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Abstract  The paper is focused on an algorithm of the maximum likelihood and Bayes estimates of the generalized 
extreme value (GEV) distribution based on record values. The asymptotic confidence intervals as well as bootstrap 
confidence are proposed. The Bayes estimators cannot be obtained in explicit form so the Markov Chain Monte Carlo 
(MCMC), methods; Gibbs sampling algorithm, and Metropolis algorithm are used to calculate Bayes estimates as well as the 
credible intervals. Also, the algorithm based on bootstrap method for estimating the confidence intervals is used. A numerical 
example is provided to illustrate the proposed estimation methods developed here. Comparing the models, the MSEs, average 
confidence interval lengths of the MLEs and Bayes estimators for parameters are less significant for censored models. 
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1. Introduction 
For many systems, their states are governed by some 

probability models. For example in statistical physics, the 
microscopic states of a system follows a Gibbs model given 
the macroscopic constraints. The fair samples generated by 
MCMC will show us what states are typical of the 
underlying system. In computer vision, this is often called 
"synthesis", the visual appearance of the simulated images, 
textures, and shapes, and it is a way to verify the sufficiency 
of the underlying model. On other hand, record values arise 
naturally in many real life applications involving data 
relating to sport, weather and life testing studies. Many 
authors have been studied record values and associated 
statistics, for example, Ahsanullah ([1], [2], [3]), Arnold 
and Balakrishnan [4], Arnold, et al. ([5], [6]), Balakrishnan 
and Chan ([7], [8]) and David [9]. Also, these studies 
attracted a lot of attention see papers Chandler [10], 
Galambos [11]. 

In general, the joint probability density function (pdf) of 
the first m lower record values (1) (2) ( ), ,...,L L L mX X X  is 
given by 

, ,...,(1) (2) ( )

( )
1 2 ( )

( )1

( )
( , ,..., ) ( )

( )X X XL L L m

m
L i

m L m
L ii

f X
f x x x f X

F X=
= ∏ (1) 

 
* Corresponding author: 
mas06@fayoum.edu.eg (Mohamed A. El-Sayed) 
Published online at http://journal.sapub.org/statistics 
Copyright © 2017 Scientific & Academic Publishing. All Rights Reserved 

The GEV distribution is a family of continuous probability 
distributions developed within extreme value theory. 
Extreme value theory provides the statistical framework to 
make inferences about the probability of very rare or extreme 
events. The GEV distribution unites the Gumbel, Fr´echet 
and Weibull distributions into a single family to allow a 
continuous range of possible shapes. These three 
distributions are also known as type I, II and III extreme 
value distributions. The GEV distribution is parameterized 
with a shape parameter, location parameter and scale 
parameter. The GEV is equivalent to the type I, II and III, 
respectively, when a shape parameter is equal to 0, greater 
than 0, and lower than 0. Based on the extreme value 
theorem the GEV distribution is the limit distribution of 
properly normalized maxima of a sequence of independent 
and identically distributed random variables. Thus, the GEV 
distribution is used as an approximation to model the 
maxima of long (finite) sequences of random variables. 
Frechet [12] and Fisher [13] publishing result of an 
independent inquiry into the same problem. The Extreme 
lower bound distribution is a kind of general extreme value 
(the Gumbel-type I, extreme lower bound [Frechet]-typeII 
and Weibull distribution type III extreme value distributions). 
The applications of the extreme lower bound [Frechet]-type 
II turns out to be the most important model for extreme 
events the domain of attraction condition for the Frechet 
takes on a particularly easy from. In probability theory and 
statistics, the GEV distribution is a family of continuous 
probability distributions developed within extreme value 
theory to combine the Gumbel, Frechet and Weibull families 
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also known as type I, II and III extreme value distributions. 
By the extreme value theorem the GEV distribution is     
the limit distribution of properly normalized maxima of    
a sequence of independent and identically distributed  
random variables. So, the GEV distribution is used as an 
approximation to model the maxima of long (finite) 
sequences of random variables. In some fields of application 
the generalized extreme value distribution is known as the 
Fisher-Tippett distribution, named after R. A. Fisher and L. 
H. C. Tippett who recognized three function forms outlined 
below. However usage of this name is sometimes restricted 
to mean the special case of the Gumbel distribution. The (pdf) 
and (cdf) of x  are given respectively: 

1(1 )1 ( )( ) , 1 0xf x T Tλ µλ
σ σ

− + −
= = + >    (2) 

and 
1

( ) exp( )F x T λ
−

= −            (3) 

whereλ  is the shape parameter,σ  is the scale parameter 
and µ  is the location parameter. 

In this paper is organized in the following order: Section 2 
provides Markov chain Monte Carlo’s algorithms. The 
maximum likelihood estimates of the parameters of the GEV 
distribution, the point and interval estimates of the 
parameters, as well as the approximate joint confidence 
region are studied in sections 3 and 4. The parametric 
bootstrap confidence intervals of parameters are discussed in 
section 5. Bayes estimation of the model parameters and 
Gibbs sampling algorithm are provided in section 6. Data 
analysis and Monte Carlo simulation results are presented in 
section 7. Section 8 concludes the paper. 

2. MCMC Algorithms 
Markov chain Monte Carlo (MCMC) methods (which 

include random walk Monte Carlo methods) are a class of 
algorithms for sampling from probability distributions based 
on constructing a Markov chain that has the desired 
distribution as its equilibrium distribution. As computers 
became more widely available, the Metropolis algorithm was 
widely used by chemists and physicists, but it did not 
become widely known among statisticians until after 1990. 
Hastings (1970) generalized the Metropolis algorithm, and 
simulations following his scheme are said to use the 
Metropolis–Hastings algorithm. A special case of the 
Metropolis–Hastings algorithm was introduced by Geman 
and Geman (1984), apparently without knowledge of earlier 
work. Simulations following their scheme are said to use the 
Gibbs sampler. The state of the chain after a large number of 
steps is then used as a sample of the desired distribution. The 
quality of the sample improves as a function of the number of 
steps. MCMC techniques methodology provides a useful 
tool for realistic statistical modelling (Gilks et al. [14]; 

Gamerman, [15]), and has become very popular for Bayesian 
computation in complex statistical models. Bayesian 
analysis requires integration over possibly high-dimensional 
probability distributions to make inferences about model 
parameters or to make predictions. MCMC is essentially 
Monte Carlo integration using Markov chains. The 
integration draws samples from the required distribution, and 
then forms sample averages to approximate expectations (see 
Geman and Geman, [16]; Metropolis et al., [17]; Hastings, 
[18]). 

2.1. Gibbs Sampler 

The Gibbs sampling algorithm is one of the simplest 
Markov chain Monte Carlo algorithms. The paper by 
Gelfand and Smith [19] helped to demonstrate the value of 
the Gibbs algorithm for a range of problems in Bayesian 
analysis. Gibbs sampling is a MCMC scheme where the 
transition kernel is formed by the full conditional 
distributions. 

 
Algorithm 1 

1- Choose an arbitrary starting point 
( ) ( ) ( )( )0 00

1 ,..., dq q q=  for which ( )( )0 0.g θ >  

2- Obtain ( )
1

tq  from conditional distribution  

( ) ( ) ( )( )1 1 1
1 2 3| , ,...,t t t

dg q q q q− − − . 

3- Obtain ( )
2
tq  from conditional distribution 

( ) ( ) ( )( )1 1
2 1 3 1| , ,...,t t tg q q q q− − . 

. . . . 

4- Obtain ( )t
dq  from conditional distribution 

( ) ( ) ( ) ( )( )1 2 3 1| , , ,..., .t t t t
d dg q q q q q −  

5- Repeat steps 2 - 4. 

The Gibbs sampler is a conditional sampling technique in 
which the acceptance-rejection step is not needed. The 
Markov transition rules of the algorithm are built upon 
conditional distributions derived from the target distribution. 
The conditional posterior usually is but does not have to be 
one-dimensional. 

2.2. The Metropolis-Hastings Algorithm 

The Metropolis algorithm was originally introduced by 
Metropolis et. al [17]. Suppose that our goal is to draw 
samples from some distributions ( ) ( )|h q x g qν= , where 
ν  is the normalizing constant which may not be known or 
very difficult to compute. The Metropolis-Hastings (MH) 
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algorithm provides a way of sampling from ( )|h q x  

without requiring us to know ν . Let ( ) ( )( )|b aQ q q  be an 

arbitrary transition kernel: that is the probability of moving, 

or jumping, from current state ( )aq  to ( )bq . This is 
sometimes called the proposal distribution. The following 
algorithm will generate a sequence of the values 
( ) ( )1 2,q q , ... which form a Markov chain with stationary 

distribution given by ( )|h q x . 
 

Algorithm 2 

1- Choose an arbitrary starting point 
( )0q  for which ( )( )0 | 0h q x > . 

2- At time t , sample a candidate point or proposal, q∗ , 

from ( )( )1| tQ q q −∗ , the proposal distribution. 

3- Calculate the acceptance probability 

( )( ) ( ) ( )( )
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4- Generate ( )0,1 .U U∼   

5- If ( )( )1 ,tU q qρ − ∗≤  accept the proposal and set  

( )tq q∗= . 

Otherwise, reject the proposal and set ( ) ( )1t tq q −=   

6- Repeat steps 2 - 5. 
 
If the proposal distribution is symmetric, for all possible 

ϕ and q , so ( ) ( )| |Q q Q qϕ ϕ= , in particular, we have 

( )( ) ( )( )1 1| |t tQ q q q q q− −∗ ∗= , so that the acceptance 

probability (5) is given by: 
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       (5) 

3. Maximum Likelihood Estimation 
Let (1) (2) ( ), ,...,L L L mX X X  be m lower record values 

each of which has the generalized extreme value whose the 
pdf and cdf are, respectively, given by (2) and (3). Based on 
those lower record values and for simplicity of notation,   

we will use ix  instead of ( )L iX . The logarithm of the 
likelihood function may then be written as [20-23]: 

{ }
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1(1 ) log ,

m
m

i
i

x m T

T
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=
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

        (6) 

where ( ) 1 ( )i iT Xλσ θ
σ

= + −  with known µ . 

Calculating the first partial derivatives of Eq. (6) with respect 
to σ  and λ  equating each to zero, we get the likelihood 
equations as: 
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and 
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By solving the two nonlinear equations (7) and (8) 
numerically, we obtain the estimates for the parameters σ  

and λ  say σ̂  and λ̂ . 
Records are rare in practice and sample sizes are often 

very small, therefore, intervals based on the asymptotic 
normality of MLEs do not perform well. So two confidence 
intervals based on the parametric bootstrap and MCMC 
methods are proposed. 

4. Approximate Interval Estimation 
If sample sizes are not small. The Fisher information 

matrix ( ),I σ λ  is then obtained by taking expectation of 
minus of the second derivatives of the logarithm likelihood 
function. Under some mild regularity conditions, ( ˆˆ , )σ λ  is 

approximately bivariately normal with mean ( ),σ λ  and 

covariance matrix ( )1 ,I σ λ− . In practice, we usually 

estimate ( )1 ,I σ λ−  by 1 ˆˆ( , )I σ λ− . A simpler and equally 
veiled procedure is to use the approximation 

( )( )1
0

ˆ ˆˆ ˆ( , ) , , ( , ) ,N Iσ λ σ λ σ λ−∼        (9) 
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where ( )0 ,I σ λ  is observed information matrix given by 

0
ˆˆ( , )I σ λ =

2 2

2

2 2

2

( , | ) ( , | )

( , | ) ( , | )
ˆˆ( , )

x x

x x

σ λ σ λ
σ λσ

σ λ σ λ
σ λ λ σ λ

∂ ∂
∂ ∂∂

∂ ∂
∂ ∂ ∂

 − − 
 
 − −  

 

 

   (10) 

where the elements of the Fisher information matrix are 
given by 
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Approximate confidence intervals for σ  and λ  can be 
found by to be bivariately normal distributed with mean 

( ),σ λ  and covariance matrix 1
0

ˆˆ( , )I σ λ−  Thus, the 
100(1 )%α−  approximate confidence intervals for σ  
and λ are: 

2 2
11 11ˆ ˆ ( , )z v z vα ασ σ− +  and 

2 2
22 22

ˆ ˆ( , ) z v z vα αλ λ− +          (14) 

respectively, where 11v  and 22v  are the elements on the 

main diagonal of the covariance matrix 1
0

ˆˆ( , )I σ λ−  and 

2
zα  is the percentile of the standard normal distribution with 

right-tail probability 2
α . 

5. Bootstrap Confidence Intervals 
In this section, we propose to use percentile bootstrap 

method based on the original idea of Efron [24]. The 
algorithm for estimating the confidence intervals of σ  and 
λ  using this method are illustrated below. 

 

Algorithm 3 

1-  From the original sample of lower records x , 

compute ML estimates σ̂  and λ̂ .  

2-  Use σ̂  and λ̂  to generate bootstrap records 

sample (1) (2) ( ){ , ,..., }.L L L nx x x∗ ∗ ∗  Use these data to 

compute the bootstrap estimate σ̂ ∗  and ˆ .λ∗   
3-  Repeat step 2, N  boot times, where N  is the 

number of various bootstrap samples, put 
1000N ≥ . 

4-  Bootstrap estimates 

*( )1
Boot

1
ˆ ˆ

N
i

N
i

σ σ
=

= ∑  and 
( )1

Boot
1

ˆ ˆ iN

N
i

λ λ∗

=
= ∑  

5-  Let ˆ( ) ( )G x P xσ∗= ≤ , be the cumulative 

distribution of σ̂ ∗ . Define 1ˆ ( )Boot G xσ −=  for a 
given x . The approximate 100(1 2 )%α−  
confidence interval of σ  is given by 

Boot Bootˆ ˆ( ( ), (1 )).σ γ σ γ−       (15) 

similarly 

Boot Boot
ˆ ˆ( ( ), (1 )).λ γ λ γ−       (16) 

6. Bayesian Estimation 
In this section, we are in a position to consider the 

Bayesian estimation of the parameters σ  and λ  for 
record data, under the assumption that the parameter µ  is 
known. We may consider the joint prior density as a product 
of independent gamma distribution 1 ( )π σ∗  and 2 ( )π λ∗ , 
given by 

1
1 ( ) ,   , 0,a be a bσπ σ σ∗ − −∝ >        (17) 

and 
1

2 ( ) ,    , 0.c de a bλπ λ λ∗ − −∝ >       (18) 
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By using the joint prior distribution of σ , λ  and 
likelihood function, the joint posterior density function of 
σ  and λ  given the data, denoted by ( , | ),xπ σ λ  can be 
written as 

1 1 1 1/ 1/

1

( , | )

exp( ).
m

a m c
i i

i

x

T b d Tλ λ

π σ λ

σ λ σ λ− − − − − −

=

∝

− − −∏
(19) 

As expected in this case, the Bayes estimators can't be 
obtained in closed form. We propose to use the Gibbs 
sampling procedure to generate MCMC samples, we obtain 
the Bayes estimates and the corresponding credible intervals 
of the unknown parameters. A wide variety of MCMC 
schemes are available, and it can be difficult to choose 
among them. An important sub-class of MCMC methods are 
Gibbs sampling and more general Metropolis-within-Gibbs 
samplers. 

It is clear that the posterior density function of σ  given 
λ  is 

1

1 1/

1

( | )

1exp( (1 ) log ),
m

a m
i i

i
b T Tλ
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− − −
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∝
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and the posterior density function of λ  given σ  can be 
written as 

1/
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m

c
i i

i
d T T

λ
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λ λ
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The plots of them show that they are similar to normal 
distribution. So to generate random numbers from these 
distributions, we use the Metropolis-Hastings method with 
normal proposal distribution. Therefore the algorithm of 
Gibbs sampling procedure as the following algorithm [23]: 

 
Algorithm 4 

1- Set (0) ˆσ σ=  , (0) ˆλ λ=  and M =  burn-in. 
2- Set 1.t =   

3- Generate ( )tσ from ( 1)
1( | )tπ σ λ − using MH 

algorithm with the ( 1)
1( , )tN σ δ−  proposal 

distribution. 

4-  Generate ( )tλ  from ( )
2 ( | )tπ λ σ  using MH 

algorithm with the ( 1)
2( , )tN λ δ−  proposal 

distribution. 
5-  Set 1t t= + . 

6-  Repeat 2-5 and obtain ( (1) (1),σ λ ), 

( (2) (2),σ λ ), … , ( ( ) ( ),N Nσ λ ). 

7-  An approximate Bayes estimate of any function 
( , )g σ λ  under a SE loss function can be obtained 

as 

( ) ( )

1

1 ( , ).
N

i i

i M
g g

N M
σ λ

= +
=

− ∑
    (22) 

where M  is the number of iterations (burn-in 
period) before the stationary distribution is 
accomplished and posterior variance of 

( ) ( )( , )i ig σ λ  becomes 

( ) 2

1

1ˆ ˆ( | ) ( ( | )) ,
N

i

i M
V g x g E g x

N M = +
= −

− ∑ (23) 

8-  To compute the credible intervals of σ  and λ , 
order 1,...,M Nσ σ+  and 1,...,M Nλ λ+  as 

(1) ( ),..., N Mσ σ −  and 
( )(1) ,..., .
N M

λ λ
−

 Then the 

100(1-2 α )% symmetric credible intervals 

( ( )) ((1 )( ))( , )N M N Mα ασ σ− − −  and 

( ( )) ((1 )( ))( , )N M N Mα αλ λ− − − .  

7. Data Analysis 
Now, we describe choosing the true values of parameters

σ  and λ  with known prior. For given ( 4, 2)a b= =
generate random sample of size 100, from gamma 
distribution, then the mean of the random sample 

100
1

100
1

j
i

σ σ
=

≅ ∑ , can be computed and considered as the 

actual population value of σ = 1.9 .  That is, the prior 
parameters are selected to satisfy ( ) a

bE X σ= ≅  is 

approximately the mean of gamma distribution. Also for 
given values ( 3, 2)c d= = , generate according the last 

1.4,λ =  from gamma distribution. The prior parameters are 

selected to satisfy ( ) c
dE X λ= ≅ is approximately the 

mean of gamma distribution. By using ( 1.9,σ =  and 
1.4),λ µ= =  we generate lower record value data from 

generalized extreme lower bound distribution the simulate 
data set with 7m = , given by: 29.7646, 4.9186, 3.8447, 
2.5929, 2.3330, 2.2460, 2.2348. 

Under this data we compute the approximate MLEs, 
bootstrap and Bayes estimates of σ  and λ  using MCMC 
method, the MCMC samples of size 10000 with 1000 as 
'burn-in'. The results of point estimation are displayed in 
Table 1 and results of interval estimation given in Table 2. 
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Table 1.  The point estimates of parameters, σ  and λ  with 

3.5θ =  

Method 
MLE Boot Bayes 

p. 
σ  1.95996 2.01135 1.68060 

λ  1.64485 1.85243 1.07709 

Table 2.  Two-sided 95% confidence intervals ( , ) and its length   of 
parameters σ  and λ  

Method 
MLE Boot Bayes 

p. 

( , )σ  
(-0.81593, 
8.04907) 

(1.32546, 
4.54325) (1.19938, 2.26063) 

σ  
7.1176 3.2178 1.0613 

( , )λ  
(-0.717938, 

6.39967) 
(0.12548, 
3.45781) (0.582031, 1.58285) 

λ  
8.8650 3.3323 1.0008 

( , )σ  
(-0.81593, 
8.04907) 

(1.32546, 
4.54325) (1.19938, 2.26063) 

 

 
Figure 1.  Simulation number of σ  generated by MCMC method 

 
Figure 2.  Simulation number of λ  generated by MCMC method 

In general, one step of Gibbs sampler (GS) requires more 
work than that of the Metropolis-Hastings (M-H) algorithm, 
since the former is likely to require more point evaluations of 
the posterior density. However, subsequent points produced 
by GS are usually less mutually correlated than those 

produced by M-H, i.e. the sample ensemble of a given size is 
typically better distributed according to the posterior in the 
case of GS than that of M-H. Sampling from a conditional 
density in Gibbs Sampler typically requires finding the 
essential part of the density due to which implementation can 
be difficult. 

8. Conclusions 
In the paper several algorithms of estimation of GEV 

distribution under the progressive Type II censored sampling 
plan are investigated. The asymptotic confidence intervals as 
well as bootstrap confidence are studied. The approximate 
confidence intervals, percentile bootstrap confidence 
intervals, as well as approximate joint confidence region for 
the parameters are expanded and developed. Some numerical 
examples with actual data set and simulated data are used to 
compare the proposed joint confidence intervals. The parts 
of MSEs and credible intervals lengths, the estimators of 
Bayes depend on non-informative implement more effective 
than the MLEs and bootstrap. 
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