to the average effect size of these predictors 
obtained from fitting the same regression model using 1000 
bootstrap samples. We provide in the appendix the required 
programming codes to conduct these analyses using the SAS 
software.          

The results showed that a noise predictor (VLDL 
cholesterol) was selected by forward variable selection while 
neither backward elimination nor stepwise variable selection 
selected any noise predictor. However, in our case study the 
number of candidate predictors was only 10 which resulted 
in the selection of such a small number of noise predictors. It 
has been shown that for automated variable selection the 
number of noise predictors included increases as the number 
of candidate variables increases, and the probability of 
correctly identifying variables is inversely proportional to 
the number of variables under consideration [30].  

There was clear evidence of overestimation in regression 
coefficients and effect sizes for the independent predictors 
selected by automated methods. The degree of 
overestimation was higher for forward variable selection 
compared to the other two automated variable selection 
methods. Between backward elimination and stepwise 
variable selection, there was no difference in the degree of 
overestimation. Given our SAS codes, one can easily 
estimate the degree of overestimation in odds ratios for 
assessing the degree of accuracy in effect sizes for 
independent predictors selected by automated variable 
selection methods. 

The primary advantage of our proposed variable selection 
method is that it allows one to assess the stability of 
independent predictors and their estimated regression 
coefficients selected by automated methods. For a given 
predictor variable, one can examine the distribution of the 
associated regression coefficient across the bootstrap 
samples. We found that the bootstrap regression coefficients 
were either all positive or all negative (SAS macros given in 
appendix). This demonstrated the stability of our approach. 
On the contrary, the approach suggested by Austin and Tu 
[13] may select a somewhat unstable model if a variable was 
selected as an independent predictor in a majority of 
bootstrap samples while some estimated coefficients were 
positive and some negative. This approach will select a 
totally unstable model in rare situations when half the 
estimated coefficients were positive and half were negative. 
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Another advantage of our approach is that initial screening 
out of variables with high multicollinearity prior to inclusion 
of variables in our bootstrap regression approach ensured 
that the bootstrap regression coefficients were stable in terms 
of precision or standard error. Our approach can also be used 
to examine models with interactions or higher order terms. In 
that case one could use our proposed model selection method 
to derive a model of main effects, and then explore the 
presence of interactions and higher order terms.  

Finally, the SAS macros provided at the end of this paper 
in appendices 1a through 1g are easy to follow and 
implement and can be easily adapted to different datasets 
involving a range of predictors and a binary outcome 
variable when the primary interest is to select independent 
predictors and/or assess the magnitude of the effect size of 
these independent predictors arising from logistic regression 
analysis. For other types of common outcome variables, for 
instance, continuous and time to event data, one can replace 
proc logistic by the appropriate regression procedure in SAS 
and still adapt our codes to perform the analysis.       
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Appendix 

Appendix 1a: SAS codes for univariate logistic regression 
of CVD incidence 

Proc logistic data=OUTDAT.FULL_FOLLOW_UP 
desc; 
Class sex/ref=first; /*for sex, 0=male, 1=female*/ 
Model cvdflg=sex; 
 
Proc logistic data=OUTDAT.FULL_FOLLOW_UP 
desc; 
Class diab/ref=first; /*for diabetes, 0=no, 1=yes*/ 
Model cvdflg=diab; 
 
Proc logistic data=OUTDAT.FULL_FOLLOW_UP 
desc; 
Model cvdflg=ageyr; 
 
Proc logistic data=OUTDAT.FULL_FOLLOW_UP 
desc; 
Model cvdflg=sbp; 
 
Proc logistic data=OUTDAT.FULL_FOLLOW_UP 
desc; 
Model cvdflg=dbp; 
 

Proc logistic data=OUTDAT.FULL_FOLLOW_UP desc; 
Model cvdflg=totchol; 
 
Proc logistic data=OUTDAT.FULL_FOLLOW_UP desc; 
Model cvdflg=hdl; 
 
Proc logistic data=OUTDAT.FULL_FOLLOW_UP desc; 
Model cvdflg=bmi ; 
 
Proc logistic data=OUTDAT.FULL_FOLLOW_UP desc; 
Model cvdflg=fd38; 
 
Proc logistic data=OUTDAT.FULL_FOLLOW_UP desc; 
Model cvdflg=fc32; 
run; 

Appendix 1b: SAS codes for checking collinearity 

Proc logistic data=OUTDAT.FULL_FOLLOW_UP desc; 
Class sex diab/ref=first; 
Model cvdflg=ageyr sex sbp dbp totchol hdl bmi diab vldl 
trig; 
output out=pred pred=p; 
 
data a; 
set pred; 
wt=p*(1-p); 
run; 
 
proc reg data=a; 
model cvdflg=ageyr sex sbp dbp totchol hdl bmi diab vldl 
trig/vif; 
weight wt; 
run; 

Appendix 1c: SAS codes for selection of independent 
predictors of CVD incidence by automated variable 
selection 

Proc logistic data=OUTDAT.FULL_FOLLOW_UP desc; 
Class sex diab/ref=first; 
Model cvdflg=ageyr sex sbp dbp totchol hdl bmi diab vldl 
trig/selection=forward; 
 
Proc logistic data=OUTDAT.FULL_FOLLOW_UP desc; 
Class sex diab/ref=first; 
Model cvdflg=ageyr sex sbp dbp totchol hdl bmi diab vldl 
trig/selection=backward; 
 
Proc logistic data=OUTDAT.FULL_FOLLOW_UP desc; 
Class sex diab/ref=first; 
Model cvdflg=ageyr sex sbp dbp totchol hdl bmi diab vldl 
trig/selection=stepwise; 
run; 
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Appendix 1d: SAS macro for determining the frequency 
and relative frequency of independent predictors using 
the proposed forced entry bootstrapping approach 

%macro boot; 
 
%do i=1 %to 500; /* Create independent sets of 
replications */ 
data boot; 
choice=int(ranuni(23456+&i)*n)+1; 
set outdat.full_follow_up nobs=n point=choice; 
j+1; 
if j>n then stop; 
run; 
 
Ods exclude ParameterEstimates; 
Proc logistic data=boot desc; 
Class sex diab/ref=first; 
Model cvdflg=ageyr sex sbp dbp totchol hdl bmi diab vldl 
trig; 
 
ods output ParameterEstimates = est; 
 
data wald (keep=pid variable waldchisq estimate); 
set est; 
pid=_n_; 
run; 
 
Proc transpose data=wald out=wide prefix= waldchisq; 
By pid; /*identifier*/ 
var waldchisq; 
id variable; 
run; 
 
data boot&i; 
set wide; 
array covs{10} waldchisqageyr waldchisqsex 
waldchisqsbp waldchisqdbp waldchisqtotchol 
waldchisqhdl waldchisqbmi waldchisqdiab waldchisqvldl 
waldchisqtrig; 
array sigcov{10} sage&i ssex&i ssbp&i sdbp&i stchol&i 
shdl&i sbmi&i sdiab&i svldl&i strig&i; 
do k=1 to 10; 
sigcov{k}=0; 
If covs{k}>=3.84 then sigcov{k}=1; 
end; 
 
id=_n_; 
run; 
 
proc sort data=boot&i; by id; run; 
 
%end; /* end of bootstrapping loop*/ 
data comb; 
merge boot1-boot500; 
by id; 
run; 

proc means data=comb noprint; 
var sage1-sage500 ssex1-ssex500 ssbp1-ssbp500 
sdbp1-sdbp500 stchol1-stchol500 shdl1-shdl500 
sbmi1-sbmi500 sdiab1-sdiab500 svldl1-svldl500 
strig1-strig500; 
 
output out=vsum sum= sage1-sage500 ssex1-ssex500 
ssbp1-ssbp500 sdbp1-sdbp500 stchol1-stchol500 
shdl1-shdl500 sbmi1-sbmi500 sdiab1-sdiab500 
svldl1-svldl500 strig1-strig500; 
run; 
 
data total; 
set vsum; 
fvar1=sum(of sage1-sage500); 
fvar2=sum(of ssex1-ssex500); 
fvar3=sum(of ssbp1-ssbp500); 
fvar4=sum(of sdbp1-sdbp500); 
fvar5=sum(of stchol1-stchol500); 
fvar6=sum(of shdl1-shdl500); 
fvar7=sum(of sbmi1-sbmi500); 
fvar8=sum(of sdiab1-sdiab500); 
fvar9=sum(of svldl1-svldl500); 
fvar10=sum(of strig1-strig500); 
rename fvar1=fage fvar2=fsex fvar3=fsbp fvar4=fdbp 
fvar5=ftchol fvar6=fhdl fvar7=fbmi fvar8=fdiab 
fvar9=fvldl fvar10=ftrig; 
array fcov{10} fvar1-fvar10; 
array rfcov{10} rfvar1-rfvar10; 
do l=1 to 10; 
rfcov{l}=100*(fcov{l}/500); 
end; 
rename rfvar1=rfage rfvar2=rfsex rfvar3=rfsbp 
rfvar4=rfdbp rfvar5=rftchol rfvar6=rfhdl rfvar7=rfbmi 
rfvar8=rfdiab rfvar9=rfvldl rfvar10=rftrig; 
 
run; 
 
proc print; var fage rfage fsex rfsex fsbp rfsbp fdbp rfdbp 
ftchol rftchol fhdl rfhdl fbmi rfbmi fdiab rfdiab fvldl rfvldl 
ftrig rftrig; 
 
run; 
 
%mend boot; 
%boot 

Appendix 1e: SAS macro for determining the frequency 
and relative frequency of independent predictors using 
the proposed forced entry bootstrapping approach based 
on a subsample 

/* Analysis here is based on 90% subsample. For analyses 
based on 80% & 70% subsamples the codes are identical 
except that 0.9 should be replaced by the appropriate value 
which is shown in the comment below*/ 
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%macro boot_subsample; 
 
%do i=1 %to 500; /* Create independent sets of 
replications */ 
 
data sub; 
set outdat.full_follow_up; 
random=ranuni(23457); 
run; 
proc sort; by random; 
data sub; 
set sub; 
if random<=0.9; /* Here 0.9 should be replaced by 0.8 or 
0.7 for 80% subsample or 70% subsample, respectively*/ 
run; 
 
 
data boot; 
choice=int(ranuni(23456+&i)*n)+1; 
set sub nobs=n point=choice; 
j+1; 
if j>n then stop; 
run; 
 
Ods exclude ParameterEstimates; 
Proc logistic data=boot desc; 
Class sex diab /ref=first; 
Model cvdflg=ageyr sex sbp dbp totchol hdl bmi diab vldl 
trig; 
 
ods output ParameterEstimates = est; 
 
data wald (keep=pid variable waldchisq estimate); 
set est; 
pid=_n_; 
 
run; 
 
Proc transpose data=wald out=wide prefix= waldchisq; 
By pid; /*identifier*/ 
var waldchisq; 
id variable; 
run; 
 
data boot&i; 
set wide; 
array covs{10} waldchisqageyr waldchisqsex 
waldchisqsbp waldchisqdbp waldchisqtotchol 
waldchisqhdl waldchisqbmi waldchisqdiab 
waldchisqvldl waldchisqtrig; 
array sigcov{10} sage&i ssex&i ssbp&i sdbp&i stchol&i 
shdl&i sbmi&i sdiab&i svldl&i strig&i; 
do k=1 to 10; 
sigcov{k}=0; 
If covs{k}>=3.84 then sigcov{k}=1; 
end; 
 

id=_n_; 
run; 
 
proc sort data=boot&i; by id; run; 
 
%end; /* end of bootstrapping loop*/ 
data comb; 
merge boot1-boot500; 
by id; 
run; 
 
proc means data=comb noprint; 
var sage1-sage500 ssex1-ssex500 ssbp1-ssbp500 
sdbp1-sdbp500 stchol1-stchol500 shdl1-shdl500 
sbmi1-sbmi500 sdiab1-sdiab500 svldl1-svldl500 
strig1-strig500; 
 
output out=vsum sum= sage1-sage500 ssex1-ssex500 
ssbp1-ssbp500 sdbp1-sdbp500 stchol1-stchol500 
shdl1-shdl500 sbmi1-sbmi500 sdiab1-sdiab500 
svldl1-svldl500 strig1-strig500; 
run; 
 
data total; 
set vsum; 
fvar1=sum(of sage1-sage500); 
fvar2=sum(of ssex1-ssex500); 
fvar3=sum(of ssbp1-ssbp500); 
fvar4=sum(of sdbp1-sdbp500); 
fvar5=sum(of stchol1-stchol500); 
fvar6=sum(of shdl1-shdl500); 
fvar7=sum(of sbmi1-sbmi500); 
fvar8=sum(of sdiab1-sdiab500); 
fvar9=sum(of svldl1-svldl500); 
fvar10=sum(of strig1-strig500); 
rename fvar1=fage fvar2=fsex fvar3=fsbp fvar4=fdbp 
fvar5=ftchol fvar6=fhdl fvar7=fbmi fvar8=fdiab 
fvar9=fvldl fvar10=ftrig; 
array fcov{10} fvar1-fvar10; 
array rfcov{10} rfvar1-rfvar10; 
do l=1 to 10; 
rfcov{l}=100*(fcov{l}/500); 
end; 
rename rfvar1=rfage rfvar2=rfsex rfvar3=rfsbp 
rfvar4=rfdbp rfvar5=rftchol rfvar6=rfhdl rfvar7=rfbmi 
rfvar8=rfdiab rfvar9=rfvldl rfvar10=rftrig; 
 
run; 
 
proc print; var fage rfage fsex rfsex fsbp rfsbp fdbp rfdbp 
ftchol rftchol fhdl rfhdl fbmi rfbmi fdiab rfdiab fvldl rfvldl 
ftrig rftrig; 
run; 
%mend boot_subsample; 
%boot_subsample 
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Appendix 1f: SAS macro followed by required codes for 
calculating average (mean or median as appropriate) 
effect sizes 

%macro boot2; 
%do i=1 %to 500; /* Create independent sets of 
replications */ 
data boot; 
choice=int(ranuni(23456+&i)*n)+1; 
set outdat.full_follow_up nobs=n point=choice; 
j+1; 
if j>n then stop; 
run; 
 
Ods exclude ParameterEstimates; 
Proc logistic data=boot desc; 
Class sex diab/ref=first; 
Model cvdflg=ageyr sex sbp dbp totchol hdl bmi diab vldl 
trig; 
 
ods output ParameterEstimates = est; 
data a(keep=pid variable estimate odds); 
set est; 
odds=exp(estimate); 
pid=_n_; 
run; 
 
Proc transpose data=a out=wide prefix= odds; 
By pid; /*identifier*/ 
var odds; 
id variable; 
run; 
 
data boot&i; 
set wide; 
array ocovs{10} oddsageyr oddssex oddssbp oddsdbp 
oddstotchol oddshdl oddsbmi oddsdiab oddsvldl oddstrig; 
do k=1 to 10; 
odds&i=ocovs{k}; 
output; 
end; 
id=_n_; 
run; 
proc sort data=boot&i; by id; run; 
%end; /* end of bootstrapping loop*/ 
 
data comb; 
merge boot1-boot500; 
by id; 
mean_oddsratio=mean(of odds1-odds500); 
median_oddsratio=median(of odds1-odds500); 
if mean_oddsratio>.; 
if median_oddsratio>.; 
diff_oddsratio=mean_oddsratio-median_oddsratio; 
if diff_oddsratio eq 0 then oddsratio=mean_oddsratio; 
else if diff_oddsratio ne 0 then 
oddsratio=median_oddsratio; 

run; 
 
data comb; 
set comb; 
id=_n_; 
run; 
 
proc sort data=comb; 
by id; 
 
%mend boot2; 
%boot2 
 
data var; 
input id variable $; 
cards; 
1  ageyr 
2  sex 
3  sbp 
4  dbp 
5  totchol 
6  hdl 
7  bmi 
8  diab 
9  vldl 
10 trig 
; 
run; 
 
proc sort data=var; 
by id; 
 
data final; 
merge comb var; 
by id; 
 
proc print data=final; 
var variable mean_oddsratio median_oddsratio oddsratio; 
run; 

Appendix 1g: SAS macro for calculating relative 
frequency of positive or negative effects 

%macro boot3; 
 
%do i=1 %to 500; /* Create independent sets of 
replications */ 
data boot; 
choice=int(ranuni(23456+&i)*n)+1; 
set outdat.full_follow_up nobs=n point=choice; 
j+1; 
if j>n then stop; 
run; 
 
Ods exclude ParameterEstimates; 
Proc logistic data=boot desc; 
Class sex diab/ref=first; 
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Model cvdflg=ageyr sex sbp dbp totchol hdl bmi diab vldl 
trig; 
 
ods output ParameterEstimates = est; 
 
data wald (keep=pid variable waldchisq estimate); 
set est; 
pid=_n_; 
 
run; 
 
Proc transpose data=a out=wide prefix= estimate; 
By pid; /*identifier*/ 
var estimate; 
id variable; 
run; 
 
data boot&i; 
set wide; 
 
array ecovs{10} estimateageyr estimatesex estimatesbp 
estimatedbp estimatetotchol estimatehdl estimatebmi 
estimatediab estimatevldl estimatetrig; 
array poseff{10} eage&i esex&i esbp&i edbp&i etchol&i 
ehdl&i ebmi&i ediab&i  evldl&i etrig&i; 
do k=1 to 10; 
poseff{k}=0; 
If ecovs{k}>=0 then poseff{k}=1; 
end; 
 
id=_n_; 
run; 
 
proc sort data=boot&i; by id; run; 
 
%end; /* end of bootstrapping loop*/ 
data comb; 
merge boot1-boot500; 
by id; 
run; 
 
proc means data=comb noprint; 
var eage1-eage500 esex1-esex500 esbp1-esbp500 
edbp1-edbp500 etchol1-etchol500 ehdl1-ehdl500 
ebmi1-ebmi500 ediab1-ediab500 evldl1-evldl500 
etrig1-etrig500; 
 
output out=vsum sum= eage1-eage500 esex1-esex500 
esbp1-esbp500 edbp1-edbp500 etchol1-etchol500 
ehdl1-ehdl500 ebmi1-ebmi500 ediab1-ediab500 
evldl1-evldl500 etrig1-etrig500; 
run; 
 
data total; 
set vsum; 
 
evar1=sum(of eage1-eage500); 

evar2=sum(of esex1-esex500); 
evar3=sum(of esbp1-esbp500); 
evar4=sum(of edbp1-edbp500); 
evar5=sum(of etchol1-etchol500); 
evar6=sum(of ehdl1-ehdl500); 
evar7=sum(of ebmi1-ebmi500); 
evar8=sum(of ediab1-ediab500); 
evar9=sum(of evldl1-evldl500); 
evar10=sum(of etrig1-etrig500); 
rename evar1=eage evar2=esex evar3=esbp evar4=edbp 
evar5=etchol evar6=ehdl evar7=ebmi evar8=ediab 
evar9=evldl evar10=etrig; 
array fecov{10} evar1-evar10; 
array rfecov{10} rfevar1-rfevar10; 
do l=1 to 10; 
rfecov{l}=100*(fecov{l}/500); 
end; 
rename rfevar1=rfeage rfevar2=rfesex rfevar3=rfesbp 
rfevar4=rfedbp rfevar5=rfetchol rfevar6=rfehdl 
rfevar7=rfebmi rfevar8=rfediab 
rfevar9=rfevldl rfevar10=rfetrig; 
 
run; 
 
proc print; var eage rfeage esex rfesex esbp rfesbp edbp 
rfedbp etchol rfetchol ehdl rfehdl ebmi rfebmi ediab 
rfediab evldl rfevldl etrig rfetrig; 
 
run; 
 
%mend boot3; 
%boot3 
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