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Abstract  Dissimilar characteristics in individual location treatment effects can be modelled as a random effect in a 
community of many and different individual observations. This study demonstrates the excellent performance of higher 
levels and very recent extensions of the Generalized Linear Mixed Models (GLMM); Hierarchical Generalized Linear 
Models (HGLM) in the global quest to developing Statistical Models with highest model accuracy. The analyses is based on 
raw data available at the regional Monitoring and Evaluation office of the Linking Farmers to Markets (FtM) project in 
Tamale - Ghana. Physical support (Fixed effect) variables measured include; crop type, Financial Credit, Training, Study tour, 
Demonstrative Practical’s, Networking Events, Post-harvest Equipment, Number of farmers in the FBO and Plot size 
cultivated. Dependent variable measured is Total Crop Yield whereas the regions and the particular communities were treated 
as random variables. Results showed that the HGLM 2 had the ability of specifying different suitable fixed effects model 
from a known distribution, a random effects model allowed to follow conjugates of arbitrary distributions from the GLM 
family and a dispersion model. We conclude that the HGLM 2 performs far better, gives a more fitting models and improves 
the quality of the crop yield models significantly. 
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1. Introduction 
Ghana’s agro-ecological zones have significantly different 

agricultural structure and corresponding difference in the 
regional distributions of her agricultural GDP. These 
regional differences have important effects for sub-sector 
level agricultural growth strategies. The Forest Zone 
continuous to be the highest producer of major agricultural 
products, accounting for 43 per cent of agricultural GDP, as 
compared to about 10 per cent in the Coastal Zone, and 26.5 
per cent and 20.5 per cent in the Southern and Northern 
Savannah Zones, respectively (Breisinger et al. 2008). The 
principal producer of cereals and livestock is the Northern 
Savannah zone. More than 70 per cent of the country’s 
sorghum, maize, millet, cowpeas, groundnuts, beef and 
soybeans come from the Northern Zone, while a large share 
of higher-value products, such as cocoa and livestock 
(mainly commercial poultry) is supplied by the Forest Zone. 

There are also indications of different agricultural income 
structures due to the heterogeneous agricultural production 
structure across all the regions in Ghana. Almost half of  
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agricultural income comes from two of Ghana’s major 
export goods (cocoa and timber) which are produced in the 
Forest Zone. Agricultural exports also plays a vital role in the 
total agricultural income for the Coast and Southern 
Savannah Zones. In contrast, 90 per cent of agricultural 
income in the Northern Zone comes from staple crops and 
livestock (World Bank Global Forum on Agriculture, 2010). 

As is the case in most developing countries, the Ghanaian 
government can only devote limited resources to agricultural 
extension programs and so most programs are only 
administered to a limited proportion of the population. 
Because there is significant variation of farm size throughout 
the three northern regions and Ghana as a whole, and likely 
significant variation in the determinants of output for 
different sized farms, it is critical for all stakeholders, the 
academia and the general public to understand which support 
services and policies will benefit farms and improve crop 
yield for the different farmer based organizations of different 
farm sizes in different locations throughout the three 
northern regions with application of the hierarchical 
generalized linear models (HGLMs) of Lee and Nelder 
(1996). 

Lee and Nelder (1996) developed the HGLMs from three 
commonly used existing model classes; generalized linear 
models (McCullagh and Nelder, 1989), linear mixed models 
having both fixed and random effects and models with 
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structured dispersions as used in analysis for quality 
improvement (Lee and Nelder, 1998). The hierarchical 
generalized linear models (HGLMs) extends generalized 
linear models (GLMs) to include random components in the 
linear predictor with arbitrary distributions. It uses the 
h-likelihood (Lee and Nelder, 1996) for inference about 
fixed and random effects given dispersion components and 
an adjusted profile h-likelihood for inference about 
dispersion components given fixed and random effects. This 
method promotes reliable and useful estimators. It shares 
properties with those obtained from marginal likelihoods, 
while having the advantage of not requiring to integrate out 
the random effects. 

The hierarchical generalized linear models (HGLMs) 
include generalized linear mixed models (GLMMs), which 
have normal random components. The h-likelihood for 
inference results in an extension of likelihood inference, 
providing an efficient fitting algorithm for the various 
likelihood-ratio tests and systematic model-checking 
methods. The method leads to statistically reliable and 
efficient estimators (Lee Y, Nelder J. A., 2001) similar to 
those obtained from marginal likelihood, while having the 
considerable advantage of not requiring the integrating out of 
random-effects. Their h-likelihood method is an extension of 
classical likelihood inference, and so needs neither the use of 
prior probabilities nor computationally intensive methods 
such as Monte-Carlo Markov’s chain (MCMC). 

We fit in this paper an HGLM to a crop yield data, in 
which the heterogeneous Regional and Community effects 
are treated as random effects. In our analysis we suggests 
that a system of support services; Access to credit facility, 
Training, Study tour, Demonstrative practical, Networking 
events and Post-harvest Equipment’s, plays an important 
role in determining crop yields even though their individual 
and interaction effects on yield is not uniform across farmer 
base organizations. We focused mainly on the production of 
Maize and Soy beans in northern part of Ghana where there 
is substantial farming activity. Maize and Soy beans are the 
very much cultivated crops in these parts of the country due 
to their vegetation which supports the growth of grains and 
cereals. Beyond the numbers and descriptive statistics on 
yield of such crops, our primary aim is to fit an HGLM to the 
data. We seek to assess covariates or variables that 
significantly influences crop yield in the Northern regions of 
Ghana. 

Unobservable with names such as random effects, latent 
processes, factor, missing data, unobserved future 
observations, potential outcomes etc. appear in a number of 
statistical literatures. Handling of such unobservable is vital 
to new extended likelihood inferences. Without resorting to 
empirical Bayes frameworks, inferences can be obtained 
(Lee and Nelder, 2002).  

A single algorithm, iterative weighted least squares, can 
be applied in all new models and needs neither prior 
distributions of parameters nor multi-dimensional quadrature. 
The h-likelihood is extremely important in relation to 
synthesis of the computational algorithms required for this 

wide class of new models. The algorithm can be reduced to 
the fitting of two-dimensional set of generalized linear 
models with one dimension being the mean and dispersion, 
and the other being fixed and random effects. Hence, no 
special code is needed for the estimation of dispersion 
components. This formulation implies that, the 
model-checking techniques derived for generalized linear 
models (McCullagh and Nelder, 1989, chapter 12), can be 
carried over to these new class of models. The hierarchical 
generalized linear models method does not require the use of 
prior probabilities. 

Jiao H et.al (2005) in their article titled “Modelling local 
item dependence with the hierarchical generalized linear 
model”, proposes a three-level hierarchical generalized 
linear model (HGLM) to model local item dependence 
(LID). Their proposed three-level HGLM was examined by 
analyzing simulated data sets and was compared with the 
Rasch-equivalent two-level HGLM that ignores the nested 
structure of such test items. Their results demonstrated that 
the proposed model could capture LID and estimate its 
magnitude. Also, the two-level HGLM resulted in larger 
mean absolute differences between the true and the estimated 
item dependence than those from the proposed three-level 
HGLM. Furthermore, it was demonstrated that the proposed 
three-level HGLM estimated the ability distribution variance 
unaffected by the LID magnitude, while the two-level 
HGLM with no LID consideration increasingly 
underestimated the ability variance as the LID magnitude 
increased. 

HGLM for the analysis of lactation curves with 
heterogeneous residual variances versus time was used by 
Jaffrezic et al. (2000). Noh et al (2005) modeled heavy tailed 
distributions for random effects to take ascertainment into 
account in quantitative trait locus (QTL) studies. Noh et al. 
(2006a) used HGLM to reduce bias in heritability estimation 
for binary traits in human family data. HGLM was also 
utilized with random effects in survival analysis (Noh et al. 
2006b). In recent times, the double hierarchical generalized 
linear models (DHGLM) has been used for fast variance 
component estimation in a model with genetic heterogeneity 
in the residual variance of an animal model (Ronnegard et al. 
2010). DHGLM has also been suggested in the detection of 
variance-controlling QTL (Ronnegord and Valdar, 2010). 

2. Method of HGLM 
We begin with the well-known structure of GLMs in 

which observations 𝑦𝑦1, . . . 𝑦𝑦𝑛𝑛 are assumed to have means 
µ1 , . . . , µ𝑛𝑛  and to be independently distributed with a 
distribution belonging to a one-parameter exponential family. 
The means µ are assumed to depend on a set of explanatory 
variables 𝑥𝑥1. , . . . 𝑥𝑥𝑝𝑝 via a linear predictor 𝜂𝜂 = X β = Σ𝑥𝑥𝑗𝑗𝛽𝛽𝑗𝑗  
and a link function 𝜂𝜂𝑖𝑖 =  𝑔𝑔(µ𝑖𝑖) , for some monotone 
function  𝑔𝑔(). A normal distribution for the errors together 
with an identity link function results in the classical 
regression model, the Poisson distribution with log link gives 
log-linear models, the binomial distribution with logit link 
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gives logistic regression, and so on. 
The linear predictor in HGLMs is extended to include 

extra random components 𝑣𝑣 =  (𝜈𝜈1, . . . , 𝜈𝜈𝑞𝑞 )
𝑇𝑇 . This 

extended linear predictor 𝜂𝜂° is assumed to be related to µ°, 
the conditional mean of 𝑦𝑦  given 𝜈𝜈 , by a link function 
𝜂𝜂°

  
=  𝑔𝑔(µ°)  =  𝑋𝑋 𝛽𝛽 +  𝑍𝑍𝑍𝑍  where 𝑍𝑍  is the model matrix 

for the random effects. The random components 𝜈𝜈 in the 
linear predictor are assumed to be derived from the 
underlying random effects, by a one- to-one function 
 𝜈𝜈 =  𝜈𝜈 (𝑢𝑢). Assumptions about the distribution of u and the 
form of the function 𝜈𝜈 (𝑢𝑢) complete the specification.  

Two important subclasses of HGLMs are GLMMs and 
conjugate HGLMs. In GLMMs the 𝑢𝑢 are assumed normal, 
with 𝜈𝜈 =  𝑢𝑢 , whereas in conjugate HGLMs the 𝑢𝑢  are 
assumed to follow the conjugate distribution to the 
conditional distribution of 𝑦𝑦 given 𝜈𝜈, with 𝜈𝜈 (𝑢𝑢) equal to 
the canonical link. An example of the latter is the 
binomial-beta HGLM, where 𝑢𝑢 has the beta distribution and 
contributes 𝜈𝜈 =  𝑙𝑙𝑙𝑙𝑙𝑙 {𝑢𝑢/(1 −  𝑢𝑢)} to the linear predictor. 
In both cases 𝜈𝜈  covers the whole of the real line, as is 
desirable in a component of the linear predictor. They 
overlap in the normal-normal HGLM. HGLMs form an 
extension of the Gaussian random-effect models to 
non-Gaussian distributions and provide, we believe, a 
unified, logical and flexible approach to meta-analysis. 

2.1. H-likelihood 

Estimation of the fixed effects of models with random 
effect by increasing the marginal likelihood, after integrating 
out the random effects, is broadly used. Relatively there exist 
no analytic form for the marginal likelihood. The same 
implies to beta-binomial models with non-null fixed effects. 
For HGLMs we use the h-likelihood, which consists of two 
parts: 

ℎ = ℓ(𝜃𝜃′, ∅;  𝑦𝑦|𝜈𝜈 )  +  ℓ(𝛼𝛼;  𝜈𝜈 )     (1) 
where ℓ(𝛼𝛼;  𝜈𝜈 ) is the logarithm of the density function for 
𝜈𝜈 with parameter 𝛼𝛼, and 

ℓ(𝜃𝜃′, ∅;  𝑦𝑦|𝜈𝜈 ) =  {𝑦𝑦𝑦𝑦′
 
−  𝑏𝑏(𝜃𝜃′)} /𝑎𝑎(∅)  +  𝑐𝑐(𝑦𝑦, ∅)   (2) 

for 𝑦𝑦|𝜈𝜈 . As a result of the random effects 𝜈𝜈  not being 
observed, the second term is not of itself a traditional 
Fisherian likelihood; moreover, we affirm that the 
h-likelihood taken as a whole is the natural extension of 
Fisher likelihood to models with random components.   

If ℓ(𝛼𝛼;  𝜈𝜈 ) =  𝛼𝛼𝛼𝛼 𝑇𝑇
 
𝜈𝜈 /2, that  is, is proportional  to the 

log-likelihood from 𝜈𝜈 ∼  𝑁𝑁 (0, 1/𝛼𝛼) , the h-likelihood 
becomes Breslow and Claytons (Breslow N.E and Clayton 
D.G, 1993) penalized likelihood for a GLMM. Given the two 
dispersion components, ∅ in the 𝑦𝑦|𝜈𝜈 distribution and 𝛼𝛼 in 
the 𝜈𝜈  distribution, we estimate (𝛽𝛽, 𝜈𝜈)  simultaneously by 
increasing the h-likelihood. The h-likelihood provides a 
pivot for an extended version of the restricted (or residual) 
maximum likelihood estimation for (∅, 𝛼𝛼) of Patterson and 
Thompson (Patterson HD and Thomas R, 1971), applicable 
to all HGLMs. The resulting parameter estimators for 
(𝛽𝛽, ∅, 𝛼𝛼) are statistically reliable and efficient. 

2.2. Model Checking 

We believe that the importance of model checking after 
fitting random-effect models is insufficiently stressed. For 
GLM models, model-checking plots already exist 
(McCullagh P and Nelder J.A, 1989). The estimation 
methods for HGLMs can be reduced to fitting two 
interconnected GLMs and thus GLM model-checking 
method can also be utilized in checking for assumptions 
about HGLMs (Lee Y and Nelder J.A, 2001). 

2.3. Checking the Distribution of y/v 
We use two plots: the plot of the standardized deviance 

residuals against the fitted values 𝑔𝑔−1(𝑋𝑋 𝛽𝛽) on the constant 
information scale (Lee and Nelder JA, 1996), and the plot of 
the absolute residuals for checking conditional distribution 
|𝜈𝜈, besides normal probability plots. The two plots should 
show running means that are approximately straight and flat 
for them to be accepted as an adequate model. Marked 
curvatures in the first plot represents either inadequate link 
functions or missing terms in the linear predictor, or both. A 
satisfactory first plot means, the choice of variance function 
for |𝜈𝜈, can be checked by the second plot. For instance, a 
down- ward marked trend by the second plot, means that the 
residuals are decreasing in absolute value as the mean 
increases, implying that the assumed variance function is 
increasing too fast with the mean. The running mean for 
trend is sensitive to the points at the extremes, so we 
concentrate on the central part of the graph. Outliers in the 
Normal probability plots usually accounts for Curvatures in 
the top two plots. These are primarily caused by the 
observations that take boundary values. 

2.4. Checking the Distribution of 𝝂𝝂 
An individual extreme random treatment trial interaction 

can be checked to be consistent or not with the rest, in 
relation to looking or not looking like the extreme value in a 
sample from a normal distribution. If it is inconsistent, a 
careful investigation of the various model assumptions, for 
instance the distributional assumption about 𝜈𝜈 , may be 
necessary to accommodate it. If it turns out to not be a false 
outlier, it can be treated as a: fixed effect in order to remove 
its effects in estimating the other 𝜈𝜈. 

3. Results 
3.1. Data Information  

The analyses is based on raw data available at the regional 
Monitoring and Evaluation office of the Linking Farmers to 
Markets (FtM) project in Tamale - Ghana. The project is 
organized by the Alliance for a Green Revolution in Africa 
(AGRA) with the primary goal of easing the flow of produce 
from the farm-gate to the market by linking smallholder 
farmers to commercial buyers and processors. (FtM Grant 
Narrative Report, 2011). 

 



 International Journal of Statistics and Applications 2015, 5(5): 196-207 199 
 

In all, data from 800 Maize & Soybean farmer based 
organizations (FBOs) were gathered by means of a 
structured questionnaire. This was later cleaned to 790 
distinct observations. The Famer based organizations (FBOs) 
were randomly selected through a multi-stage random 
procedure. First, proportional randomizations resulted in 
selecting three (3) farming communities each from the Upper 
East and West regions while seven (7) were selected from the 
Northern Region. 

Fixed effect variables measured include; crop type 
(Maize or Soybean), Financial Credit (Acquired or Not), 
Training (Acquired or Not), Study tour (Acquired or Not), 
Demonstrative Practicals (Acquired or Not), Networking 
Events (Acquired or Not), Post-harvest Equipment 
(Acquired or Not), Number of farmers in the FBO and Plot 
size cultivated. Dependent variable measured is Total Crop 
Yield. The regions and the particular communities are 
treated as random effects.  

The target population consists of mainly Maize and 
Soybeans Farmer based organizations in selected 
communities in the three Northern regions of Ghana. 
Northern Region = 7 communities, Upper East Region = 3 
communities, Upper West Region = 3 communities. Famer 
based organizations (FBO’s) interviewed = 800 with 10 
missing data. Hence total FBO’s interviewed = 790. 

The R Statistical Analysis software (dhglmfit package) 
was used throughout the analysis in fitting the HGLM’s. 

3.2. Exploratory Analysis 

Firstly, the raw data is plotted and the patterns of Crop 

yield against some selected covariates are observed. Figure 
3.1 presents the observed scatterplot of the crop yield against 
Plot size, Figure 3.2 presents the observed scatterplot of the 
crop yield against number of Farmers, and Figure 3.3 
presents the observed scatterplot of the crop yield against 
Regions while figure 3.4 presents the observed scatterplot of 
the crop yield against the 13 communities. 

3.3. Hierarchical Generalized Linear Models (HGLM 1) 

Although in most instances, the normal distribution is 
expedient for assigning correlations in random effects, the 
use of other distributions for the random effects to a large 
extent enriches the class of models. Lee and Nelder (1996) 
extended GLMMs to hierarchical GLMs (HGLMs), referred 
to in this study as HGLM 1, in which the distribution of 
random components are extended to conjugates of arbitrary 
distributions from the GLM family. Figure 3.5 and 3.6 
represent diagnostic plots for the Gaussian and Gamma 
HGLM’s respectively. 

The Gaussian diagnostic plots have some satisfactory 
features although not the best. The normal plot shows some 
discrepancy. Moreover, the histogram of residuals is almost 
symmetric. These are satisfactory indications of an 
appropriate model. We sort to remove any likely defects by 
extending to an HGLM with gamma errors and a log link. 
The model-checking plots does not come out appreciably as 
compared to the Gaussian model. Figure 3.6 shows the 
resulting plots. 

 

Figure 3.1.  Scatterplot of crop yield against Plot size 
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Figure 3.2.  Scatterplot of crop yield against number of famers 

 
Figure 3.3.  Plot of crop yield against Regional locations 
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Figure 3.4.  Plot of crop yield against Communities 

 

Figure 3.5.  Diagnostic plots of Gaussian HGLM 1 for crop yield 

2 4 6 8 10 12

0
20

00
0

40
00

0
60

00
0

80
00

0 Plot of Crop Yield Vrs Com

Community

Yi
el

d

 



202 Smart A. Sarpong et al.:  Analysis of Crop Yield Physical Support Services   
Data Using Hierarchical Generalized Linear Models 

 

Figure 3.6.  Diagnostic plots of Gamma HGLM 1 for crop yield 

Table 1.  Comparative Model Estimates for Gaussian HGLM and Gamma HGLM 
 

  GAUSSIAN HGLM 1                                  GAMMA HGLM 1 

Model covariates Estimate  Std. Error    T-value     P-value Estimate     Std. Error   T-value    P-value 
log(µ) (Intercept) 

(Credit) 1  
(Crop) 2  
(Training) 1  
(Tour) 1  
(Practical) 1 
(Networking) 1  
(Equipment) 1 
Farmers 
Plot size 

5869.6    1098.21     5.3447     0.000163 
 
 

-3489.1    623.73    -5.594       0.000115 
-2598     706.64    -3.6765      0.002137 

 
 
 

-236.6     50.49     -4.6867      0.00043 
577.2      23.13    24.9531     <0.00001 

8.425926     0.46619   18.07397  <0.00001 
 
 
 
 
 
 
 

-118        38.52     -3.064    0.005981 
521.1       23.55     22.1256  <0.00001 

log(λ) (Intercept) 17.95     0.0855   209.9415     <0.00001 -1.624       0.09102   -17.8422   <0.00001 

 Province 
Community 

-13.96     0.8563   -16.3027      <0.00001 
-11.94     0.3922   -30.4436      <0.00001 

-3.958       0.8563    -46222     0.000064 
-1.596       0.3922    -4.0694    0.000246 

    

  

Selection Criterion       Gaussian  HGLM-1 
-2ML(-2 h)               16421.56 
-2RL(-2pbeta (h))         16288.60 
cAIC                      16441.60 

Gamma HGLM-1 
15678.71 
15729.01 
15649.61 
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3.3.1. Model Interpretation and Discussion 
Table 1 represents the model parameter estimates for both 

the Gaussian and the Gamma HGLM’s. 𝐿𝐿𝐿𝐿𝐿𝐿 (µ) or µ on 
the table represents the mean model. Considering the random 
effects of Regions and the specific farming communities, the 
final mean model for the Gaussian HGLM does not include 
access to credit, Study tour, demonstrative practical’s, 
Networking events and post-harvest equipment’s. In the 
counterpart model for the Gamma HGLM, only number of 
farmers and the cultivated plot size were significant 
contributors to crop yield when the random effects of 
Regions and the specific farming communities are 
considered in the model. 

3.4. Hierarchical Generalized Linear Models (HGLM 2) 

HGLM 2 is an extension of the above discussed 
Hierarchical Generalized model (HGLM 1). It is useful in 
modeling sparse discrepancies as being caused by variation 
in the dispersion, and to look for covariates that may explain 
them with the help of the techniques of joint modelling of 
mean and dispersion (Lee and Nelder, 2002). With the 

success stories of the HGLM (Lee and Nelder, 2002), there 
was the need to extend the HGLM to enable models with 
structured dispersion as used in the analysis data from 
quality improvement experiments (Lee and Nelder 1998). 
HGLM 2 therefore comprises of a fixed effects model from a 
known distribution, a random effects model allowed to 
follow conjugates of arbitrary distributions from the GLM 
family and a dispersion model. Figures 3.7 and 3.8 represents 
the diagnostic plots for the Gaussian and Gamma H-GLM’s 
(2) respectively. 

From figure 3.7 the diagnostic plots have several excellent 
features compared to the Gaussian HGLM (1) diagnostic 
plots in figure 3.5. The gamma HGLM 2 diagnostic plots of 
figure 3.8 also shows an incredible performs over the first 
gamma HGLM 1 of figure 3.6 Moreover, the histogram of 
residuals is almost symmetric to the left. These are very good 
indications of an appropriate model.  However this paper 
seeks to present the very best of models hence the very minor 
defects present in the histogram may suggest something can 
be done to improve the model. 

 

Figure 3.7.  Diagnostic plots of Gaussian HGLM 2 for crop yield 
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Figure 3.8.  Diagnostic plots of Gamma HGLM 2 for crop yield 

3.4.1. Model Interpretation and Discussion 

Table 2 represents the model parameter estimates for both 
the Gaussian and the Gamma HGLM 2. 𝐿𝐿𝐿𝐿𝐿𝐿 (µ) or µ on 
the table represents the mean model whereas 𝑙𝑙𝑙𝑙𝑙𝑙 (∅) 
represents the dispersion model. The final mean model for 
the Gaussian HGLM 2 does not include access to Credit, 
networking events as well as post-harvest equipment’s 
whereas the dispersion model excludes only number of 
farmers, suggesting that this variable does not introduce any 
form of discrepancy. In the final mean model for the Gamma 
HGLM 2, demonstrative practical’s, Networking events and 
post-harvest equipment’s are excluded whereas the 
dispersion model includes access to credit, training and 
post-harvest equipment’s, excluding the rest of the variables.  

From the dispersion model in table 2, we observe that, in 
relying on the Gaussian mean model for crop yield, we 
record a dispersion of 15.323. However we also observe that 
the contribution of some of the covariates in the dispersion 
model to this dispersion value increases it while others tend 

to decrease it. Once a covariate which accounts for the 
discrepancies can be found, we get a model-based result 
which can be checked in the future. 

In the Gaussian model for example, covariates such as 
access to credit, Training, study tour, demonstrative 
practical’s, post-harvest equipment’s and plot size increases 
the dispersion significantly and should be carefully dealt 
with or checked once we aim at reducing the discrepancies 
between the data and the fitted values produced by the crop 
yield model. 

Also in the Gamma HGLM 2 dispersion model, covariates 
such as access to credit, Training, and Post-harvest 
equipment’s tends to increases the dispersion significantly 
and should be carefully dealt with or checked once we aim at 
reducing the discrepancies between the data and the fitted 
values produced by the crop yield model. By model fitness 
criteria, the Gamma HGLM 2 performed far better than the 
Gaussian distributed HGLM 2 by both the AIC (−2M 
L(−2h)), BIC (−2RL(−2pbeta (h)) as well as the cAIC as 
evident in the last row of table 3. 
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Table 2.  Model Estimates for Gaussian and Gamma distributed HGLM 2 

  GAMMA HGLM 2                                      GAUSSIAN HGLM 2 

Model covariates Estimate    Std. Error       T-value      P-value Estimate     Std. Error     T-value    P-value 
log(µ)  

(Intercept) 
(Credit) 1 
(Crop) 2 
(Training) 1 
(Tour) 1 
(Practical) 1 
(Networking) 1 
(Equipment) 1 
Farmers 
Plot size 

 
8.3421      0.461262        8.0854       <0.00001 
 
 
 
 
-0.05225     0.029128          -1.7939      0.043189 
 
 
0.006923     0.002516          2.7514       0.005741 
0.030736     0.001151         26.7071      <0.00001 

 
4753.8        697.2      6.8184     0.000023 
 
-2398.3          405.08      -5.9204     0.000074 
-1776.5          398.34       -4.4597     0.000609 
 1164.8          416.4        2.7974     0.009439 
-726             367.79        -1.974     0.038317 
 
 
-118             38.52         -3.064      0.005981 
521.1            23.55        22.1256    <0.00001 

log(∅) 

(Intercept) 
(Credit) 1 
(Crop) 2 
(Training) 1  
(Tour) 1 
(Practical) 1  
(Networking) 1 
(Equipment) 1 
Farmers 
Plot size 

-3.50947      0.45707        -7.6782      <0.00001 
0.46636       0.20552       2.26917       0.016571 

 
1.16659       0.22775      5.12224        0.000018 
 
 
 
 
 
0.44948       0.20936         2.14692      0.021391 

15.32357       0.195893      78.224    <0.00001 
0.350278       0.117581       2.979     0.006916 
-0.46499       0.111278       -4.179     0.000945 
0.458066       0.126042      3.6342     0.00229 
0.643937       0.11427        5.6352    0.000108 
0.303105       0.108174       2.802     0.009365 
-0.51501        0.119565       -4.307     0.000772 
0.294979       0.115258       2.5593    0.014204 

 
0.056217       0.004127      13.622     <0.00001 

log(λ) 
(Intercept) 
Province 

Community 

 
-3.627      0.8563            -4.2356       0.000162 
-1.641      0.3922            -4.1841      0.000184 

 
-11.1            0.8563       -12.9627    <0.00001 
-10.95           0.3922       -27.9194    <0.00001 

    

  

Selection Criterion    Gaussian  HGLM-1 
-2ML(-2 h)              15509.20 
-2RL(-2pbeta (h))       15564.50 
cAIC                 15477.20 

Gaussian  HGLM-2 
15982.81 
15858.20 
16002.80 

 

3.5. Hierarchical Generalized Linear Models for Quality 
Improvement 

We again seek to strongly recommend that, if we really 
aim at controlling significantly, the effects of structured 
dispersions, even in the presence of correlated random errors, 
the techniques of HGLM 2 as a means of improving the 
quality should be the number one option. This we have 
demonstrated using the crop yield data with two random 
effects resulting from the regional and community variations 
in this thesis. Table 3 below reveals that the initial Gaussian 
HGLM even though was satisfactory mixed model (HGLM 
1), modelling both mean and dispersion (HGLM 2) improves 
the quality of the same Gaussian distributed model 
significantly. 

Table 3.  Model criteria for Gaussian HGLM 1 and Gaussian HGLM 2 

Selection Criterion Gaussian  HGLM 1 Gaussian  HGLM 2 

-2ML(-2 h) 
-2RL(-2pbeta (h)) 

cAIC 

16421.56 
16288.60 
16441.60 

15982.81 
15858.20 
16002.80 

Similar can be said of the Gamma HGLM 1 and HGLM 2 
as evident in Table 4 below confirming the fact that HGLM 2 
improves model quality of mixed models with structured 
dispersions and significantly reduces the large standard 
errors resulting from the correlated random effects. 

Table 4.  Model criteria for Gamma HGLM 1 and Gamma HGLM 2 

Selection Criterion Gamma  HGLM 1 Gamma  HGLM 2 

-2ML(-2 h) 
-2RL(-2pbeta (h)) 

cAIC 

15678.71 
15729.01 
15649.61 

15509.20 
15564.50 
15477.20 

4. Discussion 
GLMs are extended to generalized linear mixed models 

(GLMMs), for which the linear predictor of a GLM is 
allowed to have, in addition to the usual fixed effects, 
random effects following a normal distribution (Breslow and 
Clayton, 1993). 

The Gaussian HGLM 1 diagnostic plots (See Figure 3.5) 
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have some satisfactory features although not the best. The 
running mean in the plot of residuals against fitted values 
shows no form of marked trend, even though the plot of 
absolute residuals has a relatively unstable slope. This does 
not indicate that the variance is not constant and may not 
satisfies the independence assumption strictly. It rather 
suggest the presence of some correlated random effect in the 
fitted model as expected. The histogram of residuals is 
almost symmetric. These are satisfactory indications of an 
appropriate model. Similar is said of the Gamma distributed 
model in figure 3.6. 

In both models however (See table 1), plot size cultivated 
remains the only positive significant contributor to crop yield. 
High standard errors are observed in the HGLM 1 compared 
to the GLM and the JGLM and this is due to the presence of 
correlated random errors resulting from the inclusion of the 
two random effects; Regions and Communities. 

4.1. Hierarchical Generalized Linear Models for Quality 
Improvement 

From figure 3.7 the diagnostic plots have several excellent 
features compared to the Gaussian HGLM (1) diagnostic 
plots in figure 3.5. The running mean in the plot of residuals 
against fitted values displays no form of marked trend at all, 
and the plot of absolute residuals has an almost stable slope, 
indicating that the variance is constant and satisfies the 
independence assumption, that the right link function was 
specified and also indicates no missing dependency. The 
normal plot also shows no discrepancy. In addition, the 
histogram of residuals is almost symmetric. These are very 
good indications of an appropriate model and an excellent 
improvement over the counterpart Gaussian HGLM (1) in 
figure 3.5. The gamma HGLM 2 diagnostic plots of figure 4 
also shows an incredible performs over the first gamma 
HGLM 1 of figure 3.6. 

Data, fixed unknown constants (parameters) and 
unobserved random variables (un- observables) are the three 
objects that form HGLMs. Traditional Bayesian models 
consist of two objects, data and unobservables, while 
frequentist’s (or Fisher’s) models consist of the data and 
parameters. By allowing the three objects in the statistical 
modeling there is the possibility of describing diverse 
features in the data, for instance, within-subject correlation 
in longitudinal studies, smooth spatial and temporal trends, 
function fittings, and factor analysis, heteroscedasticity, 
heavy-tailed distributions, robust modellings and sparse 
variable selections. 

Table 3 reveals that the initial Gaussian HGLM 1 even 
though was satisfactory mixed model (HGLM 1), modelling 
both mean and dispersion (HGLM 2) improves the quality of 
the same Gaussian distributed model significantly. Similar 
can be said of the Gamma HGLM 1 and HGLM 2 as evident 
in Table 4 confirming the fact that HGLM 2 improves model 
quality of mixed models with structured dispersions and 
significantly reduces the large standard errors resulting from 
the correlated random effects. 

5. Conclusions 
We conclude that, whenever we seek to model fixed and 

random effects, the HGLM 2 which has the ability of 
specifying different suitable fixed effects model from a 
known distribution, a random effects model allowed to 
follow conjugates of arbitrary distributions from the GLM 
family and a dispersion model is highly recommended. 
HGLMs provide valuable class of hierarchical models, 
giving many inferential tools for testing and checking 
models, and are particularly helpful for the analysis of data 
from multi-center field trials. Inferences of both 
population-average and subject-specific responses can be 
effectively drawn from a standard HGLM. The GLMM and 
HGLM 1 are still highly satisfactory statistical models but 
the HGLM 2 performs far better, gives a more fitting models 
and improves the quality of the models significantly. 
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