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Abstract  The modelling of seasonal behaviour of rainfall has become very important in the wake of the climatic change. 

Due to the agriculture base of the Northeast Nigeria, it is imperative to explicitly model seasonal behaviour of rainfall in the 

region for agricultural planning. Hence, this study examines the seasonal behaviour of monthly rainfall data from 1981 to 

2013 in Maiduguri and Damaturu areas of Borno and Yobe States respectively, using the state space approach. We employed 

the local level model with stochastic seasonal and the local level model with deterministic seasonal to modelling of the 

dynamic features in the data. Our results clearly indicate that the local level model with deterministic seasonal is the 

parsimonious model between the two state space models considered in this study. This implies that the seasonal patterns of 

rainfall in the two areas have not significantly changed despite the challenges of global warming and climate change. In 

addition, the CUSUM test indicates the presence of structural breaks in 1998 and 1990 for Maiduguri and Damaturu 

respectively. This implies that there was an abrupt change in the rainfall level in 1998 for Maiduguri and in 1990 for 

Damaturu. We, therefore, recommend that seasonality should be explicitly included in the modelling of rainfall series as the 

pattern of seasonality could be useful for important decision making. In addition, measures should be put in place to curb 

human-made activities that are detrimental to the climate since the region is highly vulnerable to the impacts of climate 

change.  
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1. Introduction 

Agriculture in North-Eastern region of Nigeria is 

predominantly dependent on rainfall. Hence, the output from 

the sector each year is largely determined by the rainfall 

seasonal pattern, trend and cycles. Weather as we know is 

dynamic. Similarly, climate fluctuates or changes over time 

and space. According to Nieuwolt (1982), the non-static 

behaviour in rainfall patterns are in various magnitudes 

ranging from variability through fluctuations, trends, and 

abrupt to gradual changes. Some characteristics of rainfall 

which include its seasonal and diurnal distribution, intensity, 

duration, onset, cessation and frequency of rain days all 

show important variations in respect to time and places. It is 

therefore important to examine climatic data to ascertain 

possible trends and changes in the data generating process. 

Trend could reflect either an increase or decrease in the 

observed phenomenon and may serve as a good indicator for 

predicting future occurrence. A fair knowledge of the 

weather is very necessary,  in view of the fact that farmers,  
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power generation (hydroelectric power generation), 

meteorological stations, military operations, safety and 

emergency agencies such as National Emergency 

Management Agency (NEMA) heavily rely on it for their 

operations, among other socioeconomic activities. The high 

amounts of rainfall which are particularly received in many 

elevated area of the tropics, constitute a reliable basis for the 

construction of many hydro-electric power stations. 

There has always been a good deal of interest in the 

possibility of seasonality in rainfall data. Harvey (1987) 

pointed out that the analysis of climatic time series is 

essential for building statistical models to generate synthetic 

hydrologic records, to forecast hydrologic events, to detect 

intrinsic stochastic or deterministic characteristics of 

hydrologic variables. Assessing the seasonal behaviour of 

rainfall characteristics and trend is a vital for agricultural 

practice in the North-East states of Nigeria. In addition, the 

time series analysis of climatic data provides a basis for 

ascertaining climate change or variability. 

The Box-Jenkins SARIMA model has been extensively 

used to model rainfall patterns in Nigeria, see for example, 

Gulumbe (2013), Etuk, Moffat and Chims (2013) and 

Martins et al. (2014). However, the Box-Jenkins approach is 

based on the elimination of trend and seasonality applying 
seasonal differencing to the series before fitting an 
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appropriate ARMA model to the data. Durbin and Koopman 

(2001) noted that elimination of trend and seasonality by 

differencing may pose a problem in applications where 

knowledge of the seasonal pattern is needed. Fortunately, 

modern control and system theory has shown that the 

behaviour of dynamic systems can be conveniently and 

succinctly described by using the state space models. State 

space method is more general and is based on the modelling 

of all the observed features of the data. The different features 

inherent in a series such as trend, seasonal, cycle, 

explanatory variables and interventions can be modelled 

separately before being put together in the state space model. 

The assumption of stationarity is not needed in state space 

model. 

Although the literature on state space has increased 

recently, there is however, no empirical application to 

modelling rainfall pattern in Nigeria. In addition, using the 

state space approach, the nature of seasonality present in the 

data will be explicitly determined. It is against these 

backdrops that this study is being proposed. The rainfall 

received at the synoptic stations at Maiduguri and Damaturu 

for thirty-three years period (1981-2013) are analyzed to 

evaluate the seasonal behaviour and trend in the monthly 

data rainfall. The research is useful in assessing the seasonal 

behaviour of rainfall characteristics and the trend in the 

rainfall data which is a vital requirement for agricultural 

practice in the North-East states of Nigeria. It is also 

intended to provide a basis for ascertaining climate change or 

variability. The rest of this paper is organized as follows. In 

section 2, state space models are briefly introduced, in 

section 3, we discuss the modelling methodology employed 

in this work. The data and the empirical results are presented 

and discussed in chapter 4. The final section concludes the 

paper. 

2. The Model  

2.1. State Space Model 

A state space model consists of two equations: the state 

equation (also called transition or system equation) and the 

observation equation (also called measurement equation). 

The observation equation expresses the observed variables 

(data) as a linear function of the state variable(s) plus noise, 

while the transition equation describes the evolution of the 

state variables. The transition equation has the form of a 

first-order difference equation. The selection of components 

to include in the state space model is based on the features 

inherent in the observed time series. For a series that have 

seasonal patterns, the basic structural model is used, for a 

strongly trending non-seasonal series; the local trend model 

is employed. However, for a non-trending series, the local 

level model is used.  

Let yt denote an (n×1) vectors of variables observed at 

time t and t be (r×1) unobserved state vector. The general 

state space representation of the dynamics of y is given by:  

yt = AXt + Ht  + t            (1) 

t+1 = Ft +ηt                 (2) 

The (n x 1) vector t and the (k x 1) vector ηt are white 

noise:  

E(t’) = R ,  for t = ,  and 0 otherwise    (3) 

E(ηtη ) = Q , for  t = ,  and 0 otherwise    (4) 

The disturbances are assumed to be uncorrelated at all lags, 

that is; 

E(t η) = 0 at all t and           (5) 

where t is k x 1 vector of unobserved state variables, H is an 

n x k matrix that links the observed vector yt to the 

unobserved  t , Xt is an r x 1 vector of exogenous or 

predetermined observed variables, A is a matrix that maps 

the exogenous variables into the measurement domain, F is 

the state transition matrix which applies the effect of each 

state parameter at time t on the system state at time t+1, R is 

(n x n) and Q is (k x k) matrices of the measurement equation 

variance and transition equation variance respectively. The R 

variance matrices play the same role as in the classical 

regression model, while the Q variance matrices allow the 

parameters in the state equations to evolve over time. 

Equation (1) is known as the observation equation and (2) is 

known as the state equation. The system of (1) through (5) is 

called state space models. The essential difference between 

the state space model and the conventional ARIMA model 

representation is that in the former, the state of nature – 

analogous to the regression coefficients of the latter – is not 

assumed to be constant but may change with time. 

3. Modelling Methodologies  

3.1. State Space Approach: Local Level Model with 

Seasonality 

The local level model or random walk-plus-noise model is 

a simple form of a linear Gaussian state space model for 

modelling series with no visible trend. The model contains 

only the level and irregular components; the single state 

(level) variable follows the random walk: 

yt = μt + εt     εt   ~   NID(0, σ2
ε) 

μt+1 = μt + t   t   ~  NID(0, σ2
)         (6) 

where εt and t  are mutually uncorrelated white-noise 

processes with variance σ2
ε and σ2

. The interpretation of this 

model is that μt is an (unobservable) local level or mean for 

the process. The observable yt is the underlying process mean 

contaminated with the measurement error εt. Although it has 

a simple form, it provides the basis for the analysis of 

important real problems in practical time series analysis. It 

exhibits the characteristics structure of state space models in 

which there is a series of unobserved values μ1… μn which 

represents the development over time of the system under 

study, together with a set of observations y1,…, yn. The aim of 

the analysis is to study the development of the state over time 
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using the observed values y1,…, yn. However, when a time 

series consists of daily, monthly, or quarterly observations, 

the presence of seasonal effects should be taken into 

consideration. In the state space framework, seasonality can 

be handled by building the seasonal effects directly into the 

model. Hence, adding seasonal components to equation 

above yields,  

yt   =  µt  + t + t,   t   N(0, 
2) 

µt+1 =   µt + t,       t   N(0, 
2) 

t+1 = -t+1-j + t     t  N(0, 
2)        (7) 

where t = s-1,..., n. When the seasonal effect t is not allowed 

to change over time, we require t = 0 for all t = s -1,..., n. 

This is done by setting 
2 = 0 and (7) is called the local level 

with deterministic seasonal model. When the seasonal effect 

t is allowed to vary over time, that is 
2 > 0, the resulting 

model is called the local level with stochastic seasonal model. 

Since the rainfall data consists of monthly observations, the 

periodicity of the seasonal is s =12. The stochastic 

formulation of the seasonal effect in (7) follows from the 

standard dummy variable methods of modelling seasonal 

pattern. An alternative way of modelling seasonal effect is by 

using trigonometric terms at the seasonal frequencies.  

State space models are estimated using the Kalman filter. 

The Kalman filter is a statistical algorithm that enables 

certain computations to be carried out for a model cast in 

state space form. However, to obtain a more accurate 

estimate of the state vector, the smoothing algorithm is 

performed. Kalman smoothing provides us with a more 

accurate inference on 
t , since it uses more information 

than the filtering. Let 1tY   denote the set of past 

observations  1 1, , ty y   and assuming the conditional 

distribution of 
t  given 1tY   is N( ,t tu p ) where 

tu  and 

tp  are to be determined. Assuming that tu  and tp  have 

been determined, the celebrated Kalman filter equations for 

updating the above local level model from time t  to 1t   

are given by: 

 

2

1 1 =  + ,       = (1 - ) + ,      = / ,t t t t t t t t t tu u k p p k k p f     
2 =  y  -  ,       =   +  t t t t tu f p   ,    (8) 

for t = 1, 2, …, n, where t  denotes the Kalman filter residual or prediction errors, tf  is its variance and tk  is the 

Kalman gain. A random walk like t  has no “natural” level and to handle the initial conditions ( 1 1,u p ) for the 

non-stationary model, we employed the exact initial Kalman filter, (Durbin and Koopman, 2001). The Kalman smoothed 

state ( ˆ
t ) and smoothed state variance ( tV ) can be calculated by the following backward recursions: 

1 2

1 1
ˆ  =  + ,       =  + ,     = 1 /t t t t t t t t t t t tu p r r f l r l k f  

    ,  , ,1t n  

2 1 2

1 1 ,    ,    , ,1t t t t t t t tV p p N N f l N t n

                                (9) 

with nr  and nN  = 0, for  , ,1t n . The unknown variance parameters in the state space model are estimated by the 

maximum likelihood estimation via the Kalman filter prediction error decomposition initialized with the exact initial Kalman 

filter. Harvey and Peters (1990) suggested concentration of the log likelihood when the variance parameters display difficult 

estimation problems, as this helps to improve the behavior of difficult estimation. 

Diagnostic checking in the state space models are based on the three assumptions concerning the residuals of the analysis. 

The residuals should satisfy these three properties, in order of importance; independence, homoscedasticity and normality. 

These assumptions are checked using the following test statistic;  

The assumption of independence of the residuals can be checked with the Ljung-Box statistic defined as; 

Q (k) = n(n + 2) 
r2

n−𝑙 

𝑘

𝑙=1
            2

(k-w+1)                            (10) 

For lags l = 1,...,k. The number of diffuse initial state values which need to be estimated for the level and seasonal 

components in (7) corresponds to k, lr  denotes the residual autocorrelation for lag l and w is the number of 

hyperparameters (i.e. disturbance variances). The second most important assumption is the homoscedasticity of the residuals. 

This is checked using the following test statistic; 

H(h) = 
 𝜀𝑡

2𝑛
𝑡=𝑛−ℎ+1

 𝜀𝑡
2𝑡=𝑑+ℎ

𝑡=𝑑+1

           F(h, h)                               (11) 

where d is the number of diffuse initial elements, and h is the nearest integer to (n- d) /3. The least important assumption is 

that the residuals are normally distributed. This assumption can be checked with the following test statistic; 

N = n 
s

6
+

(k−3)2

24
         2

2df                                 (12) 
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where s denotes the skewness of the residuals, and k is the kurtosis. In the state space models, the standardized smoothed 

disturbances are useful for detection of possible outliers and structural breaks. The detection of structural break using the 

cumulative sum (CUSUM) test is considered in this work. 

4. Data and Empirical Results 

4.1. The Data 

The monthly rainfall data for two North-Eastern areas (Maiduguri and Yobe, see Annexure I) from January, 1981 to 

December 2013 are examined in this study. The monthly rainfall data measured in millimeter is obtained from the Nigeria 

Meteorological Agency (NIMET), Lagos state office. The plots of the rainfall series are presented in Figure 1 and Figure 2 for 

Maiduguri and Damaturu respectively. 

 

 

Figure 1.  Time Series Plot of Maiduguri Rainfall 

 

 

Figure 2.  Time Series Plot of Damaturu Rainfall 
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From figure 1 the rainfall series fluctuates over the years but had the highest spike in 1999 and the lowest in 1983 and 

figure 2 also indicates that the rainfall had its peak in 2012 and the lowest in 1983. The descriptive statistics of the subsamples 

of both series are presented in table 1 and 2. Table 1 and 2 indicate that the subsample means and variance are not the same 

over time, which is an indication that the subsample means and variance are not constant. For example, the subsample mean 

for Damaturu between 1981:1 to 1991:1 is 28.10 while for 1992:1 to 2001:1 and 2002: 1 to 2013:12 are 37.44 and 36.85 

respectively. Hence, the means varies across the samples. Thus, the state space model that accommodates non-stationary 

features by representing the level of the series as a random walk process, since random walk process is non-stationary, would 

be appropriate for modelling the series. 

Table 1.  Descriptive Statistics of Maiduguri Rainfall 

 

Table 2.  Descriptive Statistics of Damaturu Rainfall 
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4.2. Estimation Results and Discussion 

The selection of components to be included in a state space model is based on the characteristics of the observed series. 

Since seasonality is normally present in a monthly time series data, we employed the local level with stochastic seasonal and 

local level with deterministic seasonal models described in section 3 to the Maiduguri and Damaturu original series. First, 

using the data, we estimate the unknown variance parameters (hyperparameters) of the models using maximum likelihood 

method. This is maximized using the BFGS (Broyden-Fletcher-Goldfarb-Shannon) optimization method. The estimation 

results for the local level model with stochastic seasonal is presented below. 

Table 3.  Estimation Variance for Local Level Model with Stochastic Seasonal for Maiduguri Rainfall series (1981:1 – 2013:12) 

 

Note: SIGSQEPS, SIGSQETA and SIGSQOMEGA denote estimates 
2
,

2
 and 

2
 respectively. 

Table 4.  Estimation Variance for Local Level Model with Stochastic Seasonal for Damaturu Rainfall series (1981:1 – 2013:12) 

 

Note: SIGSQEPS, SIGSQETA and SIGSQOMEGA denote estimates 
2
,

2
 and 

2
 respectively. 

The estimation results in table 3 and 4 indicates that the hyperparameters (disturbance variances) of the measurement and 

seasonal component are highly statistically significant; however, the estimated hyperparameters for the level equations is not 

statistically significant. This indicates that any seasonal pattern in the observed time series changes over the years. Also, there 

are 396 observations in both series; however, the estimation is done using only the final 384 observations. This is because 12 

diffuse initial state values are estimated (11 for the seasonal components and 1 for the local level components). We proceed 

into performing the Kalman filtering and kalman smoothing using the estimated hyperparameters. The results of the Kalman 

filter estimates for Maiduguri rainfall series is presented in figure 3 and 4 while figure 5 and 6 present that of Damaturu 

rainfall series respectively. 
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Figure 3.  Kalman Filter Output for local level with stochastic seasonal for Maiduguri series 

 

 

Figure 4.  Kalman Filter Output for local level with stochastic seasonal for Maiduguri series 
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Figure 5.  Kalman Filter Output for local level with stochastic seasonal for Damaturu series 

 

 

Figure 6.  Kalman Filter Output for local level with stochastic seasonal for Damaturu series 
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Figure 7.  Kalman Smoothed Output for local level with stochastic seasonal for Maiduguri series 

 

Figure 8.  Kalman Smoothed Output for local level with stochastic seasonal for Maiduguri series 
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Figure 9.  Kalman Smoothed Output for local level with stochastic seasonal for Damaturu series 

 

Figure 10.  Kalman Smoothed Output for local level with stochastic seasonal for Damaturu series 
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Figure 3 to 6 present graphically the dynamic evolution of the level, seasonal components and the fitted values obtained by 

the Kalman filter together with their variances and the prediction errors (residuals). The evolution of the two North-Eastern 

regions under study is reflected by the estimated level component and is presented in the upper graph of figure 3 and 5. The 

plots indicate that the period of highest level of rainfall in Maiduguri occurred in the 2006 and the lowest level of rainfall 

occurred in the 1986. From figure 5, the plot also indicates that the period of the highest level of rainfall in Damaturu occurred 

in the 2000, while the lowest level of rainfall occurred between 1988 and 1989. One obvious features of figure 4 is that, the 

Kalman filtered state variances converges to zero value, which implies that there is no variability, while in figure 6, the 

Kalman filtered state variance converges to a constant value as the sample size increases which empirically confirms that the 

fitted local level model has a steady state solution. 

Figure 7 to 10 present the results of the Kalman smoothing recursion estimates of the level, seasonal and the fitted values of 

the series together with the state variances of the level, seasonal component and the smoothed prediction errors respectively. 

On comparing the graphs of the Kalman filtered level and the smoothed level of the two Northeast states in figure 3 to 5 and 

7 to 9 respectively, it is obvious that figure 7 to 9 is smoother than that of figure 3 to 5. In addition, figure 7 to 9 reveal that the 

seasonal pattern in the Maiduguri and Damaturu series have been relatively constant over the years. 

In order to detect any systematic and haphazard structural breaks, we employed the cumulative sum (CUSUM) and 

cumulative sum squares (CUSUMSQ) introduced by Brown et al. (1975) to the residuals of the fitted model. The results of 

the CUSUM test are displayed in figure 11 and 12. Figure 11 indicates that there was a structural break around 1998 – 1999. 

Similarly, figure indicates the possibility of a structural break in the year 1990. 

 

Figure 11.  The CUSUM and CUSUMSQ Structural Break test for Maiduguri Rainfall. 
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Figure 12.  The CUSUM and CUSUMSQ Structural Break test for Damaturu Rainfall 

Table 5.  Diagnostics Results for Local Level Model with Stochastic Seasonal for Maiduguri Series 

 

Table 6.  Diagnostics Results for Local Level Model with Stochastic Seasonal for Damaturu Series 
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Table 5 indicates that the diagnostic tests for independence, homoscedasticity, and normality of the residuals for the fitted 

Maiduguri model are all satisfactory. These tests indicate that the residuals satisfy all of the assumptions of the models since 

the p-value associated with all the tests are insignificant at the conventional 0.05 significance level. Also, from table 6, the 

diagnostic tests for independence and homoscedasticity of the residuals are satisfactory for Damaturu fitted model, while that 

of normality is not satisfactory, which suggests that the residuals satisfy the two most important assumptions of the models as 

discussed in section 3. However, the residuals are higher at the beginning and end of the sample, as theoretically expected, 

since the smoothed states are calculated by a backwards recursions. Hence, the uncertainty in the estimation is higher at the 

beginning of the backward recursions, unlike the Kalman filtering that uses a forward recursion. We now present the results 

of analysis of Maiduguri and Damaturu rainfall time series with a local level model with a deterministic seasonal.    

Table 7.  Estimation Results for Local Level Model with Deterministic Seasonal for Maiduguri Rainfall Series (1981:1-2013:12) 

  

Note: SIGSQEPS and SIGSQETA denote estimates 
2
 and 

2
 respectively, 

2
 is fixed at zero. 

Table 8.  Estimation Results for Local Level Model with Deterministic Seasonal for Damaturu Rainfall Series (1981:1-2013:12) 

 

Note: SIGSQEPS and SIGSQETA denote estimates 
2
 and 

2
 respectively, 

2
 is fixed at zero. 

The estimation results display above shows that the estimated hyperparameters (disturbance variances) of the measurement 

equation is significant while that of the level equation is not significant. Also, there are 396 observations in our series; 

however, the estimation is done using only the final 384 observations. This is because 12 diffuse initial state values are 

estimated (11 for the seasonal components and 1 for the local level components). 

We perform the Kalman filtering and smoothing based on these two estimates. We present the results of the Kalman filter 

estimates of the local level model with deterministic seasonal for Maiduguri and Damaturu in figure 13 to 16 and Kalman 

smoothed estimates of the local level model with deterministic seasonal in figure 16 and 19. 

Figures 13 and 16 present the output of the Kalman filtering of the local level model with deterministic seasonality for 

Maiduguri and Damaturu respectively. The output is very similar to the output of the local level model with stochastic 

seasonal (this is because the variance is small and insignificant), the evolution of Maiduguri and Damaturu rainfall is 

reflected by the estimated level component and is presented in the upper graph of figure 13 and 14. The plots also indicates 

that the period of highest level of rainfall in Maiduguri and Damaturu occurred in 2006 and 2000 respectively, while the 

lowest level occurred in 1986 and 1988-1989 respectively. Figure 14 also reveals that the Kalman filtered state variances 

converges to zero, while the filtered seasonal variance converges to a constant value. From figure 16, the filtered level 

variance converges to constant values as the sample size increases which empirically confirms that the local level model has 

a steady state solution. 
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Figure 13.  Kalman Filter Output for local level with deterministic seasonal for Maiduguri series 

 

Figure 14.  Kalman Filter Output for local level with deterministic seasonal for Maiduguri series 
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Figure 15.  Kalman Filter Output for local level with deterministic seasonal for Damaturu series 

 

Figure 16.  Kalman Filter Output for local level with deterministic seasonal for Damaturu series 
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Figures 17 to 20 present the output of the Kalman smoothing recursion estimates of the level, seasonal and the fitted values 

of the series together with the state variances of the level and seasonal component and the smoothed prediction errors for 

Maiduguri and Damaturu series. Comparing the graphs of the Kalman filtered level and the smoothed level in figure 13 and 

15 and figure 17and 19, we see that the graph in figure 17 and 19 is smoother than that of figure 13 and15 for both states. 

However, the constant seasonal pattern in the series is clearly apparent in figure 18 and 20. 

 

Figure 17.  Kalman Smoothed Output for local level with deterministic seasonal for Maiduguri series 

Table 9.  Diagnostics Results for Local Level Model with Deterministic Seasonal for Maiduguri Rainfall Series 

 

Table 10.  Diagnostics Results for Local Level Model with Deterministic Seasonal for Damaturu Rainfall Series 
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Figure 18.  Kalman Smoothed Output for local level with deterministic seasonal for Maiduguri series 

 

Figure 19.  Kalman Smoothed Output for local level with deterministic seasonal for Damaturu series 
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Figure 20.  Kalman Smoothed Output for local level with deterministic seasonal for Damaturu series 
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Damaturu. From table 9, the assumption of independence, 
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conventional level while table 10 indicates that the 

assumption of normality is not satisfied at conventional 

significance level. 

From the two competing model that is; local level 

stochastic and local level deterministic model, the Akaike 

Information Criterion (AIC) and the Bayesian Information 

Criterion (SIC) of the two models are examined to obtain the 

parsimonious model. Using the information criteria approach, 

models that yield smaller values for the criterion are 

preferred, and regarded as best fitting model. From table 5 

and 6, the AIC and BIC for the local level model with 

stochastic seasonal are 9.89, 9.21 and 9.92, 9.24, for 

Maiduguri and Damaturu respectively, while the AIC and 

BIC for the local level model with deterministic seasonal 

displayed in table 9 and 10 are 9.88, 9.21 and 9.90, 9.23 for 

Maiduguri and Damaturu respectively. Hence, the local level 

model with deterministic seasonal is slightly better than the 

model with stochastic seasonal component. In addition, the 

log-likelihood values of the two models for the two states 

are almost identical -1954.62, -1820.29 and -1954.36, 

-1821.65 for the local level model with stochastic seasonal 

and the local level model with deterministic seasonal 

respectively. Hence, the improved fit of the local level 

model with deterministic model can completely be 

attributed to its greater parsimony. Commandeur and 

Koopman (2007) pointed out that, in state space modelling, 

a small and insignificant state disturbance variance 

indicates that the corresponding state component may as 

well be treated as a deterministic effect, resulting in a more 

parsimonious model. Therefore, the local level model with 

deterministic seasonal is able to model the dynamic features 
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in the Maiduguri and Damaturu rainfall time series. 

5. Conclusions 

The variability in elements of climate such as rainfall and 

temperature exposes the country to the negative impact of 

climate change such as erratic rainfall, rise in temperature, 

desertification, low agricultural yield, drying up of water 

bodies, and sea level rise.  

This paper analysed the seasonal pattern of rainfall in 

Maiduguri and Damaturu in the state space framework. We 

employ the local level model with deterministic and 

stochastic seasonal to modelling the monthly rainfall of the 

two states. The AIC and BIC of the two state space models 

suggest that the local level model with deterministic seasonal 

provide a better fit to the data than the model with stochastic 

seasonal. The detection of deterministic seasonal in the two 

states implies that the rainfall fall patterns have little 

variability or indication of climate change as regards its 

rainfall element. In addition, the CUSUM test indicates the 

presence of structural breaks in 1998 and 1990 for Maiduguri 

and Damaturu respectively. This implies that there was 

abrupt change in the rainfall level in 1998 for Maiduguri area 

and in 1990 for Damaturu area. We, therefore, recommend 

that seasonality should be explicitly included in the 

modelling of seasonal time series data as the pattern of 

seasonality could be useful for important decision making. 

These techniques can be adopted to the analysis of time 

series drawn from other domains. In addition, measures 

should be put in place to curb human-made activities that are 

detrimental to the climate since the region is highly 

vulnerable to the impacts of climate change. All 

computations performed in this study are done using the 

RATS econometric time series software. 

 

Annexure I. Geographical Map of the Study Area 
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