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Abstract  In this study, we propose a unified Cumulative Sum (CUSUM) control chart for monitoring simultaneous 
shifts in the parameters of the Pareto distribution. The V-mask method of constructing a CUSUM control chart was used. 
The characteristics of the V-mask were investigated and it was observed that the lead distance, the mask angle and the 
Average Run Length (ARL) of the CUSUM control chart changed considerably for a small shift in the parameters of the 
Pareto distribution.  
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1. Introduction 
The quality of a product cannot be underestimated by 

both producers and consumers. Industry players therefore 
need a robust procedure to meet this desired quality and one 
of such procedures include the CUSUM control chart. The 
CUSUM control chart was proposed first by Page (1954) as 
a built up of the work done by Shewhart (1926). The 
Shewhart control charts are not able to detect a small to 
medium size shift in the process parameter. The CUSUM 
control chart has the tendency to detect this small to 
moderate size shift in the process parameter. Many 
researchers have studied enormously into the arena of 
CUSUM control charts. Notably among them include: 
Hawkins and Olwell (1998) stated that the CUSUM control 
charts are most sensitive Statistical Process Contol (SPC) to 
signal a persistent small step change in a process parameter. 
Also, Luguterah (2015) developed unified CUSUM control 
chart for monitoring simultaneous shifts in the parameters 
of the Elang-Truncated Exponential Distribution and 
therefore derived the parameters of the CUSUM chart 
proposed. Again, Naber and Bilgi (1994) developed a 
CUSUM control chart for the Gaussian distribution. Again, 
Kantam and Rao (2004) investigated the CUSUM control 
chart for the Log-Logistic Distribution and concluded that it 
was able to detect shifts on the average than the Shewhart 
control charts. Sasikumar and Bangusha (2014) explained 
the common uses of CUSUM control charts for monitoring 
performance overtime when the outcome is related to health  
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science. The article provided a logical way to accumulate 
evidence over many patients, while adjusting for a changing 
mix of patients’ characteristics that significantly affected 
risk. Bakhodir (2004) employed CUSUM control chart in 
economic and finance turning point in stock price indices. 

Recently, Nasiru (2016) developed a one-sided CUSUM 
control chart for monitoring the shape parameter of the 
Pareto distribution. 

In this study, we extended the study of Nasiru (2016) and 
therefore develop a two-sided CUSUM control chart for 
monitoring shifts in the shape parameter of the Pareto 
distribution. 

2. Pareto Distribution 
The Pareto distribution is lop-sided and a heavy-tailed 

distribution which was developed by the Italian economist 
and sociologist, Vilfredo Pareto (1848 – 1923). He worked in 
the field of national economy and sociology. The Pareto 
distribution is applied in modeling problems involving 
distributions of incomes or wealth and also many situations 
in which there will always be a shift in the equilibrium of the 
system. 

If the random variable X has a Pareto distribution, then the 
density function is given by; 

𝑓𝑓𝑋𝑋(𝑥𝑥;  𝛾𝛾, 𝑐𝑐) = 𝛾𝛾𝑐𝑐𝛾𝛾

𝑥𝑥𝛾𝛾+1                (1) 

where 𝑥𝑥 ≥ 𝑐𝑐 and the parameters 𝛾𝛾 > 0 and 𝑐𝑐 > 0 are the 
shape and scale parameters respectively. The corresponding 
cumulative distribution function is given by; 

𝐹𝐹𝑋𝑋(𝑥𝑥;  𝛾𝛾, 𝑐𝑐) = 1 − �𝑐𝑐
𝑥𝑥
�
𝛾𝛾

            (2) 

The mean and variance of the Pareto distribution are given 
by; 
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𝜇𝜇 = 𝛾𝛾𝛾𝛾
𝛾𝛾−1

, 𝛾𝛾 > 1                (3) 

and 

𝜎𝜎2 = 𝛾𝛾𝑐𝑐2

(𝛾𝛾 − 2)(𝛾𝛾−1)2 , 𝛾𝛾 > 2           (4) 

respectively. 

3. Sequential Probability Ratio Test 
The Sequential Probability Ratio Test (SPRT) plays a 

significant role in the development of an acceptance 
sampling plan. The Wald’s (1947) SPRT is a joint, subject 
by subject, Likelihood Ratio Test (LRT). In this approach 
each subject constitutes a stage. According to Johnson 
(1961), the CUSUM control charts are roughly equivalent 
to the SPRT. The SPRT have been used extensively in the 
development of an acceptance sampling plan and this 
acceptance sampling plan is used in determining the in and 
out-of-control limits in CUSUM procedures. 

Suppose that we take a sample of m values 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚  
successively, from a population 𝑓𝑓(𝑥𝑥, 𝜃𝜃) . Consider two 
hypotheses about 𝜃𝜃, H0: 𝜃𝜃 = 𝜃𝜃0 and H1: 𝜃𝜃 = 𝜃𝜃1. The ratio 
of the probabilities of the sample is; 

𝐿𝐿𝑚𝑚 = ∏ 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝜃𝜃1)𝑚𝑚
𝑖𝑖=1

∏ 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝜃𝜃1)𝑚𝑚
𝑖𝑖=1

                (5) 

We select two numbers A and B, which are related to the 
desired 𝛼𝛼 and 𝛽𝛽 errors. The sequential test is set up as 
follows; 

i. As long as 𝐵𝐵 < 𝐿𝐿𝑚𝑚 < 𝐴𝐴 we continue sampling. 
ii. At the first 𝑖𝑖 that 𝐿𝐿𝑚𝑚 ≥ 𝐴𝐴 we accept H1. 
iii. At the first 𝑖𝑖 that 𝐿𝐿𝑚𝑚 ≤ 𝐵𝐵 we accept H0. 
An equivalent way for computation is to use the 

logarithm of 𝐿𝐿𝑚𝑚 . Then, the inequality becomes; 
ln 𝐵𝐵 < ∑ ln 𝑓𝑓(𝑥𝑥𝑖𝑖 , 𝜃𝜃1)𝑚𝑚

𝑖𝑖=1 − ∑ ln 𝑓𝑓(𝑥𝑥𝑖𝑖 , 𝜃𝜃0)𝑚𝑚
𝑖𝑖=1 < ln𝐴𝐴   (6) 

The family of test is referred to as SPRT. If  

𝑍𝑍𝑖𝑖 = ln �𝑓𝑓(𝑥𝑥𝑖𝑖,𝜃𝜃1)
𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝜃𝜃0)

�                  (7) 

then the sampling terminates when 
∑𝑍𝑍𝑖𝑖 ≥ ln𝐴𝐴                   (8) 

or  
∑𝑍𝑍𝑖𝑖 ≤ ln𝐵𝐵                  (9) 

The 𝑍𝑍𝑖𝑖’s are independent random variables with variance, 
say, 𝜎𝜎2 > 0. Obviously ∑ 𝑍𝑍𝑖𝑖𝑚𝑚

𝑖𝑖=1  has a variance 𝑚𝑚𝜎𝜎2. As 
𝑚𝑚  increases the dispersion becomes greater and the 
probability that a value of ∑𝑍𝑍𝑖𝑖  will remain within the 
limits ln 𝐵𝐵 and ln 𝐴𝐴 tends to zero. The mean 𝑍̅𝑍 tends to a 
normal distribution with variance 𝜎𝜎2

𝑚𝑚
 and therefore the 

probability that it will fall between ln 𝐵𝐵
𝑚𝑚

 and ln 𝐴𝐴
𝑚𝑚

 tends to 
zero. 

If we take a sample for which 𝐿𝐿𝑚𝑚  lies between A and B 
for the first 𝑛𝑛 − 1 trial and then 𝐿𝐿𝑚𝑚 ≥ 𝐴𝐴 at the 𝑛𝑛𝑡𝑡ℎ  trial, 
so we accept H1  (and reject H0 ). By definition, the 

probability of getting such a sample is at least A times as 
large under H1 as against H0. The probability that we fail 
to reject H0 when H1 is true is 𝛽𝛽 and the probability that 
we reject H0 when H1 is true is 1 − 𝛽𝛽. Therefore 

𝐴𝐴 ≤ 1−𝛽𝛽
𝛼𝛼

                    (10) 

Similarly, if we accept H0 

𝐵𝐵 ≥ 𝛽𝛽
1−𝛼𝛼

                    (11) 

Wald (1947) showed that for all practical purposes (10) 
and (11) holds as equalities. Thus 

𝐴𝐴 = 1−𝛽𝛽
𝛼𝛼

                   (12) 

and 

𝐵𝐵 = 𝛽𝛽
1−𝛼𝛼

                   (13) 

Suppose that 𝑎𝑎 = 1−𝛽𝛽
𝛼𝛼

 and 𝑏𝑏 = 𝛽𝛽
1−𝛼𝛼

 and that the true 
errors of first and second kind for the limits 𝑎𝑎 and 𝑏𝑏 are 
𝛼𝛼′  and 𝛽𝛽′  respectively. Then, from (10) 

𝛼𝛼′

1−𝛽𝛽′
≤ 1

𝑎𝑎
= 𝛼𝛼

1−𝛽𝛽
               (14) 

and from (11) 
𝛽𝛽′

1−𝛼𝛼′
≤ 𝑏𝑏 = 𝛽𝛽

1−𝛼𝛼
              (15) 

Therefore 

𝛼𝛼′ ≤ 𝛼𝛼�1−𝛽𝛽′ �
1−𝛽𝛽

≤ 𝛼𝛼
1−𝛽𝛽

             (16) 

and 

𝛽𝛽′ ≤ 𝛽𝛽�1−𝛼𝛼′ �
1−𝛼𝛼

≤ 𝛽𝛽
1−𝛼𝛼

            (17) 

Furthermore 
𝛼𝛼′(1 − 𝛽𝛽) + 𝛽𝛽′(1 − 𝛼𝛼) ≤ 𝛼𝛼(1 − 𝛽𝛽′) + 𝛽𝛽(1 − 𝛼𝛼′)   (18) 
In practice 𝛼𝛼 and 𝛽𝛽 are small. From (16) and (17), the 

amount that 𝛼𝛼′  can exceed 𝛼𝛼  or 𝛽𝛽′  exceed 𝛽𝛽  is 
negligible. In addition, from relation (18) we see that either 
𝛼𝛼′ ≤ 𝛼𝛼  or 𝛽𝛽′ ≤ 𝛽𝛽 . Therefore the use of 𝐴𝐴  and 𝐵𝐵  can 
only increase one of the errors and only by a very small 
amount 

4. CUSUM Control Chart for 
Monitoring the Shape (γ) and Scale 
Parameters (c) 

In this section a unified CUSUM chart for monitoring 
both the scale and shape parameters of the Pareto 
distribution was constructed. The likelihood ratio test of the 
null hypothesis which says that there is no shift in the 
parameters of the Pareto distribution against the alternative 
that there is a shift in the parameters of the Pareto 
distribution is given as follows: 

𝐿𝐿1𝑚𝑚
𝐿𝐿0𝑚𝑚

=   ∏ 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝛾𝛾1,𝑐𝑐1)𝑚𝑚
𝑖𝑖=1

 ∏ 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝛾𝛾0,𝑐𝑐0)𝑚𝑚
𝑖𝑖=1

                (19) 
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𝐿𝐿1𝑚𝑚
𝐿𝐿0𝑚𝑚

=  ∏ 𝛾𝛾1
𝑚𝑚
𝑖𝑖=1 𝑐𝑐1

𝛾𝛾1

∏ 𝑥𝑥𝛾𝛾1+1𝑚𝑚
𝑖𝑖=1

 × ∏ 𝑥𝑥𝛾𝛾0+1𝑚𝑚
𝑖𝑖=1

∏ 𝛾𝛾0
𝑚𝑚
𝑖𝑖=1 𝑐𝑐0𝛾𝛾0

         (20) 

The continuation region of the SPRT that discriminates 
between the two hypotheses is given by 

𝛽𝛽
1−𝛼𝛼

 <   ∏ 𝛾𝛾1
𝑚𝑚
𝑖𝑖=1 𝑐𝑐1

𝛾𝛾1

∏ 𝑥𝑥𝛾𝛾1+1𝑚𝑚
𝑖𝑖=1

 × ∏ 𝑥𝑥𝛾𝛾0+1𝑚𝑚
𝑖𝑖=1

∏ 𝛾𝛾0
𝑚𝑚
𝑖𝑖=1 𝑐𝑐0𝛾𝛾0

 <  1−𝛽𝛽
𝛼𝛼

      (21) 

which becomes 
𝛽𝛽

1−𝛼𝛼
 <  �𝛾𝛾1

𝛾𝛾0
�
𝑚𝑚
�𝑐𝑐1

𝛾𝛾1

𝑐𝑐0𝛾𝛾0
�
𝑚𝑚
∏ 𝑥𝑥𝛾𝛾0−𝛾𝛾1𝑚𝑚
𝑖𝑖=1  <  1−𝛽𝛽

𝛼𝛼
      (22) 

taking natural logarithm of both sides of (23) 

      ln �
𝛽𝛽

1 − 𝛼𝛼
� < 

𝑚𝑚 ln 𝛾𝛾1
𝛾𝛾0

+ 𝑚𝑚 ln 𝑐𝑐1
𝛾𝛾1

𝑐𝑐0𝛾𝛾0
+ (𝛾𝛾0 − 𝛾𝛾1)∑ ln 𝑥𝑥𝑚𝑚

𝑖𝑖=1 < ln 1−𝛽𝛽
𝛼𝛼

    (23) 

Bearing in mind that the mean and variance of the Pareto 
distribution, any shift in the parameters affects these two 
moments. Let 𝑐𝑐0  and 𝛾𝛾0  be the target values, let also 
𝑐𝑐1 (𝑐𝑐1 > 𝑐𝑐0)  and 𝛾𝛾1 (𝛾𝛾1 > 𝛾𝛾0)  be the changed values 
owing to the shift in the parameters. The SPRT will be 
stopped by rejecting or accepting the null hypothesis or 
continue to sample, as 𝐿𝐿1𝑚𝑚

𝐿𝐿0𝑚𝑚
 is outside or between ln 𝐴𝐴 and 

ln 𝐵𝐵. The process stops by rejecting 𝐻𝐻0 if ln 𝐿𝐿1𝑚𝑚
𝐿𝐿0𝑚𝑚

≥ ln𝐴𝐴; 
this gives a rejection line 𝛾𝛾1 > 𝛾𝛾0 and 𝑐𝑐1 > 𝑐𝑐0. Similarly, 
if we make use of SPRT with the same strength to the cases 
𝑐𝑐1 < 𝑐𝑐0  and 𝛾𝛾1 < 𝛾𝛾0 , where ln 𝐿𝐿1𝑚𝑚

𝐿𝐿0𝑚𝑚
≤ ln𝐴𝐴 , then another 

rejection line is determined. These two rejection lines 
indicates a symmetrical nature of masking. The 
observations in the sample enter the mask in a sequential 
way. Thus, the mask for the CUSUM chart for     
ln 𝐿𝐿1𝑚𝑚

𝐿𝐿0𝑚𝑚
≥ ln𝐴𝐴 is 

∑ ln 𝑥𝑥𝑖𝑖 ≥𝑚𝑚
𝑖𝑖=1

m�ln𝛾𝛾1
𝛾𝛾0

+  ln𝑐𝑐1𝛾𝛾1
𝑐𝑐0𝛾𝛾0�+ln 𝛼𝛼

𝛾𝛾1−𝛾𝛾0
          (24) 

This implies  
∑ ln 𝑥𝑥𝑖𝑖 ≥𝑚𝑚
𝑖𝑖=1 𝑚𝑚𝑚𝑚 + 𝑞𝑞             (25) 

where 

𝑝𝑝 =
ln 𝛾𝛾1
𝛾𝛾0

+  ln 𝑐𝑐1
𝛾𝛾1

𝑐𝑐0
𝛾𝛾0

𝛾𝛾1 − 𝛾𝛾0
      

and 

𝑞𝑞 =
ln 𝛼𝛼

𝛾𝛾1 − 𝛾𝛾0
 

Similarly, the rejection line, when ln 𝑃𝑃1𝑚𝑚
𝑃𝑃0𝑚𝑚

≤ ln𝐴𝐴, is given 
by 

∑ ln 𝑥𝑥𝑖𝑖 ≤𝑚𝑚
𝑖𝑖=1

m�ln𝛾𝛾1
𝛾𝛾0

+ln𝑐𝑐1𝛾𝛾1
𝑐𝑐0𝛾𝛾0�+ln 𝛼𝛼

𝛾𝛾1−𝛾𝛾0
          (26) 

which can be expressed as 
∑ ln 𝑥𝑥𝑖𝑖 ≤𝑚𝑚
𝑖𝑖=1 𝑚𝑚𝑝𝑝∗ + 𝑞𝑞∗              (27) 

where 

𝑝𝑝∗ =
ln 𝛾𝛾1
𝛾𝛾0

+ ln 𝑐𝑐1
𝛾𝛾1

𝑐𝑐0
𝛾𝛾0

𝛾𝛾1 − 𝛾𝛾0
 

and 

𝑞𝑞∗ =
− ln𝛼𝛼
𝛾𝛾1 − 𝛾𝛾0

 

Equations (26) and (28) form the regions above and 
below the plane (𝑚𝑚, ∑  ln 𝑥𝑥𝑖𝑖𝑚𝑚

𝑖𝑖=1 ) . If m is allowed 
sequentially, at some stage, ∑  ln 𝑥𝑥𝑖𝑖𝑚𝑚

𝑖𝑖=1  satisfies either (26) 
or (28). Until this is achieved the process continues. 

Using the slopes of the two lines (equations (26) and 
(28)), the parameters of the CUSUM chart, known as the 
angle of the mask and the lead distance, are obtained. From 
Figure 1, 𝑡𝑡𝑡𝑡𝑡𝑡𝜃𝜃1 = slope of the line 𝑆𝑆1𝑇𝑇1 and 𝑡𝑡𝑡𝑡𝑡𝑡𝜃𝜃−1 = 
slope of the line 𝑆𝑆−1𝑇𝑇−1, hence  

𝜃𝜃1 = 𝑡𝑡𝑡𝑡𝑡𝑡−1 �
ln 𝛾𝛾1
𝛾𝛾0

+ ln 𝑐𝑐1
𝛾𝛾1

𝑐𝑐0
𝛾𝛾0

𝛾𝛾1 − 𝛾𝛾0
�       

where 𝛾𝛾1 > 𝛾𝛾0 and 𝑐𝑐1 > 𝑐𝑐0. 
And  

𝜃𝜃−1 = 𝑡𝑡𝑡𝑡𝑡𝑡−1 �
ln 𝛾𝛾1
𝛾𝛾0

+ ln 𝑐𝑐1
𝛾𝛾1

𝑐𝑐0
𝛾𝛾0

𝛾𝛾1 − 𝛾𝛾0
�       

where 𝛾𝛾1 < 𝛾𝛾0 and 𝑐𝑐1 < 𝑐𝑐0. 
Various values of the angle are shown in Table 1. It was 

obvious from the results that as the values of (𝛾𝛾1 − 𝛾𝛾0) 
and (𝑐𝑐1 − 𝑐𝑐0) increase the value of the angle increases. 
Also increasing values of 𝛾𝛾1

𝛾𝛾0
 and 𝑐𝑐1

𝑐𝑐0
 also increase the angle 

of the mask.  

Table 1.  Values of the angle θ for controlling both γ and c 

𝛾𝛾0 𝛾𝛾1 𝑐𝑐0 𝑐𝑐1 𝜃𝜃 
2.5 3.0 1.5 2.0 68.17 

2.5 3.5 1.5 2.5 68.43 

2.5 4.0 1.5 3.0 68.72 

2.5 4.5 1.5 3.5 69.01 

2.5 5.0 1.5 4.0 69.29 

2.5 5.5 1.5 4.5 69.56 

2.5 6.0 1.5 5.0 69.81 

2.5 6.5 1.5 5.5 70.06 

2.5 7.0 1.5 6.0 70.29 

2.5 7.5 1.5 6.5 70.51 

 
𝛾𝛾0 𝛾𝛾1 𝑐𝑐0 𝑐𝑐1 𝜃𝜃 
5.5 4.5 7.0 6.0 70.6 

5.5 4.0 7.0 5.0 71.9 

5.5 3.5 7.0 4.0 72.4 

5.5 3.0 7.0 3.0 72.7 

5.5 2.5 7.0 2.0 72.9 

5.5 2.0 7.0 1.0 73.4 
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When there is a negative shift in both parameters, that is 
where 𝛾𝛾1 < 𝛾𝛾0 and 𝑐𝑐1 < 𝑐𝑐0, it can be established from the 
second table of Table 1 that the mask angle (𝜃𝜃) increases as 
the values of (𝛾𝛾1 − 𝛾𝛾0) and (𝑐𝑐1 − 𝑐𝑐0) decreases. 

The lead distance 𝑂𝑂𝑆𝑆1 is given by  

𝑑𝑑1 =
− ln𝛼𝛼

ln 𝛾𝛾1
𝛾𝛾0

+  ln 𝑐𝑐1
𝛾𝛾1

𝑐𝑐0
𝛾𝛾0

 

where 𝛾𝛾1 > 𝛾𝛾0  and 𝑐𝑐1 > 𝑐𝑐0  and the lead distance 𝑂𝑂𝑆𝑆−1 
is given by 

𝑑𝑑−1 =
−ln𝛼𝛼

ln 𝛾𝛾1
𝛾𝛾0

+  ln 𝑐𝑐1
𝛾𝛾1

𝑐𝑐0
𝛾𝛾0

 

where 𝛾𝛾1 < 𝛾𝛾0 and 𝑐𝑐1 < 𝑐𝑐0. 
Let 𝑋𝑋1, 𝑋𝑋2,   . . ., 𝑋𝑋𝑚𝑚  be a sample from Pareto 

distribution, if the points (𝑚𝑚, ∑ ln 𝑥𝑥𝑖𝑖𝑚𝑚
𝑖𝑖=1 ) are plotted with a 

suitable scale, then the ordinates of the points represent the 
cumulative sum of the data. Equations (26) and (28) are the 
effects of a shift in the population parameters 𝑐𝑐 and 𝛾𝛾. 
Figure 1 shows a sizable shift in the parameters if 
∑ ln 𝑥𝑥𝑖𝑖𝑚𝑚
𝑖𝑖=1  falls outside the lines 𝑆𝑆1𝑇𝑇1  and 𝑆𝑆−1𝑇𝑇−1 . The 

chart is interpreted by placing the mask over the last plotted 
point as shown in Figure 1. If any of the points lies below 
𝑆𝑆−1𝑇𝑇−1, then it indicates a decrease in 𝑐𝑐 and 𝛾𝛾 and if any 
of the points falls above 𝑆𝑆1𝑇𝑇1, then it shows an increase in 
𝑐𝑐 and 𝛾𝛾. 

Using some hypothetical values for 𝛾𝛾0, 𝛾𝛾1, 𝑐𝑐 and 𝛼𝛼, it 
can be determined that  increasing the values of (𝛾𝛾1 − 𝛾𝛾0) 
and (𝑐𝑐1 − 𝑐𝑐0), the lead distance decreases given a fixed 
value of 𝛼𝛼 . Again, the value of also increases with 
decreasing values of 𝛼𝛼  and a given fixed value of 
(𝛾𝛾1 − 𝛾𝛾0) and (𝑐𝑐1 − 𝑐𝑐0). The details of the values of the 
lead distance are shown in Table 2. 

Table 2.  Values the lead distance d for controlling γ and c when 𝛾𝛾1 > 𝛾𝛾0 
and 𝑐𝑐1 > 𝑐𝑐0 

𝜶𝜶 = 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎 

𝛾𝛾0 𝛾𝛾1 𝑐𝑐0 𝑐𝑐1 𝑑𝑑 
2.5 3.0 1.5 2.0 4.24 
2.5 3.5 1.5 2.5 2.09 
2.5 4.0 1.5 3.0 1.38 
2.5 4.5 1.5 3.5 1.02 
2.5 5.0 1.5 4.0 0.80 
2.5 5.5 1.5 4.5 0.66 
2.5 6.0 1.5 5.0 0.56 
2.5 6.5 1.5 5.5 0.48 
2.5 7.0 1.5 6.0 0.42 
2.5 7.5 1.5 6.5 0.38 

𝜶𝜶 = 𝟎𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎 

𝛾𝛾0 𝛾𝛾1 𝑐𝑐0 𝑐𝑐1 𝑑𝑑 
2.5 3.0 1.5 2.0 2.96 
2.5 3.5 1.5 2.5 1.46 
2.5 4.0 1.5 3.0 0.96 
2.5 4.5 1.5 3.5 0.71 
2.5 5.0 1.5 4.0 0.56 
2.5 5.5 1.5 4.5 0.46 
2.5 6.0 1.5 5.0 0.39 

2.5 6.5 1.5 5.5 0.34 
2.5 7.0 1.5 6.0 0.29 
2.5 7.5 1.5 6.5 0.26 

𝜶𝜶 = 𝟎𝟎. 𝟎𝟎𝟎𝟎 
𝛾𝛾0 𝛾𝛾1 𝑐𝑐0 𝑐𝑐1 𝑑𝑑 
2.5 3.0 1.5 2.0 0.56 
2.5 3.5 1.5 2.5 0.27 
2.5 4.0 1.5 3.0 0.18 
2.5 4.5 1.5 3.5 0.13 
2.5 5.0 1.5 4.0 0.11 
2.5 5.5 1.5 4.5 0.09 
2.5 6.0 1.5 5.0 0.73 
2.5 6.5 1.5 5.5 0.06 
2.5 7.0 1.5 6.0 0.06 
2.5 7.5 1.5 6.5 0.05 

On the other hand, when there is a negative shift of the 
parameters, that is 𝛾𝛾1 < 𝛾𝛾0  and 𝑐𝑐1 < 𝑐𝑐0 , it can be 
established that the lead distance (d) decreases as the value 
of alpha (𝛼𝛼) increases and when the value of (𝛾𝛾1 − 𝛾𝛾0) 
and (𝑐𝑐1 − 𝑐𝑐0) decreases for a fixed value of 𝛼𝛼, the value 
of the lead distance increases. The details are shown in 
Table 3. The values of the lead distance are negative in this 
case because there is a negative shift in the parameters of 
the distribution. 

Table 3.  Values the lead distance d for controlling γ and c when γ1 < 𝛾𝛾0 
and 𝑐𝑐1 < 𝑐𝑐0 

  𝛼𝛼 = 0.01   

𝛾𝛾0 𝛾𝛾1 𝑐𝑐0 𝑐𝑐1 𝑑𝑑 
5.5 4.5 8.0 6.0 -1.29 
5.5 4.0 8.0 5.0 -0.87 
5.5 3.5 8.0 4.0 -0.65 
5.5 3.0 8.0 3.0 -0.53 
5.5 2.5 8.0 2.0 -0.44 

5.5 2.0 8.0 1.0 -0.37 

 
  𝛼𝛼 = 0.025   

𝛾𝛾0 𝛾𝛾1 𝑐𝑐0 𝑐𝑐1 𝑑𝑑 
5.5 4.5 7 6 -1.03 
5.0 4.0 6 5 -0.69 

4.5 3.5 5 4 -0.52 
4.0 3.0 4 3 -0.42 
3.5 2.5 3 2 -0.35 
3.0 2.0 2 1 -0.30 

 
  𝛼𝛼 = 0.05   

𝛾𝛾0 𝛾𝛾1 𝑐𝑐0 𝑐𝑐1 𝑑𝑑 

5.5 4.5 7 6 -0.84 
5.0 4.0 6 5 -0.56 
4.5 3.5 5 4 -0.43 

4.0 3.0 4 3 -0.34 
3.5 2.5 3 2 -0.29 
3.0 2.0 2 1 -0.24 

 



174 Shei Sayibu Baba et al.:  Unified Cumulative Sum Control Chart for  
Moniroring Shifts in the Parameters of the Pareto Distribution 

 

 

Figure 1.  V-mask for unified CUSUM control chart 

 
5. Average Run Length of the Unified 

CUSUM Control Chart 
The Average Run Length of the unified CUSUM chart is 

the same as that of the two-sided CUSUM chart and is 
given by 

𝐴𝐴𝐴𝐴𝐴𝐴 =  − ln 𝛼𝛼

ln� 𝛾𝛾1
𝛾𝛾0
�+ 𝛾𝛾0 − 𝛾𝛾1

𝛾𝛾1

             (28) 

Proof: 
By definition  

𝐴𝐴𝐴𝐴𝐴𝐴 = −ln 𝛼𝛼
𝐸𝐸(ln 𝑍𝑍)𝑐𝑐=𝑐𝑐1,𝛾𝛾=𝛾𝛾1

           (29) 

where 𝑍𝑍 = 𝑓𝑓(𝑥𝑥,   𝛾𝛾1,   𝑐𝑐1)
𝑓𝑓(𝑥𝑥,   𝛾𝛾0,   𝑐𝑐0)

. 
using equation (1), 𝑍𝑍 can be written as 

𝑍𝑍 =  𝛾𝛾1𝑐𝑐1
𝛾𝛾1

𝑥𝑥𝛾𝛾1+1
  × 𝑥𝑥𝛾𝛾0+1

𝛾𝛾0𝑐𝑐0𝛾𝛾0
             (30) 

Taking natural logarithm of (30) 

ln 𝑍𝑍 = ln � 𝛾𝛾1
𝛾𝛾0
� + ln � 𝑐𝑐1

𝛾𝛾1

𝑐𝑐0𝛾𝛾0
� + ln�𝑥𝑥(𝛾𝛾0−𝛾𝛾1)�       (31) 

By simplifying (31), it reduces to  

ln 𝑍𝑍 = ln � 𝛾𝛾1
𝛾𝛾0
� + ln � 𝑐𝑐1

𝛾𝛾1

𝑐𝑐0𝛾𝛾0
� + (𝛾𝛾0 − 𝛾𝛾1) ln 𝑥𝑥      (32) 

Taking expectation of (32) 

𝐸𝐸[ln 𝑍𝑍] = ln � 𝛾𝛾1
𝛾𝛾0
� + ln � 𝑐𝑐1

𝛾𝛾1

𝑐𝑐0𝛾𝛾0
� + (𝛾𝛾0 − 𝛾𝛾1)𝐸𝐸[ln 𝑥𝑥]   (33) 

The expectation, 𝐸𝐸[ln 𝑥𝑥] is obtained as follows 

𝐸𝐸[ln 𝑥𝑥] =  ∫ ln 𝑥𝑥∞
𝑐𝑐  𝑓𝑓(𝑥𝑥,   𝛾𝛾1,   𝑐𝑐) 𝑑𝑑𝑑𝑑         (34) 

By substituting the density function for 𝑓𝑓(𝑥𝑥,   𝛾𝛾1,   𝑐𝑐) 
into (34), we obtained 

𝐸𝐸[ln 𝑥𝑥] =  ∫ 𝛾𝛾1𝑐𝑐𝛾𝛾1

𝑥𝑥𝛾𝛾1+1
 ln 𝑥𝑥∞

𝑐𝑐  𝑑𝑑𝑑𝑑         (35) 

Simplifying (35), we obtained 

𝐸𝐸[ln 𝑥𝑥] =  𝛾𝛾1𝑐𝑐𝛾𝛾1 �0 − � −𝑐𝑐
𝛾𝛾1

2 −
𝑐𝑐 ln 𝑐𝑐
𝛾𝛾1
� 𝑒𝑒−(𝛾𝛾1+1) ln 𝑐𝑐�    (36) 

and finally, 

𝐸𝐸[ln 𝑥𝑥] =  �𝛾𝛾1+ 𝛾𝛾1
2 ln 𝑐𝑐

𝛾𝛾1
2 �             (37) 

Substituting the value of 𝐸𝐸[ln 𝑥𝑥] in (37) into (33) we 
obtain 

𝐸𝐸[ln𝑍𝑍] = ln � 𝛾𝛾1

𝛾𝛾0
� + ln � 𝑐𝑐1

𝛾𝛾1

𝑐𝑐0𝛾𝛾0
� + (𝛾𝛾0 − 𝛾𝛾1) �𝛾𝛾1+ 𝛾𝛾1 ln 𝑐𝑐1

𝛾𝛾1
2 �   (38) 

Simplifying (38), we obtain 

𝐸𝐸[ln 𝑍𝑍] =  ln � 𝛾𝛾1
𝛾𝛾0
� + 𝛾𝛾0 − 𝛾𝛾1

𝛾𝛾1
            (39) 

Substituting (39) into (29), the ARL formular is derived 
as required. 

𝐴𝐴𝐴𝐴𝐴𝐴 =  
− ln 𝛼𝛼

ln � 𝛾𝛾1
𝛾𝛾0
� + 𝛾𝛾0  −  𝛾𝛾1

𝛾𝛾1

     

Using some hypothetical values of 𝛾𝛾0,    𝛾𝛾1, and 𝛼𝛼, it can 
be established that as (𝛾𝛾1 − 𝛾𝛾0) increases in value, the 
ARL tends to decrease with any given value of 𝛼𝛼. Also as 
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the value of 𝛼𝛼 decreases, the ARL also increases for fixed 
value of (𝛾𝛾1 − 𝛾𝛾0) as displayed in Table 4.  

Also it can be established in the second table of Table 4 
that when there is a negative shift (𝛾𝛾1 <  𝛾𝛾0), the ARL 
decreases as 𝛼𝛼 increases and when (𝛾𝛾0 − 𝛾𝛾1) decreases, 
the ARL also increases for any given value of 𝛼𝛼. The 
negative values of the ARL obtained only indicates the 
negative shift in both parameters of the Pareto distribution. 

Table 4.  Average Run Length for the parameters of the Pareto 
distribution 

  𝛼𝛼 

𝛾𝛾0 𝛾𝛾1 0.5 0.005 0.005 0.025 0.1 0.01 0.001 

0.5 1.60 1.48 6.30 11.14 7.76 4.84 9.68 14.52 

0.5 1.65 1.39 6.03 10.66 7.42 4.63 9.27 13.90 

0.5 1.70 1.34 5.79 10.23 7.12 4.45 8.89 13.34 

0.5 1.75 1.29 5.56 9.84 6.85 4.45 8.55 12.83 

0.5 1.80 1.24 5.36 9.48 6.60 4.12 8.24 12.36 

0.5 1.85 1.20 5.18 9.16 6.38 3.98 7.96 11.94 

0.5 1.90 1.16 5.01 8.86 6.17 3.85 7.69 11.55 

0.5 1.95 1.12 4.85 8.58 5.98 3.73 7.46 11.19 

0.5 2.00 1.09 4.71 8.33 5.80 3.62 7.24 10.86 

0.5 2.05 1.06 4.57 8.09 5.63 3.52 7.03 10.55 

 

𝛾𝛾0 𝛾𝛾1 𝛼𝛼 = 0.01 𝛼𝛼 = 0.025 𝛼𝛼 = 0.05 

5.5 4.5 -20.72 -16.60 -13.48 

5.5 4.0 -12.28 -9.84 -7.99 

5.5 3.5 -8.06 -6.46 -5.24 

5.5 3.0 -5.52 -4.42 -3.59 

5.5 2.2 -3.84 -3.07 -2.50 

5.5 2.0 -2.63 -2.11 -1.71 

 

6. Practical Demonstration of the 
Unified CUSUM Control Chart 

In this section, the application of the proposed CUSUM 
chart has been illustrated using a hypothetical data 
simulated from the Pareto distribution. The first ten 
observations were simulated with 𝛾𝛾0 = 2.5 and 𝑐𝑐0 = 1.5. 
The last five observations were simulated with 𝛾𝛾1 = 5 and 
𝑐𝑐1 = 3 for a simultaneous shift in both parameters. Table 5 
displays the simulated data points and the corresponding 
cumulative sum. The parameters of the V-mask were 
calculated using 𝛾𝛾0 = 2.5, 𝑐𝑐0 = 1.5, 𝛾𝛾1 = 5, 𝑐𝑐1 = 3 and 
𝛼𝛼 = 0.01 . The lead distance and the mask angle were 
obtained as 0.9 and 64° respectively. The sample number 
(𝑚𝑚) was plotted against the cumulative sum of the data. 
The V-mask was then placed at the last plotted point to 
monitor whether the process is in control or out of control 
as shown in Figure 2. It can be established from Figure 2, 
the process was out of control as observations 1 to 13 fell 
above line 𝑆𝑆1𝑇𝑇1 indicating an increase in 𝛾𝛾 and 𝑐𝑐. On the 
other hand if the plotted points fall below the line 𝑆𝑆−1𝑇𝑇−1, 
means there is a negative shift in the parameters. Anytime 
any of the above scenarios are experience then an action 
should be taken in order to bring the process back to 
control. 

In Table 6, the first ten observations were simulated with 
𝛾𝛾0 = 5.5  and 𝑐𝑐0 = 8 . The last five observations were 
simulated with 𝛾𝛾1 = 4.5 and 𝑐𝑐1 = 6 for a simultaneous 
shift in both parameters. The parameters of the V-mask 
were calculated using 𝛾𝛾0 = 5.5, 𝑐𝑐0 = 8, 𝛾𝛾1 = 4.5, 𝑐𝑐1 = 6 
and 𝛼𝛼 = 0.05. The lead distance and the mask angle were 
obtained as - 0.8 and 74°  respectively. Since distance 
cannot be negative, an absolute value of the distance was 
then used in the placing of the V-mask. The sample number 
was then plotted against the cumulative sum (CUSUM) of 
the data. The V-mask was then placed at the last plotted 
point to monitor whether the process is in control or out of 
control as shown in Figure 3. It was established from Figure 
3 that the process was out of control as observations 1 to 13 
fell above line 𝑆𝑆1𝑇𝑇1 indicating a shift in 𝛾𝛾 and 𝑐𝑐. This 
calls for a corrective measure to be taken in order to bring 
the process back to control. 

 
 

Table 5.  Simulated hypothetical data for the unified CUSUM 

Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Data(x) 1.8 1.5 3.8 1.5 1.2 5.2 2.0 14.7 1.9 11.8 4.0 1.8 1.4 2.6 2.4 

ln 𝑥𝑥 0.6 0.5 1.3 0.5 0.2 1.7 0.7 2.7 0.6 2.5 1.4 0.6 0.3 1.0 0.9 

CUSUM 0.6 1.1 2.4 2.8 3.0 4.7 5.4 8.1 8.7 11.2 12.6 13.2 13.5 14.5 15.4 
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Figure 2.  Unified CUSUM plot for the simulated hypothetical data 

Table 6.  Simulated hypothetical data for the unified CUSUM 

Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Data 0.1 0.6 1.2 0.1 2.0 0.2 0.3 0.6 0.5 0.2 0.4 0.2 0.9 0.4 0.4 

CUSUM 0.1 0.7 1.9 2.0 4.0 4.2 4.5 5.1 5.6 5.8 6.2 6.4 7.3 7.7 8.1 

 

 

Figure 3.  Unified CUSUM plot for the simulated hypothetical data 
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7. Conclusions 
The results of the study showed that as the values of 

(𝛾𝛾1 − 𝛾𝛾0)  and (𝑐𝑐1 − 𝑐𝑐0)  increase the size of the mask 
angle (𝜃𝜃) increases. Also, increasing values of 𝛾𝛾1

𝛾𝛾0
 and 𝑐𝑐1

𝑐𝑐0
 

increases the size of the mask angle (𝜃𝜃). Furthermore, when 
there is a negative shift in both parameters, that is where 
𝛾𝛾1 < 𝛾𝛾0 and 𝑐𝑐1 < 𝑐𝑐0, it can be established from the second 
table of Table 1 that the mask angle (𝜃𝜃) increases as the 
values of (𝛾𝛾1 − 𝛾𝛾0) and (𝑐𝑐1 − 𝑐𝑐0) decreases. 

With regard to the lead distance it can be determined that 
increasing the values of (𝛾𝛾1 − 𝛾𝛾0) and (𝑐𝑐1 − 𝑐𝑐0), the lead 
distance decreases given a fixed value of 𝛼𝛼. Again, the 
value of the lead distance increases with decreasing values 
of 𝛼𝛼  and a fixed value of (𝛾𝛾1 − 𝛾𝛾0)  and (𝑐𝑐1 − 𝑐𝑐0) . 
However, When there is a negative shift in the parameters of 
the distribution, that is 𝛾𝛾1 < 𝛾𝛾0  and 𝑐𝑐1 < 𝑐𝑐0 , it can be 
established that the lead distance decreases as the value of 
alpha (𝛼𝛼) increases and when the value of (𝛾𝛾1 − 𝛾𝛾0) and 
(𝑐𝑐1 − 𝑐𝑐0) decreases for a fixed value of 𝛼𝛼, the value of 
lead distance increases.  

On the ARL, it was established that as (𝛾𝛾1 − 𝛾𝛾0) 
increases in value, the ARL tends to decrease with any 
given value of 𝛼𝛼. Also, as the value of 𝛼𝛼 decreases, the 
ARL also increases for a fixed value of (𝛾𝛾1 − 𝛾𝛾0). Again 
when there is a negative shift ( 𝛾𝛾1 <  𝛾𝛾0) , the ARL 
decreases as 𝛼𝛼 increases and when (𝛾𝛾0 − 𝛾𝛾1) decreases, 
the ARL also increases for any given value of 𝛼𝛼. 
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