
International Journal of Statistics and Applications 2016, 6(4): 259-266 
DOI: 10.5923/j.statistics.20160604.07 

A Survival Analysis Approach to Estimating     
Funding Liquidity Risk in Banks 

S. K. Appiah1,*, D. Asamoah Owusu1, Edem B. Ahiale2 

1Department of Mathematics, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana 
2Credit Risk Department, Societe Generale Ghana, Accra, Ghana 

 

Abstract  The most practical approach to measuring funding liquidity risk in banks is based on the individual bank’s 
balance sheet (items of assets and liabilities) where inflows and outflows are compared to determine the cumulative cash 
shortfalls over future time periods. Although steps are then taken to address any resulting funding gaps, the difficulty that the 
banks face is in assigning future cash flows related to products with indeterminate maturity. The paper presents a 
non-parametric survival modelling approach to estimating the run-off profile of a bank product with uncertain cash flows. 
The focus is to contribute to addressing this challenge using the product limit estimator developed by Kaplan and Meier. In 
view of the subject of the study being in monetary terms, measures are developed to address areas of possible divergence 
from the normal application of the product limit estimator. The paper then illustrates the framework using a data set from a 
bank in Ghana to estimate the empirical run-off profile of a savings product over a 30-day period. 
Keywords  Funding liquidity risk, Survival analysis, Kaplan Meier estimate, Products with indeterminate maturity, Run- 
off profile 

 

1. Introduction 
The most popular form of banking in the world is 

fractional-reserve banking, the practice where banks accept 
deposits from their customers (surplus units) and extend 
credit or make loans to other customers in need of funds 
(deficit units). In this practice, banks need to keep reserves to 
meet withdrawal requests of depositors (that are usually less 
than the amounts originally deposited). Most often 
commercial banks earn little or nothing on reserves; however, 
being profit seeking entities, the motivation to create credit 
and earn interest is rife. This means an inherent liquidity 
imbalance between their assets (typically mid to long term 
loans and overdrafts) and their liabilities (typically retail 
deposits and capital market debt).  

Most of the difficulties experienced by banks at the start of 
the financial crises in 2007 can be traced to weak liquidity 
management structures (BIS, 2014 [1]). Ghana had its share 
of banks going bankrupt even before the global meltdown. In 
the year 2000, the Government of Ghana and the Central 
Bank closed down the Bank for Housing and Construction as 
well as the Corporative Bank due to losses and liquidity 
issues. The Social Security and National Insurance Trust 
(SSNIT) had to bail out the  Meridian BIAO Bank when it  
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went bankrupt.  
Funding liquidity risk arises from the liability side for 

either balance sheet items or contingencies. Banks classify 
their liabilities on a scale of cash flow certainty, such that 
items are deemed either stable (core) or volatile. Equity is the 
most stable although expensive, followed by debt with the 
secured debt category considered more stable than clean debt. 
Retail deposits are more stable than wholesale money market 
deposits. This information is an integral part of cash flow 
analysis by banks.  

Banks use several quantitative methods/metrics to 
measure their liquidity risk including liquidity indices and 
other peer group comparisons such as borrowed funds/total 
assets, deposit to loan ratio, funding gaps, stress tests, and 
liquidity coverage ratio and net stable funding ratio (Basel III) 
BIS, 2014 [1]). Most practical methods, however, start with 
forecasting daily inflows and outflows of cash. The process 
then considers unsecured funding sources and the liquidity 
characteristics of the asset inventory. Finally, the 
information is then put together in a strategic perspective. 
This starts from current assets and liabilities as well as 
contingencies. The information is used to build a funding 
matrix. Any gaps should be covered by plans to raise 
additional funds either through borrowing, disposal of asset 
or further equity injection (depending on the time). Table 1 
shows a hypothetical funding matrix which excludes the off 
balance sheet items. 

It would appear easy to arrive at a funding matrix if the 
timing of cash flows associated with the inputs in all 
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instances is known in advance. However, in practice this is 
not the case. The presence of certain items on a bank’s 
balance sheet with uncertain cash flow timing presents a 
forecasting challenge. These items are referred to as 
non-maturing assets and liabilities (NoMALs) or in other 
quarters, items having indeterminate maturity. Examples of 
such items include call deposits and other non-fixed deposit 
products. 

The question that needs to be answered is how are banks 
supposed to measure the run-off rates of products with 
uncertain cash flow timings? The answer to this question is 
the main focus of this study. This study aims to extend the 
boundaries of survival analysis (Lee and Wang, 2003 [2]) to 
estimating the run-off profile of a bank liability product with 
uncertain cash flows. It seeks to use observed decrements on 
a deposit product to obtain an empirical estimate of the 
distribution function with no prior assumption about the 
shape or form of its probability distribution. 

2. Related Literature   
In this section we give a brief review of concepts of 

funding liquidity risk and its various modelling approaches. 

2.1. Liquidity Risk Notions 

There are three main liquidity notions, namely, central 
bank liquidity, market liquidity and funding liquidity 
(Nikolaou, 2009 [3]). Whilst both the central bank liquidity 
and market liquidity can be looked at from the macro level, 
the funding liquidity is more of a micro level phenomenon 
and generally refers to an entity’s (banks) ability to meet 
their liabilities, unwind or settle their positions as they 
become due (BIS, 2000 [4]). The risk will be defined as the 
probability that the actual realisations of an economic agent 
will deviate from the expected (Machina and Rothschild, 
1987 [5]). Thus, the inability of a bank to service their future 
obligations as they fall due can be referred to as funding 
liquidity risk [IMF, 2008 [6]). Banks by virtue of their 
activity of accepting deposits and granting credit are exposed 

to this risk. Gauthier et al. (2014) [7] highlights how 
vulnerable leveraged institutions are to low cash holdings 
and short term debt. 

2.2. Risk Liquidity Modelling 

Methods have been developed to address the issue of 
products with indeterminate maturity. However, available 
literature is quite varied. Few of such modelling approaches 
relevant to this study are presented. Bardenhewer (2007) [8] 
in his study used the replicating portfolio model with 
embedded options present in savings product. This model 
was applied to a plain vanilla instruments – money market 
instruments and bonds, which are actively traded to construct 
a replicating portfolio deemed to have analogous features 
such as the timing of cash flows. Another useful technique is 
by the option adjusted spread models, which are premised on 
the fact that NoMALs have embedded options in which 
option pricing theory is applicable to them. Jarrow and van 
Deventer (1998) [9] provide an approach to compute the 
present value (PV) of a savings product assuming no 
arbitrage and complete markets. Time series run off models 
can also be used to estimate a product with indeterminate 
maturity’s run-of profile from a statistical distribution (Neu, 
2007; Vento and La Ganga 2009) [10], [11]. They focus on 
the stable portion of NoMALs balance using a log linear time 
series regression to determine product run off profile at a 
given confidence level. Kalkbrener and Willing (2004) [12] 
proposed a stochastic three-factor model for liquidity and 
interest rate risk management of NoMALs. The account 
decrements are assumed to follow a normal distribution and 
used to forecast future account balances. Poorman and Stern 
(2012) [13] relied on deposit pricing (or asset-liability 
management) models for estimating liquidity, income, and 
value metrics among others, and concluded that the life of a 
deposit follows a Weibull distribution. Using data from 
South African bank, Musakwa (2013) [14] developed a 
scenario approach based on survival analysis to measure 
proportion retained on a savings account product while Matz 
and Neu (2006) [15] used the proportion of account balances 
held over time to develop a retention curve.  

Table 1.  Funding matrix 

Time Buckets (Upper Limits) 0N 1W 2W 1M 3M 6M 1Y >1Y Total 

Main Inflows 

Loans 24 48 66 102 150 240 390 540 1560 

Securities 330 60 60 30   30 30 900 

Cash and others 21        35 

Main Outflows 

Deposits -6 -18 -30 -54 -120 -210 -354 -390 -1970 

Other funding -18 -18 -18 -30 -36 -30 -66 -48 -460 

Bond    -78 -96 -120 -180 -462 -1569 

Net Funding Requirements (FR) 351 72 78 -30 -102 -120 -180 -330 - 

Cumulative Fund Require (CFR) 351 423 501 471 369 249 69 -261 - 
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The existing literature on quantitative models for 
measuring liquidity risk that attempted cash flow timing 
have mainly inferred run-off profiles of unsecured debt 
products by studying the time series to show how the 
position evolved over time and not necessarily the time the 
product position stayed on the bank’s books (Musakwa, 
2013; Neu, 2007; Vento and La Ganga, 2009 [10], [11], [14]). 
Other studies have tried using other financial instruments to 
mimic the cash flows inherent in bank savings product 
(Bardenhewer, 2007 [8]) or adopted estimation methods 
established for valuing other products (Jarrow and van 
Deventer, 1998 [9]). There have also been attempts to use a 
time to event approach but have either assumed a probability 
distribution for account decrements (Poorman and Stern, 
2012 [13]) or rather adopted a scenario based approach 
(Musakwa, 2013 [14]).  

This study adopts a simple non-parametric time to event 
approach to measuring funding liquidity risk and avoids the 
complexity of a replicating portfolio or scenario based- 
method. 

3. Methodology 
The survival analysis modelling for estimating funding 

liquidity risk (cash flow) in a bank is presented and applied 
to a case study in Ghana. The study subsequently specifies 
how the run-off profile can be computed using the product 
limit estimator (Kaplan and Meier, 19959 [19]).  

3.1. Subject of Study 
The subject of study is a bank financial product and as 

such the subjects will be measured in monetary terms. In this 
case we let a subject of study be 0.01of GHC 1 (GHC is the 
ISO code for the Ghanaian cedi – implies one-hundredth of a 
GHC, which is 1 pesewa), such that if Xi  

denotes the 

balance on account i , then if i  has a balance of GHC 25, 
then then 2,500iX = . This similar approach has been 
adopted by Musakwa (2013) [14]. Let tX  be the total 
amount outstanding (balance) on a savings product at time t 
and ,i tX  be the balance on account i  at time t. Then the 
two variables are related by: 

,i tX Xt = ∑               (1) 

We then define a constantly decreasing function of the 
total account balances from the start of the trial by: 

0
min

s t ttX X
≤ ≤

≈               (2) 

Equation (2) is similar in structure to that of Kalkbrener 
and Willing (2004) [12] and Musakwa (2013) [14]. However, 
they differ in their respective uses. The former study used 
their version of the equation to determine the run-off profile 
of simulated future account balances, while the later applied 
it to determine run-off profile on individual account 

balances.  
In this study the survival analysis technique (Lee and 

Wang, 2003; Kaplan and Meier, 1958 [2], [19]) is applied to 
estimate the proportion of the total outstanding account ( )S t  
whose time on the bank’s books exceeds t without imposing 
a known distribution on the function. It is defined as:  

( ) ( )S t P T t= ≥               (3) 

3.2. Suitability of Survival Analysis   

Survival analysis relates to data analysis methods that 
looks at time to the occurrence of some event of interest (Lee 
and Wang, 2003; Gardiner, 2010 [2], [16]). It is often 
possible in survival analysis for the event of interest not to be 
observed in all subjects. These are called censored cases but 
are still useful as they provide a lower bound for the actual 
non-observed survival time (Billingham et al., 1999 [17]). 
The survival function can be estimated using a parametric 
estimator. In real-life cases, however, a non-parametric 
method may be appropriate as the actual distribution is 
usually unknown (Zhao, 2008 [18]). The most commonly 
used parametric methods include Weibull, exponential and 
lognormal distributions. The product limit estimator by 
Kaplan and Meier (1958) [19] is the most commonly used 
non-parametric estimation method.  

As indicated by Musakwa (2013) [14], there are 
similarities between life time modelling and cash flow 
analysis that allow application of survival analysis to both 
situations. In both cases the length of time it takes for a 
subject to remain in a particular state is modelled. Secondly, 
both cash-flow and lifetime modelling are censored, leading 
to only partial information on the ’survival’ time to be known 
for some of the subjects under observation. However, there 
are areas of divergence – a key difference centres around the 
time origin to base ’survival’ analysis for cash flow 
modelling purposes is unclear, unlike the case with lifetime 
modelling. The method adopted addresses this divergence 
(see assumptions under the Kaplan-Meier Estimator). 

3.3. Kaplan – Meier Estimator 

The Kaplan-Meier estimator (also known as the product 
limit estimator) is widely used in medical studies to estimate 
patient’s survival rates. It uses information on those who die 
and those who survive during the trial period and based on a 
mathematical formula derives estimates of subjects alive at 
any point in time (Kaplan and Meier, 1958 [19]).   

Let 1 2 3 . . .t t t< < <  denote the ordered times subjects 
leave a bank’s books via withdrawal. Also, let 1 2 3, ,, . . .dd d
denote the number of subjects leaving the bank’s books via 
withdrawal and let 1 2 3, ,, . . .x x x  be the corresponding 
number of subjects remaining (balance) on the bank’s books 
such that 2 1 1;x x d= − 3 2 2,x x d= − etc. Then

2 2( ) ( )S t P T t= >  defines the probability of a subject 
staying on a bank’s book beyond time 2t , which is 
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conditionally (depends) on 1 1( ) ( )S t P T t= > , the 

probability of surviving beyond time 1".t Also, 

3 3( ) ( )S t P T t= >  defines the probability of a subject 

staying on a bank’s book beyond time 3t , which 
conditionally (depends) on 2 2( ) ( )S t P T t= > , the 
probability of a subject staying on a bank’s book beyond 
time 2t . 

In general, for , );1[ tj jtt +∈ 1,2,3,...,180,j = we have 

(4):    

( ) 1 2 1

1 2 1 1
ˆ 1 1 ... 1 1 j

jj

dd d dS t
x x x x=

     
= − − × × − = ∏ −             

 
(4) 

which is the Kaplan-Meier estimator of the survival function 
( ).S t  

3.4. Assumptions of the Kaplan Meier Estimator 

The key assumptions underlying the product limit 
estimator are summarized as:  

(i)  There are only two states – the event and censored, 
which are mutually exclusive. In this study, a case of 
withdrawal from the account is considered “failure”.  
Any other case of exit from an account is considered 
a censored case. 

(ii)  Ability to precisely record event and censorship 
times is required. 

(iii) Starting point for the experiment should be clearly 
defined. Unlike in life experiments where the start 
date is easy to determine, this study focusses on cash 
flow modelling using multiple account information. 
For cash flow modelling using multiple account data, 
the start date may be different for each account. The 
analysis is at aggregate level therefore an aggregate 
level start date is required which will take into 
consideration as many observations as possible. Let 

i
t0  denote the time origin of subjects in account i 
from base date b, (which is date in this study is the 
180th day as the study covers daily account data over 
a six-month period). The balance in account i at time 

i
t0 is denoted ,i tX . The start time for account i 
occurs at 0,Xi t i  

defined by (5): 

( )0 1 2 3 180
max , , ,...,, , , , ,X X X X Xi t i t i t i t i ti

=      (5) 

where ,i tX  represents historical balances on account i from 
and including the base date and 1,2,3,...,180.j =  With the 

start time 
i

t0 for account i, and the corresponding 

outstanding amount 0iitX  at that time now obtained, we 

let m  be the total number of accounts used in the study such 

that 1, 2,3,..., .i m=  Then the average start time 0t which 
corresponds to the aggregate level start time is 

0 0 0 0
1 1

, ,
m m

i i
t t X Xi t i ti i i= =
= ∑ ∑          (6) 

The aim of defining the aggregate level start time from 
several account start times is to allow for as many 
observations of the event of interest as possible. 

(iv)  The Kaplan-Meier estimator assumes independence 
of the subjects of study (Breslow and Crowley, 1974; 
Gill 1980 [20], [21]). This study also assumes 
independence of subjects under study. However, 
with subjects grouped into accounts and such 
accounts having the same owner; subjects within an 
account may tend to be correlated. Such correlation is 
however not expected to result in different estimate 
of the survival function but rather its variance 
(Williams, 1995 [22]). It is however safe or 
reasonable to assume independence in the case of 
subjects belonging to different account-owners 
(Musakwa, 2013 [14]). 

3.5. Case Study 

This section illustrates how to use the theoretical 
framework developed in section 3.3 to estimate the run-off 
profile over a 30-day period for deposit product in a bank in 
Ghana. Simple random sampling was used to select thirty (30) 
accounts, each representing one branch of the thirty major 
branches of the bank chosen for the study in the country. 
Daily account data on deposits, withdrawals, and balances 
were collected, covering a period of six months (including 
weekends). This yielded 180-day data set, since as a practice 
it is expected that even newly established accounts will see 
some considerable amount of transactions during this period. 
The data was obtained with the help of staff of the Credit 
Risk Department of the subject bank. 

3.5.1. Aggregate Level Data 

The account level data were summed up to obtain 
aggregate level data across all the 180 days observed using 
equation (1). That is, the balance on one account on a 
particular day is added to the balances on other accounts of 
study for that same day. Similarly, all items of credit and 
items of debit were added across accounts for each day. The 
totals on each account were then converted to 1/100th of a 
monetary unit as defined in section 3.1. Data on credits or 
increments on the account, though not the subject of this 
paper, was collected for control purposes to ensure accuracy 
in account balance data collection. All incidences of 
censoring were noted during the data collection stage and are 
separated from event data. Table 2 illustrates the process of 
data aggregation.  
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3.5.2. Aggregate Level Start Time 

Starting from the base time (180th) and working 
backwards (using historical data), the maximum balance and 
the time recorded on each account is obtained. This serves as 
the starting time for each account in accordance with (5). 
This is illustrated in Table 3 using accounts from the 
branches. For example, the first branch recorded its 
maximum balance of GHC374 on day 50, the second branch 
recorded its local maxima of GHC1,751 on day 62, and the 
process continued in this progressive manner until the all the 
30 accounts are exhausted. In processing account level start 
time, it is possible to have in certain situations the maximum 
balance spanning different time periods or occurring at 
different times. In such instances the most recent time at 
which the maximum balance occurs is the most suitable. 

Figure 1 and Table 3 further illustrate the processes describe 
above.  

The weighted average start time using (6) represents the 
aggregate level start time. From the individual level start 
times and balances indicated in Table 3 above, the aggregate 
level start time corresponds to the 89th day. Undoubtedly, 
this process will be quite strenuous in practice considering 
the number of individual accounts held at banks. Thus 
investments in computational power will have to be made. 
That notwithstanding, inferring the aggregate level start time 
from individual account start times ensures that more 
observations of the event of interest - in this case 
withdrawals - are captured in the estimation process as well 
as improves the credibility of the process. 

Table 2.  Aggregate level data at the bank’s branches 

Day 
 

Branch 1 
 

Branch 2 ,   .    .    .   , Branch 30 in 1/100 terms 
#xxx00024 

 
#xxx00011 ,   .    .    .   , #xxx00078 Aggregate 

Bal 
 

Bal 
 

Bal Bal 

 
74.00 + 895.49 +,   .    .    .,   + 126.40 3470640 

1 74.00 + 895.49 +,   .    .    . , + 126.40 3626246 
2 74.00 + 895.49 +,   .    .    . , + 126.40 3636246 
3 74.00 + 895.49 +,   .    .    . , + 126.40 3631246 
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
178 47.05 + 1068.99 +,   .    .    . , + 3091.48 7142382 
179 47.05 + 1068.99 +,   .    .    . , + 3091.48 7142382 
180 47.05 + 1068.99 +,   .    .    . , + 3091.48 7142045 

Table 3.  Accounts’ balances at bank branch level 

Branch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Balance 374 1751 6797 1291 128 7146 5765 8625 300 1829 258 4796 281 1722 44401 

Day 50 62 175 43 164 97 107 76 117 1 1 71 17 29 1 

Branch 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Balance 641 1902 2272 4231 1246 10521 1093 4345 3325 2570 1940 2765 436 755 3552 

Day 164 17 164 21 2 136 118 58 176 1 23 171 120 134 78 

 

 

Figure 1.  Individual account starting point (Musakwa, 2013 [14]) 
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4. Results 
4.1. Aggregate Level Run-Off Profile  

The run-off profile of the savings account product is 
estimated using the Kaplan-Meier estimator (4) by 
incorporating the aggregate level start time and the 
corresponding aggregate level balance (5) as well as 
decrements over the 30-day period, yielding the survival data 
in Table 4. 

Table 4.  Survival data 

Time At Risk Withdrawal (Failure) Censored 

1 4976794 5000 0 
2 4976294 150000 0 
3 4976294 100402 250 

4 4725892 109000 0 
5 4616642 105 0 
6 4616537 110450 0 

9 4506087 283527 0 
10 4222560 20000 35 
16 4202525 244720 0 

18 3957805 316000 0 
19 3641805 107000 0 
23 3534805 85364 0 

24 3449441 11400 0 
25 3438041 240570 0 
26 3197471 100250 0 

27 3097221 150500 0 
29 2946721 1000 0 
30 2945721 118285 2827436 

As noted from Table 4, the start time t =1 corresponds to 
the total individuals account value of 4,976,794 at risk of 
withdrawal. These gradually reduce as time elapses as 
signified by the number of withdrawals and censored items. 
In all, a total of 2,149,073 withdrawals (failures) were 
recorded during the 30 days of observations while 285 were 

censored. In addition, a total of 2,827,436 did not record the 
event of interest (i.e. withdrawal) at the end of the study 
period and were thus considered censored. In a discrete time 
framework, as shown in Table 4, censoring times often 
coincide with the withdrawal times. At such times, this study 
adopts the convention of assuming that withdrawals precede 
censoring.  

Table 5 summarizes the survival distribution function 
estimation with 95% confidence interval (CI) values while 
Figure 2 presents the Kaplan-Meier survival curve. The 
survival curve (solid blue line) which gives the mean 
estimates of the survival function coincide with either the 
lower or the upper bound of the CIs (dotted red lines). The 
mean survival time is estimated at 23.995 with 95% CI of 
(23.987, 24.003).  

Table 5.  Summarized Kaplan Meier 

Time Survival rate Survival distribution 
function 

95% Confidence 
Interval (CI) 

1 1.000 1.000 (1.000, 1.000) 
2 0.970 0.970 (0.970, 0.970) 

3 0.979 0.950 (0.949, 0.950) 
4 0.977 0.928 (0.927, 09.28) 
5 1.000 0.928 (0.927, 0.928) 

6 0.976 0.905 (0.905, 0.906) 
9 0.937 0.848 (0.848, 0.849) 
10 0.995 0.844 (0.844, 0.845) 

16 0.942 0.795 (0.795, 0.996) 
18 0.920 0.732 (0.732, 0.732) 
19 0.971 0.710 (0.710, 0.711) 

23 0.976 0.693 (0.693, 0.693) 
24 0.997 0.691 (0.691, 0,691) 
25 0.930 0.643 (0.642, 0.643) 

26 0.969 0.622 (0.622, 0.623) 
27 0.951 0.592 (0.592, 0.592) 
29 1.000 0.592 (0.592, 0.992) 

30 0.960 0.568 (0.568, 0.568) 
 

 

Figure 2.  Kaplan-Meier survival curve estimating the survival function S(t) (solid blue line) with 95% confidence interval (red dotted line`s) 
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4.2. Funding Liquidity Risk  

Using the information from the survival curve (Figure 2) 
and knowledge of proportion withdrawn up to time t = 1 – 
proportion retained up to time t, a run-off profile equivalent 
to the estimate of the funding liquidity risk on the deposit 
product is provided in Table 6 below: 

Table 6.  Specimen of liquidity matrix 

Specimen 
Liquidity Matrix Overnight 1 Week 2 Weeks 1 Month 

Cash Flow (in 
run-off mode) 149,304 323,492 303,584 1,373,595 

4.3. Benchmarking  

The framework for measuring funding liquidity risk in the 
subject bank includes among others the following provisions 
on retail deposits and run-off rates for non-maturing 
liabilities as illustrated by Figure 3. The stability of the retail 
and small business centre deposits is determined according 
to the hierarchy of following criteria (the three stages in 
Figure 3), which allow classifying the deposits of the 
customers into stable/less-stable with the above run-off rates 
– 5% for stable and 10% for less stable: 
  Distinguish the guaranteed and not guaranteed deposits 

insured/guaranteed deposit. 
  Detect the transactional accounts transactional account.  
  Detect the customers in established relation with the 

bank. 
In summary the product limit estimator developed by 

Kaplan and Meier (1958) [19] was used to estimate the 
run-off profile of the savings product. The approach 
developed was illustrated using data from a bank in Ghana 
over a 30-day period. The individual and aggregate level 
start time aided in analyzing cash flow timings in a survival 
analysis context. The findings from the application of the 
product limit estimator, comparing with the practices of the 
bank offer evidence to suggest that the current practices by 
the bank, which uses the Basel III (BIS, 2014 [1]) proposed 

run-off rates, estimates a much lower funding liquidity risk 
than the bank assumes. The results of the analysis also show 
that run-off rates for shorter time buckets are not uniform as 
regulatory requirements appear to indicate. The overall 
deposit run-off rate to 30 days stood at 43.2%. For retail 
and small business centre deposits, internal practice by the 
bank suggests a maximum run off rate of 10% which is 
quite low relative to the results achieved via survival 
analysis. 

5. Conclusions 
This study has developed a straightforward quantitative 

framework for measuring funding liquidity risk associated 
with bank products with indeterminate maturity. Using 
survival analysis approach the study focussed on 
determining the run-off profile of a bank deposit savings 
product. The suitability of applying survival analysis 
techniques to cash flow modelling was questioned 
(Musakwa, 2013 [14]). Using the weighted average of 
individual account starting positions aided in addressing a 
key area of divergence views between lifetime and cash 
flow modelling. The technique used in this study also 
assumed constantly decreasing account balances. This is 
one of the reasons why a scenario based approach is not 
adopted as by this assumption. A stress situation had been 
introduced where during the trial period increments were 
ignored. This approach is consistent with general risk 
management practices where adverse but plausible 
situations are the subject of interest. The framework 
developed in this paper provides a simple method for 
estimating the run-off profile for a bank deposit product for 
managing funding liquidity risk. It minimizes the bias and 
sophistication introduced by parametric and scenario based 
approaches. This profile gives the probability of subjects 
(monetary units) staying in the bank’s books beyond a 
certain time and aids in addressing the problem of cash flow 
timing uncertainty when measuring bank funding liquidity 
risk. 

 
Figure 3.  Measuring funding liquidity by three main stages 
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The study is however limited by the relatively small 
number of the sampled accounts used in the analysis and the 
assumption of independence of intra and inter accounts’ 
subjects of study. Notwithstanding, the paper contributes to 
the ongoing debate as to whether Basel III regulator 
proposed run of rates for both insured and unsecured 
deposit categories are suitable for implementation.  

The paper provides grounds for further study in view of 
its limitations. One possible study to consider is resorting to 
in-house approach to estimating the run-off profile rather 
than to proposed standards by the regulator as this presents 
a more localised approach to dealing with funding liquidity 
risk. Another area for further study could be estimating the 
run-off profile of different product classes or business lines 
(branches) for strategic risk management of individual 
banks. Further work could also be to model the evolution of 
a product’s balance by separately projecting the run-off of 
existing and future business. Lastly, the point on 
independence of subjects in the same account or across 
accounts could be explored. 
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