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Abstract  In this study optimal linear estimators of missing values for bilinear time series models BL (p, 0, p, p) whose 
innovations have a student-t distribution are derived by minimizing the h-steps-ahead dispersion error. Data used in the study 
was simulated using the R Statistical Software where 100 samples of size 500 each were generated for the bilinear model  
BL (1, 0, 1, 1). The time series data generated was numbered from 1 to 500. In each sample, three data positions 48, 293 and 
496 were selected at random and the value at these points removed to create artificial missing values. For comparison 
purposes, two commonly used non-parametric techniques of artificial neural network (ANN) and exponential smoothing 
(EXP) estimates were also computed. The performance criteria used to ascertain the efficiency of these estimates were the 
mean squared error (MSE) and Mean Absolute Deviation (MAD). The study found that ANN estimates were the most 
efficient for estimating missing values of the bilinear time series with student-t innovations. The study recommends the use of 
ANN for estimating missing values in bilinear time series model with student errors. 
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1. Introduction 
Data analysts are frequently faced with the missing value 

problem. Missing values may occur for various reasons 
which may include poor record keeping, lost records, 
technical error, collecting data at irregular times, etc., ([1], 
[2]). In addition, a peculiar case can arise when one may be 
interested in determining the likely value of a variable of 
interest at a time that may not coincide with a particular 
measurement or observation [3]. These can result in one or 
several observations missing.  

These missing values must be accounted for since missing 
values have negative effects on the modeling of the data [4]. 
There are many ways of handling missing values. The 
common approach is to use imputation techniques. This 
involves using a substitute value to replace the missing 
observation as in [5]. According to [6], imputation broadly 
comprises several techniques that have been developed to 
compute missing values. These techniques may employ 
strategies such as mean substitution and artificial neural 
networks approach. It may also involve the use of 
appropriate statistical prediction or forecasting models such 
as regression, time series models, and Markov chain and 
Monte Carlo methods. 

Estimation of missing values for bilinear time series has  
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been done for a particular order of the bilinear time series  
BL (1, 0, 2, 0) by [4]. They used estimating functions 
criterion to derive the estimates of missing values. Other 
studies have also been done to estimate missing values for 
pure bilinear time series when the innovation sequence has 
the GARCH distribution [7]. Still the same authors have 
estimated missing values for pure bilinear time series when 
the innovation sequence has the normal distribution [8]. [9] 
also estimated missing values for bilinear time series for the 
pure bilinear case when the innovation sequence has the 
student-t distribution. They found that the estimates of the 
missing values were equivalent to a one–step-ahead forecast. 
Further, [10] used the linear interpolation criterion to 
estimate missing values for the BL (p, 0, p, p) when the error 
term follows the normal distribution.  

The distribution of interest in this study is the student-t 
distribution. This distribution is characterized by long tails 
and is suitable for modeling financial data which is known to 
be highly skewed. There is no evidence to show that optimal 
linear interpolation approach based on the dispersion   
error has been used to estimate missing values for bilinear 
BL (p, 0, p, p) with student-t distribution.  

1.1. Identification of Bilinear Time Series Models 

Given a time series data, the first step in the identification 
process of bilinear time series model  is to test whether the 
data can be modeled either as a linear time series or belongs 
to the broader class of nonlinear time series models. This 
involves testing a null hypothesis that the data is linear. This 
can be done using one of the statistical tests of linearity ([11]; 

 



114 Poti Abaja Owili:  Estimation of Missing Values for BL (p, 0, p, p) Time Series Models with Student-t Innovations  
 

[12]). If the null hypothesis is rejected then the data can be 
appropriately modeled by a nonlinear series model and a 
bilinear model is one of the candidate models to be 
considered ([13]; [14]). If the data is nonlinear then the 
second step is used. 

The second step in the identification process is to 
determine the class of the nonlinear models to which the data 
belongs. This involves the use of moments and cumulants. It 
has been noted that BL (p, 0, p, 1) and ARMA (p, 1) models 
have similar second order moments and hence these 
moments cannot be conclusively used in the identification of 
the bilinear time series models [15]. Consequently, it is 
imperative to use higher order moments. The higher 
moments are known to satisfy the Yule-Walker type 
difference equations ([15], [16]). Thus these equations could 
be used for model identification of the bilinear time series 
models. The difference between the moments of bilinear 
time series and those of the other nonlinear time series 
models is that the higher order moments of a bilinear time 
series (including the fourth moments) decay slowly as the lag 
tends to infinity. However, the fourth moments of the other 
nonlinear time series models do not behave in a similar 
manner. 

After determining that the data is bilinear, then the order 
of the model is computed using canonical correlation 
analysis carried between the linear combinations of the 
observations and linear combinations of higher powers of the 
observations. 

For some super diagonal and diagonal bilinear time series, 
the third order moments are not equal to zero. This pattern of 
nonzero moments can be used to discriminate between white 
noise and the bilinear models and also between different 
bilinear models [16]. Using the patterns presented in a table 
of third order moments, one can easily distinguish bilinear 
models from pure ARMA or mixed ARMA models. Third 
order moments may also be useful in detecting 
non-normality in the distribution of the innovation sequence. 

This technique of model identification can be extended to 
more general bilinear models provided that difference 
equations for higher order moments and cumulants can be 
obtained [15]. 

1.2. Estimation of Parameters of the Bilinear Time Series 
Models 

Several estimation techniques have been proposed for the 
estimation of the parameters of the bilinear time series in the 
literature. Most of them deal with particular classes of the 
bilinear time series models [9]. [13] proposed two methods 
for the estimation of the model parameters of a bilinear time 
series models, namely the use of Newton Raphson technique 
and the Marquart Algorithm. He applied both methods to the 
estimation of the parameters of a bilinear time series model 
identified for sunspost and seismology data. Secondly, he 
proposed estimation of the parameters using maximum 
likelihood method. More recently [18] proposed a 
generalized autoregressive conditional heteroskedasticity- 

type maximum likelihood estimator for estimating the 
unknown parameters for a special bilinear model. They 
showed that their proposed estimator was consistent and 
asymptotically normal under only finite fourth moment of 
errors. [19] proposed the use of covariance estimates based 
on the least squares method on the parameters of the bilinear 
model BL (p, 0, p, 1). [20] estimated the parameter of the 
simple diagonal bilinear model BL (0, 0, 1, 1) using the least 
squares method.  

2. Literature Review 
2.1. Student-t Distributions 

Most of the data encountered in practice show departure 
from the linearity and thus may be modeled by nonlinear 
time series models [21]. These models have innovations that 
can adequately be described by student-t, ARCH and stable 
distributions. For financial data, models with the student-t 
distribution play an important role in modeling. The 
student-t distribution can be integrated with other 
distributions such as GARCH to produce even better models. 
For example, GARCH (1, 1) model with student-t 
distribution is able to reproduce the volatility dynamism of 
financial data. Given a model, specification for log of return 
disturbances can be modeled using either the student-t 
distribution or the normal distribution. However, the 
student-t distribution is particularly useful since it can 
describe the excess kurtosis in the conditional distribution 
that is found in financial time series unlike the models with 
normal innovations (Owili, 2015c). 

[22] focused on the bilinear time series model with 
GARCH innovations (BL-GARCH). It has an important 
property that it can take into account explosions and related 
volatility features of non-linear time series. The most 
common model used in financial data is the BL-GARCH (1,1) 
model and may be used in practical applications with either 
the  normal, the  student-t or GED noises. 

2.2. Empirical Studies on Bilinear Models  

The bilinear time series models find applications in many 
areas such as hydrology, economics and finance. Since it is a 
complicated model, only specific classes of the bilinear 
models have been studied. For example, [13] considered 
model BL (p, 0, p, q); [11] studied the asymptotic behavior 
of the correlation function for the simple bilinear model   
BL (0, 0, 1, 1); [23] and [24] studied the model BL (1, 0, 1, 
1); [25] considered the model BL (0, 0, 1, 1). [26] estimated 
the coefficients of a bilinear model BL (1, 0, 1, 1) using the 
maximum likelihood method. [24] claimed that estimating  
bilinear models is quite challenging.  

It can be seen from the literature that several studies on 
inferences based on bilinear time series models have been 
done. These include model identification, determining 
conditions necessary for stationarity and invertibility and 
estimation of the parameters of the bilinear time series 
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models. On missing value, Owili, Poti and Orawo (2015) 
only studied pure bilinear model BL (0, 0, p, p). No study 
has been done on the general bilinear model BL (p, 0, p, p). 
Therefore, the aim of this study was to derive estimators of 
missing values for BL (p, 0, p, p) using the optimal linear 
estimation approach of [28].  

2.3. Estimation of Missing Values using Linear 
Interpolation Method 

Suppose we have one value mx  missing out of a set of an 
arbitrarily large number of n possible observations generated 

from a time series process { }tx . Let the subspace mS∗  be 

the allowable space of estimators of mx  based on the 

observed values , 1 2 1{ , ,..., }t t tx x x x− −  i.e., mS∗ = sp

{ }: 1 ,tx n t m≤ ≠  where n, the sample size, is assumed 

large. The projection of mx  onto mS∗  (denoted m

m

x
S

P ∗ ) 

such that the dispersion error of the estimate (written disp

( m

m

x
m S

x P ∗− ) is a minimum would simply be a minimum 

dispersion linear interpolator. The missing value mx  is 
estimated as  

ˆm mx x∗ = +
1

ˆ( )
n

k k k
k m

a x x
= +

−∑       (1) 

where ˆmx  is the estimate obtained from the model based on 
the previous lagged observations of the data before the point 
m, the missing data point and xm the  missing value, the 
coefficients ka  (k=1, 2,..k-m) are to be estimated by 

minimizing the dispersion error (disp mx ) given by 
equation (1) as in [28]. 

3. Research Methodology 
Data was simulated from the general bilinear time series 

models BL (1, 0, 1, 1) with student-t innovations using R 
statistical software. A program code in R was used. 100 
samples of size 500 each were generated and missing 
artificial points were created at data point 48, 293 and 496. 
These points were selected at random. Data analysis was 
done using the following software: Microsoft Excel, TSM, R 
and Matlab7. The mean squared error (MSE) and mean 
absolute deviation (MAD) were used as performance 
measures. 

4. Results 
4.1. Derivation of the Missing Values for Bilinear Time 

Series Models with Student-t Innovations 

Estimates of missing values for BL (p, 0, p, p) bilinear 
time series models whose innovations follow student-t 
distributions were derived based on minimizing the h-steps 
ahead dispersion error. Two assumptions were made in the 
process of the derivations. The first one was that the time 
series data is stationary. Secondly, the higher powers (of 
orders greater than two or products of coefficients of orders 
greater than two) of the coefficients are approximately 
negligible. This was consequence of the result of the first 
assumption.  

4.1.1. Estimating Missing Values for BL (1, 0, 1, 1) with    
t- Errors 

The bilinear model BL (1, 0, 1, 1) with t- errors is 
expressed as 

1 11 1 1 , ~ (0,1)t t t t t tx x b x e e where e tϕ − − −= + +  

The missing value is obtained using theorem 4.1 
Theorem 4.1 
The optimal linear estimate for missing value for  
BL (1, 0, 1, 1) with student errors is given by 

1 11 1 1

1
2 21 1 11

ˆˆ

ˆ ˆ( )
ˆ( 1) (4)

2

m m m m
k mn

k k
k m

x x b x e

x x
n b v

n

ϕ

ϕ

ϕ

∗
− − −

−

= +

= +

+ −
 + + − 

∑  

Proof 
The stationary BL (1, 0, 1, 1) can be expressed as  

( )11
1 1

i

t t j t i t
i j

x b e e eϕ
∞

− −
= =

 
 = + +
 
 

∑ ∏  

The h-steps ahead forecast is given by 

( )11
1 1

i

t h t h j t h i t h
i j

x b e e eϕ
∞

+ + − + − +
= =

 
 = + +
 
 

∑ ∏  

and the h-steps ahead forecast error is given by 

( )
1

11
1 1

ˆ
ih

t h t h t h j t h i t h
i j

x x b e e eϕ
−

+ + + − + − +
= =

 
 − = + +
 
 

∑ ∏ (3) 

Substituting equation (3) in equation (1), we obtain 
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( )
( )1 11

1 1 1
2
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ˆ
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k m i j

m
nm m

k k
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e
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ϕ
−

− −
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( )
2
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                  (2) 
Simplifying the terms RHS of equation (2), we obtain 

( )2ˆ
2m

nE e
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−

 

( )1 11
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Hence equation (2) becomes 

mdisp x = ( )

1
2

2 2
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k m

k
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ϕ −

= +
−

− −∑ 2 2 2
11
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( (4)
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Differentiating equation (3) with respect to the coefficients, we get 

1

1
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The optimal linear estimator of ,mx denoted ,mx∗  that minimizes the error dispersion error is  

1
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11 1 1 1ˆm m t mx b x e eθ− − −= +  

4.1.2. Estimating Missing Values for Bilinear Time Series Model BL (p, 0, p, p) with Student-t Innovations 

The pure bilinear time series model BL (p, 0, p, p) with student t errors is 

1
1 1 1

p p p

t i t i i t i t i t
i i i

x x b x e eϕ − − −
= = =

= + +∑ ∑ ∑  

The missing values can be estimated using theorem 4.2. 
Theorem 4.2 
The optimal linear estimate for one missing value xm for the general bilinear time series model BL (p, 0, p, p) with student 

t-errors is given by 

1 1 1

ˆˆ ˆ
p p p

m i t i ij t i t j
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Where v(4) is the fourth moment of the data given. 

 
Where v(4)=kurtosis*(variance)2. 
Proof 
The stationary bilinear time series model BL (p, 0, p, p) is of the form 
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The h steps ahead forecast based on equation (4) is given by 
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The forecast error is 
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             (5) 

Substituting equation (5) in equation (1) and simplifying, we obtain 
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Corollary 
For p=1, we have the bilinear model BL (1, 0, 1, 1). The best linear estimate is given by 
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4.2. Simulation Results 

In this section, the results of the optimal linear estimator, artificial neural networks and exponential are given in table 1. 

Table 1.  Efficiency Measures for BL (1, 0, 1, 1) with student-t innovations 

POINT 
 

MAD  
MSE 

 
 
OLE 

 
ANN 

 
EXP 

 

 

 
OLE 

 
ANN 

 
EXP 

48 1.05 1.023 1.921 
 

2.55 2.1023 2.889 
293 1.35 1.073 1.43 

 
2.73 2.4562 3.781 

496 1.44 0.9 1.47 
 

3.84 2.139 4.623 
Total 3.85 2.996 4.821 

 
9.13 6.5975 11.23 

Mean 1.28 0.999 1.607 
 

3.04 2.1992 3.743 

From table 1, it can be concluded that ANN estimates most efficient (MSE=2.1992) for the different missing data point 
positions followed by OLE estimates (MSE=3.04). This is in contradiction to the results obtained for pure bilinear time series 
model BL (0, 0, 1, 1) by [9].  

5. Conclusions 
In this study we have derived estimates for missing values for the bilinear time series model BL (p, 0, p, p) with student-t 

innovations. The study found that ANN estimates were the most efficient compared to both the OLE and EXP. Further the 
estimates of the missing values were found to be dependent on the observations before and after the missing value point. 

Appendix 
Appendix A: Program Codes used in simulation 

 

 # The R program (BL1011_studentErrors) 
      b12<-0.4; b1=0.2 

         sigma<-1 
        h<-c() 

          e<-c() 
         z<-c() 
          e[1:2]<- rt(2,7) 

         x <-c() 
          x[1:2]<-c(0,   e[1]) 

     set.seed(02848151) 
         for (i  in 3:1500) { 

                      e[i] = rt(1,7)                 # generate noise value 
                x[i] = b1*x[i-1]+b12*x[i-1]*e[i-2]+ e[i]    #  calculate x using the model               

  }   
         t<- x[-1:-1000] 

        y<-round(t,7) 
      z<-0.1+0.8*(y-min(y))/(max(y)-min(y)) 

      n<-round(z,7) 
      Y 
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