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Abstract  This paper deals with the application of Univariate Generalised Autoregressive Conditional Heteroskedasticity 
(GARCH) modelling and Extreme Value Theory (EVT) to model extreme market risk for returns on DowJones market index. 
The study compares the performance of GARCH models and EVT (unconditional & conditional) in predicting daily 
Value-at-Risk (VaR) at 95% and 99% levels of confidence by using daily returns. In order to demonstrate the effect of using 
different innovations, GARCH(1,1) under three different distributional assumptions; Normal, Student’s t and skewed 
Student’s t, is applied to the daily returns. Furthermore, an EVT-based dynamic approach is also investigated, using the 
popular Peak Over Threshold (POT) method. Finally, an innovation approach is used whereby GARCH is combined with 
EVT-POT by using the two-step procedure of McNeil (1998). Statistical methods are used to evaluate the forecasting 
performance of all the models. In this study, it is found that the GARCH models perform quite well with all the innovations, 
except for the GARCH-N. The skewed-t distribution seems to provide relatively superior results than the other two densities. 
EVT techniques (both conditional and unconditional) perform better as compared to the GARCH approaches, with 
unconditional EVT performing the best. Backtests results are quite satisfactory. All the models using the fat-tailed 
distribution pass both the unconditional and conditional coverage tests, showing that the performance of the models at both 
95% and 99% confidence levels are uniform over time. 

Keywords  GARCH processes, Innovation distributions, Extreme Value Theory (EVT), Peak Over Threshold (POT), 
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1. Introduction 
Extreme market risk is an important type of financial risk, 

which is generally caused by extreme price movements in 
the financial market. Although this risk occurs in small 
probabilities, it can cause disastrous consequences on the 
market by engendering substantial financial losses. Glaring 
evidences of it are serious financial disasters that have 
occurred in the past, such as the notorious market crash 
commonly known as the ‘Black Monday’ which took place 
in the US in October 1987, also the 1997-1998 Asian crisis 
and the subprime crisis of 2007-2009. This random risk has 
prompted researchers, regulators and policymakers to 
develop diverse methodologies to understand the likelihood 
and extent of extreme rare events which help explain stock 
market crashes or currency crises, losses on financial assets, 
catastrophic insurance claims, credit losses or even losses 
incurred due to natural disasters.  

Value-at-Risk (VaR) is a popular tail-related risk measure 
which provides a reasonable and realistic quantification of  
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extreme market risk. 
It is extensively used by investors, banks, traders, 

financial managers and regulators to monitor the level of 
risk.  

According to to Jorion [1], Value-at-Risk (VaR) is the 
worst loss that will not be exceeded with a certain level of 
confidence, during a particular period of time. It is often 
associated with extreme downside losses caused by extreme 
deviations in market conditions. So much so, that the 
necessity to accurately estimate VaR has led to the 
development of diverse methodologies for extreme risk 
management. 

The Generalised Autoregressive Conditional 
Heteroskedasticity (GARCH) model by Bollerslev [2] was 
developed as an extension to the Autoregressive Conditional 
Heteroskedasticity (ARCH) by Engle [3]. GARCH are 
robust techniques developed for the modelling of high 
frequency time series data. Past experiments show that they 
efficiently capture the stylised feature of volatility clustering 
in financial data. GARCH models are therefore most often 
used to forecast volatility and subsequently Value-at-Risk 
(VaR), [4]. According to [5] and [6], the GARCH(1,1) 
specification is the most widely used and has proved to be a 
successful volatility technique in many past studies. 
Nevertheless, other mathematical explanations have been 
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proposed to enlighten the issue of fat tails in modeling 
extreme market risk. For instance, Blattberg & Gonedes [7] 
and Bollerslev [2] contributed to the implementation of t 
distribution, to account for fat-tailed return distributions. 
Similarly, other several studies have attempted to challenge 
the general Gaussian assumption and provide better 
techniques to model tail-risk measure VaR, such as the 
Extreme Value Theory (EVT). 

Extreme Value Theory (EVT) is a robust tool for studying 
the tail of a distribution as it provides a plausible theoretical 
foundation whereby statistical models, which describe 
extreme and rare events, can be constructed. The roots of 
EVT began with the early pioneering work of Frechet (1927), 
Fisher & Tippett (1928), Gnedenko (1943) and Gumbel 
(1958). Balkema and de-Haan (1974) as well as Pickands 
(1975) further explored the theory and presented important 
results for threshold-based extreme value techniques. Since 
then, EVT has proved to be useful in many spheres of life, 
including Finance. EVT is basically a parametric model 
which captures the extreme tails of a distribution in order to 
forecast risk. It allows the estimation of extreme quantiles, 
making it an attractive model for Value-at-Risk (VaR) 
estimation, as it provides better distributions to fit those 
extreme data. There are two main modelling methods for 
EVT namely the Block Maxima Method (BMM) and the 
Peak Over Threshold (POT) method. The POT is often 
preferred over BMM as the former approach makes efficient 
use of the available data by picking all relevant observations 
beyond a particular high threshold while the latter approach 
considers only the extreme values in specified blocks. In 
addition, POT model has the advantage that it does not 
require a large data set as the BMM model, [8, 9].  

In 1975, Pickands devised the theoretical framework and 
statistical tools for the POT method whereby only those 
observations which exceed a particular sufficiently high 
threshold are considered. Under extreme value conditions, 
the absolute exceedances over the threshold value u are said 
to follow the Generalised Pareto Distribution (GPD) as per 
the Pickands, Balkema-in Haan Theorem. Past studies have 
shown that compared to the BMM approach, it is easier to 
compute VaR based on the POT approach [10].   

Many studies based on the performance on VaR-EVT 
models have been conducted in the past. Gencay & Selcuk 
[11] have examined the relative performance of VaR models 
in nine different emerging markets. They found that 
EVT-based VaR estimates were the most accurate at higher 
quantiles. Moreover, Danielsson & Morimoto [12] studied 
the forecasting performance of EVT-based VaR model in the 
Japanese economy where traditional GARCH-type methods 
were compared to EVT. They found that distribution of 
extremes, clustering, asymmetry, as well as the dynamic 
structure of VaR are important criteria to be considered 
during comparison of the various methods. They also 
concluded that the inaccuracy and the high volatility of the 
VaR forecasts made GARCH models unsuitable while EVT 
gave better and more stable VaR estimates. Several other 
researchers have attempted to analyse extreme fluctuations 

in financial markets. Most of them have provided details on 
the tail behaviour of financial data and examined the 
prospect of EVT as a risk management tool [8, 13-17], and 
many of the them revealing that traditional VaR models 
provided poorer estimates than EVT-based models at higher 
levels of confidence. 

McNeil & Frey first made use of the two-step innovation 
conditional EVT method, which combined GARCH 
modelling and EVT. BMM-EVT was used to estimate 
extreme losses in the return series. The combination of EVT 
with stochastic models allowed quantile estimation of risk 
for financial return series, which was then used to obtain 
VaR estimates. The study disclosed that GARCH-EVT 
provided good estimates of extreme events. Backtests of this 
method showed that this two-step procedure technique 
outperformed not only the traditional GARCH models with 
both normal and t distributions, but also the unconditional 
EVT approach. Bystrom [18] obtained similar results when 
EVT was compared with GARCH models by using negative 
tail distribution of the Swedish and US Dow indices. The 
study unveiled that conditional EVT, which is the 
combination of either the BMM or the POT method with 
traditional time series modelling (GARCH) gave accurate 
results in both tranquil and volatile periods. McNeil & Frey 
along with Diebold et al. [19] also proposed the application 
of the POT method in a GARCH-EVT framework. They 
initially found that the residuals from the GARCH-QMLE 
technique were leptokurtic which led them to model the 
innovations by the t distribution. Their proposed method 
worked quite well for return series with symmetric tails, but 
failed when the tails were asymmetric. They consequently 
advocated the use of GPD approximation in the second step. 
Experiments which followed actually showed that this 
two-step procedure gave adequate estimates as compared to 
methods which ignored the tail distribution. 

This paper aims to implement GARCH with three 
innovations (normal, t and skewed-t), unconditional 
EVT-POT and finally a combined technique of GARCH 
with EVT-POT. The forecasting performance of all the 
models is evaluated in order to determine which technique 
most accurately models extreme market risk on the 
DowJones market index. 

2. Data and Empirical Analysis  
In this study, the daily returns on DowJones are analysed 

in terms of financial time series data. Daily closing prices, 
consisting of 3763 observations from 27 December 2000 to 
31 December 2015, are firstly converted into log returns.  

2.1. Empirical Properties 

When analysing the return series plot (Figure 1), it is 
observed that the returns appear to be stabilised. They are 
clearly stationary with a common mean of 0. Extreme limits 
are set to 3 times the standard deviation away from their 
mean, assuming that 99.7% of the observations are from a 
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normal distribution. It can be explicitly seen from the graph 
that a few points do lie outside the upper and lower limits of 
the boundary set, indicating the presence of large positive as 
well as large negative fluctuations in the returns. These large 
fluctuations provide evidence of extreme events in the US 
market. The plot also displays significant volatility 
clustering of the returns. Indeed, it is observed that periods of 
large returns are clustered and visibly distinct from those of 
small clustered returns. This suggests that heteroskedasticity 
is present in the series. 

In order to confirm the presence of the different stylised 
facts present in the return series, the descriptive statistics of 
the new data set (Table 1) are also analysed. It is observed 
that the mean of the returns is almost 0, which is consistent 
with past findings on daily returns of financial time series. 
The minimum and maximum values are quite far from the 
mean, confirming the occurrence of extreme events during 
the time period. Moreover, as suggested in literature, the 
skewness is negative showing that the returns are slightly 
negatively skewed, probably due to presence of extreme 
values in the left tail of the return distribution. Furthermore, 
the kurtosis value is greater than 3, suggesting that the series 
is heavy-tailed, hence confirming the findings of Satchell & 
Knight [20]. The different characteristics of financial time 
series data as documented by numerous authors in literature, 
such as skewness, high kurtosis, sharp peaks (leptokurtosis) 
as well as volatility clustering are found present in this data 
set too. These allow to infer that the return series in fact 
exhibits departure from the normal distribution and is 
heavy-tailed. 

Table 1.  Descriptive Statistics of Daily Returns 

Summary Measures 

Mean 0.0001271 

Standard Deviation 0.01185 

Minimum -0.08201 

Maximum 0.1051 

Skewness -0.01617 

Kurtosis 8.570 

Nevertheless, to further reaffirm the non-normality of the 
series, the normal Q-Q plot and the histogram of the return 
series are also analysed. The Q-Q plot (Figure 2) under the 
normal theoretical quantiles shows deviations from the 45o 
line, which reasserts the assumption of fat-tailedness of the 
data. The histogram (Fig 3) is only slightly skewed, which 
implies that the distribution of the returns is not very 
heavy-tailed. Nevertheless, based on the other findings 
elaborated above, it would be justified to model the returns 
using a fat-tailed or a skewed distribution. 

The normality of the series can more formally be tested 
using the Jarque-Bera (JB) and the Shapiro-Wilk (SW) tests, 
to ensure that the skewness and kurtosis of the series indeed 
deviate from those of a normal distribution. Both JB and SW 
tests results obtained reject the null hypothesis of normality 
and add weight to the previous results. The p-values being 
almost equal to 0, give evidences that the sample data does 
not come from a normally distributed population. 

 

 

Figure 1.  Evolution of Daily Returns on Dow Jones 
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Figure 2.  Q-Q Plot of Daily Returns 

 

Figure 3.  Histogram of Daily Returns 

2.2. Pre-fit Analysis 

The autocorrelation function (ACF) and partial 
autocorrelation function (PACF) plots of the returns are 
examined in order to identify the GARCH conditional mean 
equation suitable for the data set. The ACF and PACF plots 
(Figure 4) show significant autocorrelation in the returns, 
although at some lags they appear weak. In addition, the 
ACF plots of the squared returns and the absolute returns 
(Figure 5) illustrate strong autocorrelation at almost all the 
lags. Squared returns can be used to measure the second 
order moment of the returns. Therefore, the squared returns 
ACF plot suggests that the variance of the returns conditional 
on past history may vary with time. Also, there is high 
persistence in both the squared and absolute returns and both 
demonstrate slow decay of the autocorrelations of squared 

and absolute returns respectively. The findings therefore 
confirm the presence of volatility clustering in the series and 
hence suggest that a combination of ARMA-GARCH may 
be appropriate. To ensure that ARCH-GARCH would indeed 
be relevant, Engle’s ARCH test is carried out. The 
corresponding p-value being close to 0 allows the rejection 
of the null hypothesis of no ARCH effects and hence 
provides further support to the use of GARCH in the 
modelling of the data series. 

2.3. Identifying the Conditional Mean Equation 

It is desirable to choose a model with a mean equation that 
not only fits well but also has the least number of parameters, 
so as to limit the uncertainties in the forecast values. 
ARMA(m,n), AR(m) and MA(n) models with different lag 
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choices can be fitted depending on the autocorrelation 
function (ACF) and partial autocorrelation function (PACF) 
plots obtained. In order to identify the best model, those 
values of m and n are chosen which minimise the model 
criteria AIC and maximise log-likelihood. ARMA(1,1) 
shows to be most parsimonious. It actually displays the 
lowest AIC value and the maximum log-likelihood value. 

3. Methodology 
Traditional GARCH modelling and Extreme Value 

Theory (EVT) approaches are now applied on the DowJones 
log returns to model Value-at-Risk (VaR) as a means for 
quantifying extreme market risk.  

3.1. Model Specification 

GARCH(1,1) 
GARCH(1,1), which is the most commonly used process 

of all GARCH models, is implemented in this study. It is 
specified as follows: 

𝑟𝑟𝑡𝑡−1 = 𝜇𝜇 + 𝜖𝜖𝑡𝑡−1 
𝜎𝜎𝑡𝑡2 = 𝜔𝜔0 + 𝛼𝛼1𝜖𝜖𝑡𝑡−1

2 + 𝛽𝛽1𝜎𝜎𝑡𝑡−1
2  

where 𝜖𝜖𝑡𝑡 = 𝜎𝜎𝑡𝑡𝑧𝑧𝑡𝑡  is a random variable denoting the mean 
corrected return/random shock. 𝑧𝑧𝑡𝑡  is a sequence of i.i.d. r.v. 
with mean 0 and variance equal to 1. The distribution of 
𝜖𝜖𝑡𝑡|𝐼𝐼𝑡𝑡−1 is conditional on all information available up to time 
𝑡𝑡 − 1. The dynamic behavior of the conditional variance is 
accounted by 𝜖𝜖𝑡𝑡 . This implies that 𝜎𝜎𝑡𝑡2 , the conditional 
variance of today, is dependent on past squared disturbances, 
𝜖𝜖𝑡𝑡2. 

 

 
Figure 4.  ACF and PACF for Returns 

 

Figure 5.  ACF for Squared and Absolute Returns 
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The effect of the distributional assumption on the variable 
𝑧𝑧𝑡𝑡 = 𝜖𝜖𝑡𝑡 𝜎𝜎𝑡𝑡⁄  is analysed, by using three distributions; namely 
the normal distribution, the t distribution and the skewed-t 
distribution introduced by Fernandez & Steel in 1998. The 
parameters are estimated using the Maximum Likelihood 
Estimation method, which is also called the conditional MLE. 
It is actually known to provide asymptotically efficient 
estimation of the parameters of the GARCH model.  
EVT-POT 

The Peak Over Threshold (POT) method consists of 
fitting the Generalised Pareto Distribution (GPD) to the 
series of negative log returns. Its main focus is the 
distribution of exceedances above a specified high threshold. 
For a random variable 𝑋𝑋, the excess distribution function 𝐹𝐹𝑢𝑢  
above a certain threshold 𝑢𝑢 is expressed as: 

𝐹𝐹𝑢𝑢(𝑥𝑥) =  𝑃𝑃[𝑋𝑋 − 𝑢𝑢 ≤  𝑥𝑥 |𝑋𝑋 >  𝑢𝑢] 
where 𝑥𝑥  represents the size of the absolute exceedances 
over 𝑢𝑢. For 𝑋𝑋 − 𝑢𝑢 ≥ 0, the excess distribution function can 
be rewritten as: 

𝐹𝐹𝑢𝑢(𝑥𝑥) =
𝐹𝐹(𝑥𝑥) − 𝐹𝐹(𝑢𝑢)

1 − 𝐹𝐹(𝑢𝑢)  

From the above equation, the reverse expression which 
allows the application of POT-EVT can be deduced. It is 
given as follows: 

𝐹𝐹(𝑥𝑥)  =  �1 − 𝐹𝐹(𝑢𝑢)�𝐹𝐹𝑢𝑢(𝑥𝑥 − 𝑢𝑢)  +  𝐹𝐹(𝑢𝑢) 

There are two steps in the application of the POT method. 
Firstly, an appropriate threshold 𝑢𝑢 has to be chosen, beyond 
which the data points, which qualify as extreme events, are 
identified. GPD is then fitted to these data points to estimate 
the parameters of the distribution, which are finally used to 
calculate Value-at-Risk (VaR). 

It is important to find the appropriate choice for the 
threshold of exceedances, u, beyond which data points are 
considered as extreme values. For choosing u, there is 
usually a trade-off between variance and biasness. As u 
becomes greater, more observations are used to estimate the 
parameters. Therefore, the estimates tend to have lower 
variation, hence lower variance. However, at the same time 
the limiting results of EVT may not hold, since deeper 
attention is given to the order statistics which may not 
contain relevant information. Consequently, this makes the 
estimators more biased. 

The Hill plot proposes a graphical method for choosing an 
appropriate threshold by identifying the relevant number of 
upper order statistics. Hence, the Hill graph is basically a 
diagnostic plot for estimating the EVI. The graph plots Hill 
estimators against corresponding values of number of 
exceedances 𝑘𝑘 . The appropriate threshold is usually the 
point at which the plot appears to be constant or stabilised. 
The Hill plot may not be practical for finding the appropriate 
threshold since the region of stability is not always obvious 
from the graph. As a result, more emphasis is given to MEF 
and Q-Q plots in this study. An appropriate threshold 𝑢𝑢 
would be the value from where the MEF exhibits a positive 

gradient, such that the exceedances follow a GPD with 
𝜉𝜉 > 0, provided the estimated parameters exhibit stability 
within a range of the selected 𝑢𝑢, [21]. The parameters of the 
GPD can be estimated in a number of ways, such as the MLE, 
Methods of Moments, Moment Estimation or Probability 
Weighted Moments. In this study, emphasis is given to the 
MLE and Moment Estimation methods. MLE is the most 
popular one but literature has shown that Moment Estimation 
also gives good results. 
GARCH-EVT 

The two-step procedure of McNeil & Frey [17] is 
investigated here. This method is especially useful when 
dealing with short horizon time periods. The two steps 
involved are summarised as follows: 
  Estimate a suitable GARCH-type process and extract its 

residuals, which should be i.i.d. 
  Apply Extreme Value Theory (EVT) to the obtained 

residuals in order to derive Value-at-Risk (VaR) 
estimates. 

In this paper, filtering is firstly performed using the 
GARCH model with the symmetric t distribution since it 
adequately models fat-tailed series. EVT is then applied to 
the residuals, as elaborated above. This approach is usually 
known as conditional EVT technique, whereby both the 
dynamic GARCH structure and the residual process are 
taken into account. 

3.2. Forecasting 

After estimating the different model parameters and 
diagnosing the models, forecasting is carried out in order to 
compare the model forecasts with actual observations. The 
models are used to forecast 1-ahead daily VaR at both 95% 
and 99% confidence levels.  
Value-at-Risk (VaR) Evaluation 

There is a need to accurately estimate VaR, because the 
inaccurate estimation of this risk can have catastrophic 
repercussion in real life situations; for example inefficient 
allocation of capital can lead to serious implications on the 
stability and profitability of financial institutions. The 
overestimation of the risk can cause excess of capital 
requirements which may be unnecessary while the 
underestimation of it can lead to untimely exhaustion of 
capital. When using Generalised Autoregressive Conditional 
Heteroskedasticity (GARCH) modelling, VaR is calculated 
directly from the standard deviation obtained from fitting the 
distribution of returns. The relationship between the VaR 
and the standard deviation at time 𝑡𝑡 can be expressed as 
follows: 

𝑉𝑉𝑉𝑉𝑅𝑅𝑡𝑡
𝑝𝑝 = 𝜇𝜇𝑡𝑡  + 𝑞𝑞𝑑𝑑𝑟𝑟𝜎𝜎𝑡𝑡  

For EVT-POT, VaR is calculated by using the following 
equation: 

𝑉𝑉𝑉𝑉𝑅𝑅𝛼𝛼 = 𝑢𝑢 +
𝜎𝜎
𝛾𝛾
��
𝑛𝑛
𝑁𝑁𝑁𝑁

𝛼𝛼�
−𝛾𝛾
− 1� 
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Backtesting VaR 
In order to measure the accuracy of the estimated risk, the 

risk models have to be backtested. Backtesting actually 
provides evidence of whether or not a risk model is reliable 
and accurate. Two popular statistical tests are used: firstly 
the unconditional coverage test, which takes into account 
only the frequency of the VaR violations and does not 
consider the time at which they occur, and secondly the 
conditional coverage test, which takes both factors into 
consideration. 
Data Material  

In this paper, the last 250 observations out of the 3762 
daily returns are kept for forecasting and backtesting 
purposes. A rolling window forecast of 250 observations is 
actually used. 

4. Estimation Results  
This section analyses the forecasting performance of the 

three approaches; GARCH (with normal, t and skewed 
innovations), unconditional Extreme Value Theory (EVT) 
and lastly conditional EVT (combined GARCH with EVT). 
The comparative analysis is done on the basis of their 
backtesting performance.  

4.1. Fitting Performance 

4.1.1. Implementation of GARCH 

GARCH(1,1) with three innovations (normal, t and 
skewed-t) is fitted and, the log-likelihood as well as AIC 
values are obtained.  

Table 2.  Log-likelihood and AIC for GARCH with different innovations 

 
GARCH(1,1) 

Normal 
GARCH(1,1) 

t 
GARCH(1,1) 

skewed t 

Log-Lik. -4767.093 -4713.444 -4704.348 

AIC 2.7182 2.6882 2.6836 

The results show that the skewed-t distribution has the 
maximum log-likelihood and the minimum AIC values. 
However, not much difference between the three 
distributions is observed. It hence suggests that the skewed-t 
distribution only slightly outperforms both the normal and t 
distributions. The GARCH(1,1)-N model performs the least 
well. The results allow to deduce that innovations of 
fat-tailed distribution used to describe conditional 
distribution is justified. Skewed-t distribution, which 
accounts for both asymmetry and heavy tails, is probably the 
most suitable innovation to be modeled for this data set. 
Parameter Interpretation 

After the joint estimation of the variance and mean 
equations, the parameters of the models are obtained and 
analysed. It is observed that under different distributional 
assumptions, the parameters vary, implying that the 
distributional assumption does have certain effect on the 
estimation process. For the fat-tailed t distribution, the shape 
parameter is estimated, and for the skewed-t, both a shape 
parameter and a skewness parameter are obtained. The 
skewness parameter, having a very low p-value, is quite 
significant. Moreover, the shape parameters for both the t 
and skewed-t distributions are high, confirming the presence 
of heavy tails in the series. The results further show that the 
p-values of the GARCH parameters are very low, indicating 
that these parameters are also highly significant. It can 
thereby be inferred that there may not have been 
misspecification in the models. 

4.1.2. Implementation of EVT 

Threshold Selection 
To find an appropriate value for the threshold, the MEF is 

analysed. From the graph (Fig 6), it can be observed that the 
graph is relatively constant between 0 and 1, implying that 
the threshold choice should be somewhere between 0 and 
0.01 (1%). For the 20% exceedance, the threshold return is 
around 0.01, as shown in the graph. This further implies that 
the MEF may justify the use of 20% as threshold choice. 

 

Figure 6.  Mean Excess Plot 
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Parameter Interpretation 
Initially, only the first 250 data window is considered and 

is then approximated to the whole data series. The estimates 
of the Extreme Value Index (EVI) for the different 
exceedance percentage choices, that is 5%, 10%, 15% and  
20% (12, 25, 37 and 50) are found using MLE and Moment 
Estimation. The results are obtained as follows: 

Table 3.  Estimators of EVI at different Exceedance Levels 

 
Number of Exceedances, k 

12 
5% 

25 
10% 

37 
15% 

50 
20% 

Moment Estimator 0.222 0.387 0.248 0.266 

MLE 0.174 0.457 0.214 0.212 

In order to compare the EVI estimates of the two methods, 
graphs of the different estimators of the EVI at various 
exceedance levels are plotted (Figure 7). 

The results show that the values of the EVI estimators are 
all positive, suggesting that the application of Peak Over 
Threshold (POT) would be appropriate. It can thereby be 
inferred that the tail index has a heavier tail behaviour than 
the exponential. The estimators are very reliable at all the 
exceedances level. However, it is wise not to consider the 
low levels of exceedances as possible thresholds, as this 
would involve very few observations for EVT to apply well. 
Therefore, 20% is preferentially chosen as an appropriate 
limit of the threshold. This means that for the first data 
window, 20% of 250 negative returns (which gives k = 50) 
would be considered as extreme values. 
Model Validation 

Q-Q plot is used to assess the reasonability of a 
Generalised Pareto Distribution (GPD) at the chosen 20% 
exceedance. The corresponding plot (Figure 8) is linear, 
providing evidence for the appropriateness of the GPD 

assumption at this exceedance. Moreover, to justify the use 
of GPD, the excess distribution plot and the plot of the tail 
distribution are also analysed (Figure 9). The plots show that 
exceedances lie close to the theoretical curves, showing a 
good fit.  

In addition, the plot of the residuals is scattered with no 
visible trend present. Hence, the graphs support the use of 
GPD as the modelling distribution. 
POT-VaR over the Whole Series 

Now, considering all the 3762 observations, EVT is 
applied to a moving data window of 250 days. The data is 
firstly transformed into negative log returns. A threshold of 
20% is used in this analysis. The parameters are re-estimated 
every day based on the previous 250 days of observations. 
Since the MLE method is the most commonly used, it is 
preferentially used over the Moment Estimation to estimate 
the parameters of the Generalised Pareto Distribution (GPD). 
The parameters, 𝝈𝝈 and 𝜸𝜸 of the GPD are hence estimated 
using the MLE method. The graph (Fig 10) below illustrates 
the evolution of the EVI for the out-sample data window (last 
250 data points) as estimated by MLE. The evolution of the 
𝝈𝝈 parameter (Fig 11) is also plotted. Both graphs indicate 
that the parameters appear to be reliable over time. These are 
now used in the calculation of Value-at-Risk (VaR). 

4.1.3. Implementation of GARCH-EVT 

The residuals obtained from fitting GARCH to the series 
should be i.i.d. In order to verify the appropriateness of 
Extreme Value Theory (EVT) to these residuals, their 
descriptive statistics are analysed. The skewness (0.1065) 
and kurtosis (8.319) being quite large suggest that the 
application of EVT is admissible. EVT is therefore applied in 
the same way, as explained above, to obtain 
VaR-GARCH-POT estimates and finally the backtest tests 
results are obtained and analysed. 

 

Figure 7.  Estimators of the EVI at different Exceedance Levels 
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Figure 8.  Q-Q Plot at 20% Exceedance 

 

Figure 9.  Plots for appropriateness of GPD 

4.2. Value-at-Risk (VaR) Forecast 

After estimating the parameters of the models and 
carrying out diagnostic checks, dailyVaR are now estimated. 
1-step ahead VaR are forecasted and the models are 
re-estimated every one observation. This is done to ensure 
that the risk measure is more or less in conformity with 
actual practice. A series of 250 forecasts of Value-at-Risk 
(VaR) for one year is obtained. The 1-day ahead VaR is 
calculated at 95% and 99% confidence levels. Both levels of 
confidence are used for out-of-sample backtesting of VaR, in 

accordance to Basel II Backtesting Requirements, which 
stipulates that backtesting of VaR needs to be done on 
confidence levels other than 99%. 

Usually, the smaller confidence level, the greater is the 
number of violations and easier it becomes to judge the 
forecasting performance of the model. This is why, at the  
95% confidence level, it is expected to observe more 
violation points than at 99% level. A violation point is said to 
occur when the point lies below or above the true values of 
the returns. In this study, both confidence levels are 
considered so as to be able to investigate better the model 
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accuracy when dealing with tails. At 99%, a lower portion of 
the tail is taken into consideration than at the 95%. The 
results are analysed using backtesting charts and quantitative 
statistical backtests. 

4.2.1. Backtest Graphs and Results 

A graphical analysis is initially provided to illustrate an 
overall visual overview of the performance of the risk 
models at both 95% and 99% for all the models ie. GARCH 
Normal, GARCH t, GARCH Skewed t, POT and 

GARCH-POT. 
All the graphs (Fig 12 to Fig 16) clearly display presence 

of VaR violations. The results obtained show that all the 
techniques adopted for VaR forecasting more or less fairly 
model downside risk. In addition to the backtest charts, a 
quantitative analysis, which is more reliable, is also provided. 
The number of VaR violations is counted and then compared 
to the expected number of losses at the chosen confidence 
level. 

 

 

Figure 10.  Evolution of GPD 𝛾𝛾 parameter 

 

Figure 11.  Evolution of GPD sigma parameter 
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Figure 12.  Backtesting Chart for VaR GARCH Normal 

 

Figure 13.  Backtesting Chart for VaR GARCH-t 

 

Figure 14.  Backtesting Chart for VaR GARCH Skewed t 
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Figure 15.  Backtesting Chart for VaR-POT 

 

Figure 16.  Backtesting Chart for VaR-GARCH-POT 

 
VaR-GARCH 

For the GARCH models, all the innovations succeed in 
providing satisfactory results, except for the GARCH-N at  
1% confidence level. The distribution of the skewed-t 
provides the best results. However, there is only slight 
difference in the values obtained for the different 
distributions. All the models pass the unconditional coverage 
test at the 5% exceedance, however at 1% exceedance, the 
GARCH-N fails the test. Furthermore, all the models pass 
the conditional coverage test at both the 1% and 5% 
exceedances, except again for the GARCH-N. This is 
anticipated since generally the normal distribution does not 
model tails quite accurately. Nevertheless, the number of 
VaR violations for all the GARCH innovations at both 95% 
and 99% levels of confidence are quite fair. 

VaR-POT 

Better results are obtained for the empirical application of 
unconditional EVT-POT approach to the data set as 
compared to the GARCH models. Both the unconditional 
and conditional coverage tests also provide better results 
(Table 5). 
VaR-GARCH-EVT 

The results obtained when GARCH is combined with 
EVT-POT is relatively the best compared to the other two 
techniques (Table 6). However, it can be seen that the results 
are only slightly improved. The unconditional as well as the 
conditional coverage tests are successfully carried out. 
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Table 4.  GARCH Backtest Results 

Out-Sample Results 

ARMA(1,1)-GARCH(1,1) 
VaR level 

Expected Exceedance Actual Exceedance 
1% 5% 1% 5% 

N 2.5 12.5 7 19 
t 2.5 12.5 4 19 

Skew-t 2.5 12.5 4 18 
      

Kupiec Test 
 LRuc.stat p-value Outcome 
 1% 5% 1% 5% 1% 5% 

N 5.497 2.256 0.01905 0.1331 Reject 𝐻𝐻0 Fail to reject𝐻𝐻0 
t 0.7691 4.0395 0.3805 0.05445 Fail to reject 𝐻𝐻0 Fail to reject 𝐻𝐻0 

Skew-t 0.7691 3.0905 0.3805 0.07875 Fail to reject 𝐻𝐻0 Fail to reject 𝐻𝐻0 
Christoffersen Test 

 LRcc.stat p-value Outcome 
 1% 5% 1% 5% 1% 5% 

N 12.233 2.739 0.002206 0.2543 Reject 𝐻𝐻0 Fail to reject 𝐻𝐻0 
t 12.9926 4.1997 0.05151 0.1225 Fail to reject 𝐻𝐻0 Fail to reject 𝐻𝐻0 

Skew-t 12.9926 3.3890 0.05151 0.1837 Fail to reject 𝐻𝐻0 Fail to reject 𝐻𝐻0 

Table 5.  POT-EVT Backtest Results 

Out-Sample Results 

POT-EVT 
VaR level 

Expected Exceedance Actual Exceedance 

1% 5% 1% 5% 

M 2.5 12.5 3 16 

      

Kupiec Test 

LRuc.stat p-value Outcome 

1% 5% 1% 5% 1% 5% 

12.999 14.210 0.2573 0.7221 Fail to reject 𝐻𝐻0 Fail to reject 𝐻𝐻0 

Christoffersen Test 

LRcc.stat p-value Outcome 

1% 5% 1% 5% 1% 5% 

17.112 14.777 0.3077 0.8275 Fail to reject 𝐻𝐻0 Fail to reject 𝐻𝐻0 

Table 6.  GARCH-POT-EVT Backtest Results 

Out-Sample Results 

POT-EVT 
VaR level 

Expected Exceedance Actual Exceedance 

1% 5% 1% 5% 

M 2.5 12.5 3 12 

      

Kupiec Test 

LRuc.stat p-value Outcome 

1% 5% 1% 5% 1% 5% 

9.8526 6.8852 0.0873 0.0599 Fail to reject 𝐻𝐻0 Fail to reject 𝐻𝐻0 

Christoffersen Test 

LRcc.stat p-value Outcome 

1% 5% 1% 5% 1% 5% 

9.9055 7.1520 0.0887 0.0611 Fail to reject 𝐻𝐻0 Fail to reject 𝐻𝐻0 
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4.2.2. Comparative Analysis 

The failure rates for the GARCH models (normal, t and 
skewed t) as well as the unconditional and conditional EVT 
models, at the confidence levels of 95% and 99%, are 
tabulated, as shown below.  

Models 
Failure Rate 

1% 5% 

GARCH Normal 0.020 0.076 

GARCH t 0.016 0.076 

GARCH Skewed-t 0.016 0.072 

EVT-POT 0.012 0.064 

GARCH-POT 0.012 0.048 

The GARCH model performed quite well with all the 
innovations however the skewed-t distribution seemed to 
provide relatively superior results. At the 95% confidence 
level, the expected failure rate is 0.05 while at 99%, it is 
expected to be 0.01. The results show that the failure rates at 
both levels for all the models are relatively high than that 
expected. The GARCH-normal and GARCH-t failures rates 
as compared to the others are the highest and the same at 
95%. This is quite unusual since generally the t is expected to 
perform better than normal. At both 95% and 99%, failure 
rates for both unconditional and conditional EVT are smaller. 
The results thus allow to deduce that EVT techniques (both 
conditional and unconditional) performed better as 
compared to the GARCH approaches, with conditional EVT 
(GARCH-POT) performing the best.  

5. Conclusions 
The main focus of this paper was to compare the 

forecasting power of different models in modelling 
Value-at-Risk (VaR), whereby the modelling adequacy of 
Generalised Autoregressive Conditional Heteroskedasticity 
(GARCH) and Extreme Value Theory (EVT) approaches 
were investigated. Three approaches were adopted namely [1] 
GARCH with normal, t and skewed-t innovations as well as 
[2] unconditional EVT and [3] conditional EVT. The 
empirical results reveal that in general, all the three 
approaches performed well in the measurement of extreme 
market risk. 

The GARCH models using the fat-tailed and skewed 
distribution pass both the unconditional and conditional 
coverage tests meaning that the performance of the models 
was uniform over time. However, based on backtesting 
results of 1-day-ahead VaR predictions, the GARCH-N 
model fails to accept the hypothesis of correct coverage and 
independence at the 99% level. It is thus concluded that this 
GARCH innovation technique tends to underestimate risks 
during volatile periods, while overestimating risks during 
tranquil periods at this level. During these periods, EVT 
tends to perform better than traditional GARCH methods. 
The results obtained also indicate that GARCH combined 

with EVT to give conditional VaR estimates is the best 
technique to be considered for modelling of extreme market 
risk for financial data. It is indeed a reliable and powerful 
approach for modelling heavy-tailed distributions as argued 
by the findings of Kellezi & Gilli [22], Fernandez [10] and 
Gilli & Kellezi [8] among others, which concluded that EVT 
does give the most accurate estimates of VaR at higher 
confidence levels.  

To conclude, the results showed that accounting for 
fat-tails and skewness using different distributions in both 
GARCH and EVT modelling produced more accurate and 
precise estimation of VaR forecasts. The more accurate the 
volatility specifications and forecasts are, the more they are 
likely to improve the quality of risk measures, leading to a 
successful implementation of risk management which is very 
important in management of downside risks. 

Other variants and extensions of the GARCH model such 
as EGARCH, GJR-GARCH and TGARCH, that are capable 
to adequately incorporate properties like asymmetry and 
leverage effects respectively, can be used as an extension to 
this study. Furthermore, instead of using MLE for GARCH 
parameter estimation, Quasi-MLE which is asymptotically 
normal and consistent can be used for estimation of the 
GARCH parameters and current volatility before Extreme 
Value Theory (EVT) is applied to the residuals. Multivariate 
extension of the GARCH model such as the copula-GARCH 
may also be implemented to model Value-at-Risk (VaR). 
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