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Abstract  The Inverse Gaussian distribution is a plausible model in settings where failure occurs when a deterioration 
process reaches a certain level. More generally, it is a reasonably flexible two-parameters family of models with properties 
that are rather similar to those of log-normal distribution. In this paper, an attempt has been made to outline how the Bayesian 
approach proceeds to fit such a model using Laplace Approximation, which requires the ability to maximize the joint 
log-posterior density. This model is applied to a real survival censored data, so that, all the concepts and computations will be 
around that data. R code has been developed and provided to implement in censored mechanism using analytic Laplace 
Approximation method. Moreover, parallel simulations tools are also implemented with an extensive use of R. 
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1. Introduction 
Survival analysis is a collection of statistical procedures 

for data analysis for which the outcome variable of interest is 
time until an event occurs, for example, death of a patient, 
time to first recurrence of a tumor after initial treatment, time 
to the learning of a skill and promotion time for employees. 
Survival analysis arises in many fields of study including 
medicine, biology, engineering, public health, epidemiology 
and economics. Various models exist that are commonly 
used in survival analysis, for example, Weibull, normal and 
gamma distributions. Another important model for survival 
data is inverse Gaussian distribution. The Inverse Gaussian 
distribution is a plausible and reasonably flexible 
two-parameters family of models with properties that are 
rather similar to those of log-normal distribution. In this 
paper, an attempt has been made to outline how Bayesian 
approach proceeds to fit Inverse Gaussian model for lifetime 
data using LaplaceApproximation, which required the 
ability to maximize the joint log posterior densities. The 
tools and techniques used in this paper are in Bayesian 
environment, which are implemented using 
LaplacesDemon package of Statisticat (Statisticat LLC 
2014). Goal of this package is to provide a complete and 
self-contained Bayesian environment within R and 
approximate the posterior densities using one of the Markov 
chain Monte Carlo(MCMC) algorithms. 

The function LaplaceApproximation of  
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LaplacesDemon approximates the posterior results 
analytically and then after convergence it gives simulated 
results using sampling importance resampling (SIR) method. 
In LaplaceApproximation function there is an argument 
called "Method". The method used to approximate posterior 
density is the Trust Region(TR) algorithm of Nocedal and 
Wright (1999) is used. The TR algorithm attempts to reach 
its objective in the fewest number of iterations, is therefore 
very efficient, as well as safe. The efficiency of TR is 
attractive when model evaluations are expensive. Another 
main function of this package is LaplacesDemon, which 
maximizes the logarithm of unnormalized joint posterior 
density using one of the MCMC algorithms. In 
LaplacesDemon the algorithm used for simulation is 
Independent Metropolis. This package does not deal with 
censoring mechanism. We have developed function for 
censored data which works well for the analysis of survival 
data. Real survival data is used for the purpose of illustration. 
Thus, Bayesian analysis of inverse Gaussian distribution has 
been made with the following objectives: 
•  To define a Bayesian model, that is, specification of 

likelihood and prior distribution. 
•  To write down the R code for approximating posterior 

densities with Laplace Approximation and simulation 
tools. 

•  To illustrate numeric as well as graphic summaries of 
the posterior densities. 

2. The Inverse Gaussian Distribution  
The Inverse Gaussian distribution is a plausible model in 

settings where failure occurs when a deterioration process 
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reaches a certain level. More generally, it is a reasonably 
flexible two-parameters family of models with properties 
that are rather similar to those of log-normal distribution. If T 
has Inverse Gaussian Distribution, we denote this by

( , )Y InvG z α~ (Meeker and Escobar, 1998).  
The InvG cdf, pdf and survival function  are respectively:  

( ) 1( ; ) =
( / 2)

( ) 1exp(2 )
( / 2)

exp zF z
exp z

exp z
exp z

α α

α α

  − Φ  
   

  + + Φ −  
   

 

( ) 1( ; ) =
exp( / 2) ( / 2)

exp zf z
y z exp z

αα α
  − Φ  
   

,  

z−∞ < < ∞  

( ) 1( ; ) = 1
( / 2)

exp zS z
exp z

α α
  − −Φ  
   

. 

Where = log( / ) = log logz y yθ θ− . As α  tends to 
infinity, the inverse Gaussian distribution becomes more 
likely to a normal distribution as it is evident from Figure 1. 

 

Figure 1.  Probability density function of inverse Gaussian Distribution for 
α = 1, 2, 4 

3. The Prior Distributions 
In Bayesian paradigm, it is needed to specify prior 

information regarding the value of the parameter of interest 
or information that is available before analyzing the 
experimental data by using a probability distribution 
function. This probability distribution function is called the 
prior probability distribution, or simply the prior, since it 
reflects information about parameter prior to observing 
experimental data. Here some prior distributions are 

discussed according to their uses in subsequent Bayesian 
reliability models.  

3.1. Weakly Informative Priors 

Weakly Informative Prior (WIP) distribution uses prior 
information for regularization and stabilization, providing 
enough prior information to prevent results that contradict 
our knowledge or problems such as an algorithmic failure to 
explore the state-space. Another goal is for WIPs to use less 
prior information than is actually available. A WIP should 
provide some of the benefit of prior information while 
avoiding some of the risk from using information that 
doesn’t exist (Statisticat LLC, 2013). A popular WIP for a 
centered and scaled predictor (Gelman, 2008) may be θ ∼ 
N(0,10000)), where θ is normally-distributed according to a 
mean of 0 and a variance of 10,000, which is equivalent to a 
standard deviation of 100 or precision of 1.0 × 10-4. In this 
case, the density for θ is nearly flat. Prior distributions that 
are not completely flat provide enough information for the 
numerical approximation algorithm to continue to explore 
the target density, the posterior distribution. 

3.2. The Half-Cauchy Prior Distribution 

The probability density function of half-Cauchy 
distribution with scale parameter α is given by  

2 2

2( ) = , > 0, > 0
( )

f x x
x
α α

π α+
. 

 

Figure 2.  It is evident from the above plot that for scale=25 the 
half-Cauchy distribution becomes almost uniform 

The mean and variance of the half-Cauchy distribution do 
not exist, but its mode is equal to 0. The half-Cauchy 
distribution with scale α = 25 is a recommended, default, 
noninformative prior distribution for a scale parameter. At 
this scale α = 25, the density of half-Cauchy is nearly flat but 
not completely (see Figure 2), prior distributions that are not 
completely flat provide enough information for the 
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numerical approximation algorithm to continue to explore 
the target density, the posterior distribution. The 
inverse-gamma is often used as a noninformative prior 
distribution for scale parameter, however, this model creates 
problem for scale parameters near zero, Gelman and Hill 
(2007) recommend that, the uniform, or if more information 
is necessary the half-Cauchy is a better choice. Thus, in this 
paper, the half-Cauchy distribution with scale parameter α = 
25 is used as a noninformative prior distribution (Akhtar and 
Khan, 2014a,b). 

4. The Laplace Approximation 
Many simple Bayesian analyses based on noninformative 

prior distribution give similar results to standard 
non-Bayesian approaches, for example, the posterior 
t-interval for the normal mean with unknown variance. The 
extent to which a noninformative prior distribution can be 
justified as an objective assumption depends on the amount 
of information available in the data; in the simple cases as the 
sample size n increases, the influence of the prior distribution 
on posterior inference decreases. These ideas, sometime 
referred to as asymptotic approximation theory because they 
refer to properties that hold in the limit as n becomes large. 
Thus, a remarkable method of asymptotic approximation is 
the Laplace Approximation which accurately approximates 
the unimodal posterior moments and marginal posterior 
densities in many cases. In this section we introduce a brief, 
informal description of Laplace approximation method. 

Suppose -h(θ) is a smooth, bounded unimodal function, 
with a maximum at θ̂ , and θ is a scalar. By Laplace’s 
method (e.g., Tierney and Kadane, 1986), the integral  

= ( )exp[ ( )]I f nh dθ θ θ−∫  

can be approximated by  
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As presented in Mosteller and Wallace (1964), Laplace’s 
method is to expand about θ̂  to obtain:  
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Intuitively, if exp[ ( )]nh θ−  is very peaked about θ̂ , 
then the integral can be well approximated by the behavior of 
the integrand near θ̂ . More formally, it can be shown that  

1ˆ= 1 .I I O
n
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To calculate moments of posterior distributions, we need 
to evaluate expressions such as:  
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−
∫
∫

      (1) 

where exp[ ( )] = ( | ) ( )nh L y pθ θ θ−  (e.g., Tanner, 1996). 

5. Bayesian Analysis of Inverse Gaussian 
Model 

5.1. The Model 
Over a century the family of Inverse Gaussian distribution 

has attracted the attention of many researchers in several 
fields specially in reliability as well as survival analysis 
because of its ∩ -shape of hazard rate function like 
log-normal, generalized Weibull and log-logistic distribution. 
That is, the hazard rate of inverse Gaussian distribution is 
unimodal which increases from 0 to its maximum and then 
decreases asymptotically to a fixed value (constant). In other 
worlds, the inverse Gaussian distribution has one mode in the 
interior of the values of possible values and it is skewed to 
the right, sometimes with an extremely large tail. The fact 
that extremely large outcome can occur when almost all 
outcomes are small is a distinguish characteristic. 

It is more convenient to define the model in terms of the 
parameterizations = ( / )z log y θ  leading to  

/2 /2
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z
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Throughout we use the notation ( , )invG z α , where 
= ( / )z log t θ to denote the density (Equation 2).  
Let  
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denote the survival function. We can write the likelihood 
function of ( ; )z α  for right censored (as is our case the data 
are right censored) as  
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where iξ  is an indicator variable which takes value 0 
observation is censored and 1 otherwise. Thus, the likelihood 
is given by  
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where = ( / )i iz log y θ . 
Subsequently, to built the inverse Gaussian regression 

model, we introduce covariate through θ  with loglink
function and write log = Xθ β . Moreover, to compare the 
model in Bayesian paradigm, it is important to choose an 
appropriate prior distributions for regression coefficients  
β s and shape parameter α , according to available 
information. Making the choice is a challenge because β s 
parameters have support on real line and α  on positive real 
line. For this situation, separate and independent priors 
should be chosen. One choice on prior for β  parameter is  

(0,1000)Nβ ~  

which is normal distribution with mean 0 and large variance 
1000 or a small precision 1 × 10-3. The density for β s with 
large variance is nearly flat. Priors that are not completely 
flat provide enough information for the numerical 

approximation to contribute to explore the target density. 
Similarly, for the shape parameter α , the choice of prior is 
half-Cauchy with scale = 25α , that is,  

= (25).HCα  

Thus, using these prior distributions the joint posterior 
density is  
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which is not in closed form. Consequently, the marginal 
posterior densities of parameters jβ  and α  are also not in 
closed form. These marginal densities are the basis of 
Bayesian inference and therefore one needs to use numerical 
integration or MCMC methods. Due to the availability of 
computational tool like R and LaplacesDemon, the required 
model can easily be fitted in Bayesian paradigm using 
LaplaceApproximation as well as MCMC techniques.  

Table 1.  Lung Cancer Survival Data 

t x1 x2 x3 t x1 x2 X3 
 Standard, Squamous   Test, Squamous  

411 70 64 5 999 90 54 12 
126 60 63 9 231* 50 52 8 
118 70 65 11 991 70 50 7 
92 40 69 10 1 20 65 21 
8 40 63 58 201 80 52 28 

25* 70 48 9 44 60 70 13 
11 70 48 11 15 50 40 13 
 Standard, Small      

54 80 63 4 Test,                  Small 
153 60 63 14 103* 70 36 22 
16 30 53 4 2 40 44 36 
56 80 43 12 20 30 54 9 
21 40 55 2 51 30 54 9 

287 60 66 25     
10 40 67 23  Test, Adeno  
 Standard, Adeno  18 40 69 5 
8 20 61 19 90 60 50 22 
12 50 63 4 84 80 62 4 
 Standard, Large   Test, Large  

177 50 66 16 164 70 68 15 
12 40 68 12 19 30 39 4 

200 80 41 12 43 60 49 11 
250 70 53 8 340 80 64 10 
100 60 37 13 231 70 67 18 

Days of survival t, performance status x1, age in year x2, and number months from diagnosis to entry into x3.  
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5.2. The Data: Lung Cancer Survival Data 
Let us introduce a lifetime dataset taken from Lawless 

(1982), so that all the concepts and computations will be 
discussed around that data. Lung cancer survival data for 
patients assigned to one of two chemotherapy treatments. 
The data, given in Table 1, include observations on 40 
patients: 21 were given one treatment (standard), and 19 the 
other (test). Several factors thought to be relevant to an 
individual’s prognosis were also recorded for each patient. 
These include performance status 1( )x  at diagnosis (a 
measure of the general medical condition on a scale of 0 to 
100), the age of patient 2( )x  and the number of months 
from diagnosis of cancer 3( )x  to entry into the study , In 
addition , tumors were classified into four types: squamous, 
small, adeno and large. Censored observations are starred. 

5.3. Implementation using LaplacesDemon 

Bayesian modeling of inverse Gaussian distribution in 
LaplacesDemon package includes the creation of data, 
model specification, initial values and fitting of survival data 
using LaplaceApproximation and LaplacesDemon 
function. The R codes for each of these tasks are given as:  

5.3.1. Creation of Data 

Data creation requires model matrix X, number of 
predictors J, naming of the parameters, information 
regarding censoring and response variable.  

require(LaplacesDemon)  
N<- 40  
J<- 8 
y<-c(411, 126, 118, 92, 8, 25, 11, 54, 153, 16, 56, 21, 287, 

10, 8, 12, 177, 12, 200, 250, 100, 999, 231, 991, 1, 201, 44, 
15, 103, 2, 20, 51, 18, 90, 84, 164, 19, 43, 340, 231) 

censor<- c(rep(1, 5), 0, rep(1, 16), 0, rep(1, 5), 0, rep(1, 
11))  

x1<-c(70, 60, 70, 40, 40, 70, 70, 80, 60, 30, 80, 40, 60, 40, 
20, 50, 50, 40, 80, 70, 60, 90, 50, 70, 20, 80, 60, 50, 70, 40, 
30, 30, 40, 60, 80, 70, 30, 60, 80, 70)  

x2<-c(64, 63, 65, 69, 63, 48, 48, 63, 63, 53, 43, 55, 66, 67, 
61, 63, 66, 68, 41, 53, 37, 54, 52, 50, 65, 52, 70, 40, 36, 44, 
54, 59, 69, 50, 62, 68, 39, 49, 64, 67)  

x3<-c(5, 9, 11, 10, 58, 9, 11, 4, 14, 4, 12, 2, 25, 23, 19, 4, 
16, 12, 12, 8, 13, 12, 8, 7, 21, 28, 13, 13, 22, 36, 9, 87, 5, 22, 
4, 15, 4, 11, 10, 18)  

x4<-c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0)  

x5<-c(0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)  

x6<-c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)  

x7<-c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)  

x1<-x1-mean(x1)  
x2<-x2-mean(x2)  
x3<-x3-mean(x3)  

X<-cbind(1, x1, x2, x3, x4, x5, x6, x7)  
mon.names<-"LP"  
parm.names< -as.parm.names(list(beta=rep(0, J), 

log.alpha=0))  
MyData<-list(J=J, X=X,mon.names=mon.names, 

censor=censor, parm.names=parm.names,y=y)   
In this case, there are two parameters beta and alpha 

which must be specified in vector parm.names. The 
logposterior LP is included as monitored variables in vector 
mon.names. The number of observations is specified by N, 
that is, 40. Censoring is taken into account, where 0 stands 
for censored and 1 for uncensored values. Finally, all these 
things are combined in a listed form as MyData. 

5.3.2. Model Specification 

The function LaplaceApproximation can fit any 
Bayesian model for which likelihood and prior are 
specified (e.g. Akhtar and Khan, 2014b). To use this 
method one must specify a model. 

( , )y InvG z α~  

or equivalently,  
( ( / ), )y InvG log y θ α~  

where α  is shape parameter. 
Moreover, the link function to create θ  with X β  a 

logarithm link function is used  
log = Xθ β  

= exp( )Xθ β  

A model matrix 0 1 7= ( , ,..., )X x x x  with each individual, 
where (Lawless, 1982) 

0 = 1x  

1 =x  Performance status 

2 =x Age 

3 =x Months from diagnosis to entry into the study 

4 = 1x  if tumor type is squamous, 0 otherwise  

5 = 1x  if tumor type is small, 0 otherwise  

6 = 1x  if tumor type is adeno, 0 otherwise  

7 = 0x  if treatment is test, 1 if it is standard  
It is wise to center the regressor variables: we have 

centered just 1x , 2x  and 3x  here and work with the model 
for which  

0 1 1 1 2 2 2
7

3 3 3
=4

log = ( ) ( )

( ) i i
i

x x x x

x x X

θ β β β

β β

+ − + −

+ − +∑
. 

Prior probabilities are specified for regression coefficient
β  and shape parameter α , respectively  

(0,1000), = 1, ,j N j Jβ ~
 

(25)HCα ~ . 
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The large variance and small precision indicate a lot of 
uncertainty of each β  and is hence a weakly informative 
prior distribution. Similarly, half-Cauchy is weakly 
informative prior for α  (Statisticat LLC 2014). 

Model<-function(parm,Data){  
### Parameters  
beta<-parm[1:Data$J]  
alpha<-exp(parm[Data$J+1])  
### Log-Prior  
beta.prior<-sum(dnorm(beta,0,1000, log=TRUE))  
alpha.prior<-dhalfcauchy(alpha,25,log=TRUE)  
### Log-Likelihood  
mu<-tcrossprod(Data$X, t(beta))  
theta<-exp(mu)  
z<-log(Data$y)-log(theta)  
z1<-(exp(z)-1)/exp(z/2)  
z2<-(exp(z)+1)/exp(z/2)  
lf<-((1/2)*log(alpha)-log(y)-(z/2)+log(dnorm 

(sqrt(alpha)*z1)))  
ls<-log(1-pnorm(sqrt(alpha)*z1)-exp(2*alpha) 

*pnorm(-sqrt(alpha)*z2))  
LL<-(censor*lf+(1-censor)*ls)  
LL<-sum(LL)  
### log-Posterior  
LP<-LL+beta.prior+alpha.prior  
Modelout<-list(LP=LP, Dev=-2*LL, Monitor=LP, 

yhat=mu, parm=parm)  
return(Modelout) } 
The Model function contains two arguments, that is, 

parm and Data, where parm is for the set of parameters, and 
Data is the list of data. There are two parameters beta and 
alpha having priors beta.prior and alpha.prior, 
respectively. The object LL stands for loglikelihood and LP 
stands for logposterior. The function Model returns the 
object Modelout, which contains five objects in listed form 
that includes logposterior LP, deviance Dev, monitoring 
parameters Monitor, fitted values yhat and estimates of 
parameters parm. 

5.3.3. Initial Values 

The function LaplaceApproximation requires a vector 
of initial values for the parameters. Each initial value is a 
starting point for the estimation of a parameter. So all 
the beta parameters have been set equal to zero and the 
remaining parameter, alpha, has been set equal to log(1), 
which is zero. The order of the elements of the initial 
values must match the order of the parameters. Thus, 
define a vector of initial values  

Initial.Values<-c(coef(lm(log(y)~x1+x2+x3+x4+x5+x6+
x7)), log(1))  

For initial values the function GIV (which stands for 
“Generate Initial Values”) may also be used to randomly 
generate initial values(Statisticat LLC 2014).  

5.3.4. Fitting with Laplace Approximation 

To fit the above specified model, the function 

LaplaceApproximation is used and its results are assigned 
to objet Fit. Its summary of results are printed by the 
function print.  

Fit<-LaplaceApproximation(Model=Model, 
Initial.Values, Data=MyData, Iterations=500, Method="TR", 
Samples=1000) 

print(Fit)  

5.3.5. Summarizing Output 

The function LaplaceApproximation approximates the 
posterior density of the fitted model and posterior summaries 
can be seen in the following tables. Table 2 represents the 
analytic results using LaplaceApproximation method while 
Table 3 represents the simulated results using sampling 
importance resampling method (Akhtar and Khan, 2014a). 

Table 2.  Summary of asymptotic approximation using 
LaplaceApproximation function with Mode stands for posterior mode, SD 
for posterior standard deviation and LB, UB are 2.5% and 97.5% quantiles, 
respectively 

Parameter Mode SD LB UB 

beta[1] 4.76 0.30 4.15 5.36 

beta[2] 0.07 0.01 0.05 0.09 

beta[3] 0.02 0.02 -0.01 0.06 

beta[4] -0.00 0.01 -0.03 0.02 

beta[5] -0.89 0.64 -2.17 0.40 

beta[6] -0.77 0.65 -2.07 0.53 

beta[7] -0.92 0.95 -2.82 0.98 

beta[8] 0.44 0.56 -0.69 1.56 

Log.alpha -0.75 0.35 -1.45 -0.05 

Table 3.  Summary of the simulated results due to sampling importance 
resampling algorithm using LaplaceApproximation function with Mode 
stands for posterior mode, SD for posterior standard deviation, MCSE for 
Monte Carlo standard error, ESS for effective sample size and LB, Median, 
UB are 2.5%, 50%, 97.5% quantiles, respectively 

Parameter Mode SD MCSE ESS LB Median UB 

beta[1] 4.92 0.29 0.01 1000.00 4.38 4.89 5.49 

beta[2] 0.07 0.01 0.00 1000.00 0.05 0.07 0.08 

beta[3] 0.02 0.02 0.00 1000.00 -0.01 0.02 0.05 

beta[4] 0.00 0.01 0.00 1000.00 -0.03 -0.00 0.03 

beta[5] -0.76 0.69 0.02 1000.00 -2.13 -0.77 0.43 

beta[6] -0.63 0.75 0.02 1000.00 -1.96 -0.64 1.19 

beta[7] -0.89 1.00 0.03 1000.00 -2.76 -0.87 0.92 

beta[8] 0.31 0.69 0.02 1000.00 -1.22 0.31 1.55 

log.alpha -1.13 0.33 0.01 1000.00 -1.79 -1.16 -0.45 

Deviance 420.10 3.87 0.12 1000.00 413.67 420.05 429.25 

LP -276.34 1.94 0.06 1000.00 -280.91 -276.31 -273.12 

5.4. Fitting with LaplacesDemon 

Laplace’s Demon requires a vector of initial values for the 
parameters. Each initial value will be the starting point for an 
adaptive chain, or a non- adaptive Markov chain of a 
parameter. If all initial values are set to zero, then Laplace’s 
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Demon will attempt to optimize the initial values with the 
LaplaceApproximation function using a resilient 
backpropagation algorithm. So, it is better to use the last 
fitted object Fit with the function as.initial.values to get a 
vector of initial values from the LaplaceApproximation for 
fitting of LaplacesDemon. Initial values may be generated 
randomly with the GIV function. Thus, to obtain a vector of 
initial values the function as.initial.values is used as 

Initial.Value<-as.initial.values(Fit) 
Now, the function LaplacesDemon is used to analyze the 

same data, that is, Lung cancer survival data. This function 

maximizes the logarithm of unnormalized joint posterior 
density with MCMC algorithms and provides samples of the 
marginal posterior distributions, deviation and other 
monitored variables.  

FitDemon<-LaplacesDemon(Model, Data=MyData, 
Initial.Values, Covar=Fit$Covar,  

Iterations=5000,Status=100,Thinning=10,Algorithm="I
M", Specs=list(mu=Fit$Summary1[1:length(Initial.Values), 
1]))  

print(FitDemon)  

 

Figure 3.  Posterior density plots of parameters of inverse Gaussian model using the functions LaplaceApproximation and LaplacesDemon 

 

Figure 4.  Survival curve of Inv Gaussian Model 
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5.4.1. Summarizing Output 

The function LaplacesDemon for this regression model, 
simulates the data from the posterior density with 
Independent Metropolis algorithm and summaries of 
results are reported in the following table. 

Table 4.  Posterior summary of simulation due to stationary samples using 
the function LaplacesDemon 

Parameter Mean SD MCSE ESS LB Median UB 

beta[1] 4.77 0.11 0.01 449.00 4.55 4.77 4.99 

beta[2] 0.07 0.00 0.00 500.00 0.06 0.07 0.07 

beta[3] 0.02 0.01 0.00 500.00 0.01 0.02 0.04 

beta[4] -0.00 0.00 0.00 500.00 -0.01 -0.00 0.01 

beta[5] -0.85 0.25 0.01 500.00 -1.35 -0.86 -0.36 

beta[6] -0.76 0.27 0.01 500.00 -1.32 -0.77 -0.24 

beta[7] -0.95 0.34 0.02 500.00 -1.63 -0.95 -0.32 

beta[8] 0.43 0.21 0.01 500.00 0.03 0.43 0.84 

log.alpha -0.79 0.13 0.01 311.77 -1.05 -0.79 -0.54 

Deviance 411.96 0.64 0.03 500.00 410.98 411.88 413.37 

LP -272.27 0.32 0.01 500.00 -272.97 -272.22 -271.78 

6. Conclusions 
The implementation of Inverse Gaussian Distribution as a 

survival model is presented under Bayesian paradigm. Real 
life medical data are used for illustrative purposes. The 
results show that the simulation tools provides better results 
in terms of standard error as compared to that obtained by 
asymptotic approximation. 
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