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Abstract  In this study, the effect of stratified sampling design has been studied on the accuracy of Fisher's linear 

discriminant function or Anderson's Ŵ . For this purpose, we put on weighted estimators in function Ŵ  instead of simple 

random sampling estimators. The results of a simulation study indicated that the performance of Ŵ  affected by alteration of 

sampling methods. The performance of proposed discriminant function stŴ  in comparison to the classical discriminant 
function is more appropriate. Specially, in case of the mean of strata have significant difference compared with the overall 
mean of each group. 
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1. Introduction 
The discrimination between two groups using multivariate 

data has been recognized as an important problem that was 
firstly studied by Fisher (1936). The linear discriminant 
function (LDF) is a standard approach to yield optimal 
results when the two groups have a conditional multivariate 
normal distribution with distinct mean vectors and common 
covariance matrix (Mardia & et al, 1979). Computing the 
misclassification probabilities or error rates of the 
discriminant function are interesting issues. When 
competing groups have known parameters, the LDF 
distribution can be obtained exactly by univariate normal 
distribution (Johnson & Wichern, 1992). In practice, the 
parameters of the LDF are unknown. Then we estimate these 
parameters by means of independent random "training 
samples". The sample distribution of LDF has been studied 
by several authors. Anderson (1973) obtained the asymptotic 
expansion of the distribution of the sample Fisher's linear 

discriminant function Ŵ  in terms of order 2O(n )− . 
Atakan (2009) compared the performance of seven well 
known methods in literature to estimating probability of 
misclassification by bootstrap percentile confidence 
intervals. This research can provide a good literature review 
for more study. 

In several researches, the sampling design effects on 
statistical methods have been studied. Especially, in  
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regression analysis effect of sampling designs on least square 
estimator studied by some authors (DuMuchel & Duncan, 
1981; Horton & Fitzmaurice, 2004). Also, in analysis of 
variance about mean difference of groups, effect of cluster 
sampling design on F ratio studied in social and 
psychological survey, frequently (Hegges & Rhoads, 2011). 
In multivariate statistical analysis, complex sampling design 
lead to complicated methods. However, little study has been 
dedicated to the effect sampling methods on LDF because 
analytical complexity. Nonetheless, some researchers 
examining the effect of sampling design on the 
misclassification probability of the LDF (Kao & McCabe, 
1991; Leu & Tsui, 1997). In light of stratified random 
sampling, Tsui & Leu (1998) indicated that asymptotic 
expansion of LDF has an error of order O(1) . Therefore, 
using of LDF without correction can increases the 
probability of misclassification. Recently, Shahrokh 
Esfahani & Dougherty (2014) by simulation study showed 
that separate sampling with an inappropriate sampling ratio 
can significantly reduce classification accuracy of LDF. 

The main contribution of the present paper is to 
approximate LDF probability of misclassification using 
weighted estimators. In some researches, we have auxiliary 
information about the groups and it is beneficial to use it to 
construct LDF. For example, we can be able to categorize 
each group on the basis of a qualitative variable. In this case, 
stratified sampling design can be used to draw data from 
each group. In this study, we substitute unbiased weighted 
estimators in LDF when the sample design is stratified. Also, 
a comparison between two linear discriminant functions is 
made by a simulation study. 
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2. Preliminaries for the LDF 
In this section, we introduce some preliminaries of the 

LDF. Suppose 1Π  and 2Π  denote two distinct groups 
whose known multivariate probability density functions of 
p-dimensional random vector 1 2 px (x , x , , x )=   are 

denoted by 1f (x)  and 2f (x) , respectively. We use 
P(i | j)  to denote the probability of misclassification an 
observation x  into group iΠ  when, in fact, it belongs to 
the group jΠ . Let 1p  and 2p  be the prior probabilities 
of the groups, then the total probability of misclassification 
(TPM) is defined as 

1 2TPM P(2 | 1)p P(1 | 2)p= +  

According to the Bayes optimal classification rule, TPM 
is minimized when a new observation x  is classified into 
group 1Π  by 

1

2

f (x)
log k,

f (x)
≥                (1) 

Where 2 1k 2 log(p p )= . If the prior probabilities in 
each group are taken equal, then cut-off value is k 0= . 
Also, if the multivariate normal densities with common 
covariance matrices are used in previous equation, then the 
LDF is given by  

1
1 2 1 2

1W (μ μ ) Σ (x (μ μ )).
2

−′= − − +        (2) 

Using the Equation (2), a new observation x  is assigned 
into the group 1Π  when W 0≥ . In the case of, W 0< , 
this observation is assigned into the group 2Π . Suppose that 
the prior probabilities are taken to be equal i.e. 1 2p p= , then 
the TPM is defined as 

1
TPM (P(W 0) P(W 0))

2

( ),
2

= < + ≥

∆
= Φ −

        (3) 

where Φ is the cumulative distribution function of standard 
normal random variable and ∆  is Mahalanobis distance 
between the groups, i.e., 

2 1
1 2 1 2(μ μ ) Σ (μ μ ).−′∆ = − −          (4) 

3. Sample LDF 
In this section, we illustrate the sample representation of 

the Fisher's linear discriminant function (2) under random 
sampling and stratified designs. 

3.1. Random Sampling 

Suppose we have 1n  observation 
111 1nx , , x  drawn 

from 1Π  and 2n observation 
221 2nx , , x  drawn from 

2Π , where 1 2n , n p> . We estimate the parameters (2) by 
the unbiased sample means  

1n

1 1i
1 i 1

1X X
n =

= ∑ , 

2n

2 2i
2 i 1

1X X
n =

= ∑ , 

and  

1 1 2 2
1 2

1S ((n 1)S (n 1)S ),
n n 2

= − + −
+ −

 

where 
1n

1 1i 1 1i 1
1 i 1

1S (X X )(X X ) ,
n 1 =

′= − −
− ∑  

2n

2 2i 2 2i 2
2 i 1

1S (X X )(X X ) ,
n 1 =

′= − −
− ∑  

respectively. Then, the discriminant functions (2) can be 
modified as Ŵ yields a plug-in discriminant function is 
given by 

1
1 1 2 1 2

1Ŵ (x x ) S (x (x x )).
2

−′= − − +        (5) 

In this case a natural estimate of (4) is 
2 1
1 1 2 1 2D (x x ) S (x x ),−′= − −          (6) 

and the estimated of the total misclassification  probability 
is given by 

1
Ŵ

D
TPM ( ).

2
= Φ −                (7) 

3.2. Stratified Sampling 

Suppose the groups gΠ where g 1, 2=  split into gα  

parts gjΠ  where gj 1, ,= α . If the group size is denoted 

gN then g
g gjj 1N Nα

=
= ∑ , where gjN  is denoted size of 

gjΠ . Also, we select a random sample gjn  of fixed size 

gn from each group, where g
g gjj 1n nα

=
= ∑ . We 

furthermore assume throughout that the designs are simple 
without replacement within each stratum. In light of this 
design, the unbiased estimation of means in each group is 
given by 
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g g
gjst

g gj gj gj
gj 1 j 1

N
X X X ,

N

α α

= =
= = π∑ ∑  

where 
gjn

gj gi
gj i 1

1X X ,
n =

= ∑  

is mean estimation of the j th stratum of group gΠ  and  

weight of stratums are gjπ . Also, if we suppose the 
covariance matrix into each stratum is common then 
unbiased estimation of the covariance matrix Σ  is defined 
by 

gjn

gj ig gj ig gj
g i 1

1S (X X )(X X ) .
n 1 =

′= − −
− ∑  

If weighted estimation  
g g

gj
g gj gj gj

gj 1 j 1

N
S S S ,

N

α α

= =
= = π∑ ∑  

is assumed in each group then the pooled covariance matrix 
is given by 

1 1 2 2
1 2

1S ((n 1)S (n 1)S ).
n n 2

= − + −
+ −

    

By substituting these unbiased estimators into (2), we 
obtain a new sample LDF 

st st 1 st st
st 1 2 1 2

1Ŵ (x x ) S (x (x x )).
2

−′= − − +     (8) 

Similar to (6) we define 
2 st st 1 st st
2 1 2 1 2D (x x ) S (x x ),−′= − −         (9) 

therefore, the total probability of misclassification is 
estimated by 

st
2

Ŵ
D

TPM ( ).
2

= Φ −            (10) 

Clearly, in the case of Mahalanobis distance (9) is greater 
than (6), then the Equation (10) is less than (7). Thus, the 
stratified sampling designs can provide greater efficient 
estimates than corresponding random sampling in 
discriminant analysis. 

4. Simulation Study 
In this section, we examine the performance of sample 

discriminant function stŴ  in comparison Ŵ by 
conducting numerical experiments. It is further noted that 
Mathematica software was used to write program codes for 
numerical calculation. The package is available from the 
authors upon request. 

Suppose the group sizes are equal i.e., 1 2N N= and each 
group is categorized into two stratums. The first group size 
of stratums are considered 11 12N 2N=  and the second 
group 21 22N N= . Therefore, the weights of stratums are  

11 12 21 222 / 3, 1 / 3, 1 / 2,π = π = π = π =  respectively. 
The covariance matrix structure considered in this 
examination in each group and stratums by  

2 .5 .5 .5
.5 1 .5 .5

Σ .
.5 .5 3 .5
.5 .5 .5 4

 
 
 =
 
 
 

 

The stratum means of each group are defined by 

( )11μ 2,1,3,0 ′= , ( )12μ 2,1,3, m ′=  

and 

( ) ( )21 22μ 1,0, -1,0 , μ 1,0, 1, m ,= = −  

The parameter m  controlling distance between two 
stratums and we consider its values 0, 2 and 5, respectively. 
Therefore, the vector mean of each group is given by  

( )1μ 2,1,3, m / 3 ,′=  

and 

( )2μ 1,0, 1, m / 2 .′= −  

The exact total probability misclassification of population 
discriminant function (2) in terms of (3) is demonstrated in 
Table 1. From the table, we can see that the TPM of W is 
scale down when m  is increasing. 

Table 1.  Exact TPM of population LDF 

 WTPM   

 m   

0 2 5 

0.1170 0.1133 0.1059 

 
In each simulation, we generate random samples from 

four normal populations conditional distributions 

4 gjN (μ ,Σ), where g, j 1, 2= . In each simulation the size 

of samples considered 1 2n n 30,70,150,= =  
respectively. The samples divided in each group equally. 
Also, each simulation was run 100 times. Thus, the results 
presented in Table 2 are the average of estimated total 
probability misclassification. When the parameter m  
increased then TPM of stŴ  decreased for all sample 
sizes. While, by increasing m  the TPM  of discriminant 

function Ŵ  has been increased except for sample size 30. 
Also, when the sample size increased then TPM of 
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discriminant functions Ŵ and stŴ  tend to TPM  of W

obtained in Table 1. For m 0=  the TPM  of Ŵ  is 
closer to exact TPM while for m 2,5= , we can see from 

Table 2 the TPM of stŴ  are closer to the TPM of W

than discriminant function Ŵ . 

Table 2.  Estimated TPM  of sample LDF 

  ŴTPM    
stŴTPM   

  m    m   

n  0 2 5 0 2 5 

30 0.1110 0.1136 0.1129 0.1089 0.1069 0.1004 

70 0.1124 0.1139 0.1177 0.1123 0.1096 0.1039 

150 0.1156 0.1193 0.1169 0.1152 0.1136 0.1044 

In Figure 1, we display the histogram of discriminant 
functions by performing 200,000 iterations of the Equations 
(5) and (8). As can be seen in figure, the histograms of 

discriminat function Ŵ  are almost symmetrical for all 
values m but they aren't seem normally distributed. 
Nonetheless, the histogram of discriminat function stŴ  is 
symmetrical for m 5= . In other words, when strata of the 
groups are significantly diversity in means then the limited 
distribution of stŴ  is symmetric and unimodal. 

 

Figure 1.  Histogram of the discriminant functions 

( 1 2n n 200, 000= = ) 

5. Discussions 
In many studies, particularly in the field of human 

sciences such as psychology, education, financial 

management and medical researches the sampling method is 
stratified. A common error in this type of research is the 
inadvertence of sampling designs and using analytical 
methods in statistical software in which the sampling method 
assumes that the simple random. In this study, in case of 
stratified sampling, we present a linear discriminant function 
by replacing the usual unbiased sample estimators with 
unbiased weighted estimators. In simulations, we 
demonstrate discriminant function stŴ  has better 

performance in comparison Ŵ  when the groups consist of 
strata with distinct means. This discriminant function can be 
used to obtain error rate between groups that are categorized 
by an auxiliary variable such as gender, job, etc.  An 
expansion of distribution stŴ  remains as open problem 
which it can study in future research. 
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