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Abstract  Regression models commonly used to analyze cross-section and panel data assume that observations/regions are 
independent of one another. Relaxing this assumption of independent observations in a cross sectional setting requires that we 
provide a parsimonious way to specify structure for the dependence between the n observational units that make up our size n 
data sample. Spatial econometrics techniques allow us to account for dependence between observations which often arise 
when observations are collected from points or regions located in space. In this application, Monte Carlo experiment was 
designed using R codes to assess the performance of spatial and non spatial model. Spatial autoregressive (SAR) model was 
used as a typical spatial model and ordinary least squares (OLS) as non spatial model. The study showed that OLS estimate of 
SAR model is bias and inconsistent. Also, it is found that bias emanating from omitting spatial effect is a function of degree of 
spatial autocorrelation. 
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1. Introduction 
Sample data collected for regions or points in space are not 

independent, but rather spatially dependent, which means 
that observations from one location tend to exhibit values 
similar to those from nearby locations. For many social and 
economic processes, a better appreciation of the spatial 
context can potentially avoid misleading inferences and 
improve the strength of results and their interpretation. 
Knowledge about the location of a process and its interaction 
with processes at neighboring locations can help infer the 
underlying reasons and logic of the process under 
investigation.  

Existing regression models used to analyze cross-section 
and panel data assume that observations/regions are 
independent of one another. However, in real life this is not 
usually the case. For instance, a conventional regression 
model that relates commuting times to work for region i to 
the number of persons in region i utilizing different 
commuting modes and the density of commuters in region i, 
assumes that mode choice and density of a neighboring 
region, say j does not have an influence on commuting time 
for region i. Since it seems unlikely that region i’s network of 
vehicle and public transport infrastructure is independent 
from that of region j, we would expect this assumption to be 
unrealistic. Ignoring this violation of independence between  
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observations will produce estimates that are biased and 
inconsistent. In addition, misspecification increases the 
probability of wrong inferences at least as much as does the 
choice of a biased or inefficient estimator.  

Analysis of economic data explicitly linked to location can 
be approached from two spatial econometrics perspectives 
namely, spatial heterogeneity and spatial autocorrelation. 
Spatial heterogeneity might arise due to a lack of structural 
stability across space, such as varying parameters or 
functional forms, and due to non homogeneity of the units of 
observations across space. While, spatial autocorrelation 
refers to the lack of independence among observations: 
similar to autocorrelation in time-series models (Anselin 
1988).  

Spatial autocorrelation among observations and the 
importance of relative locations is expressed in Tobler’s first 
law of geography, which states that “everything is related to 
everything else, but near things are more related than distant 
things”. Interactions among neighboring agents could, for 
example, induce a correlation of the variables across space, 
which must be accounted for in model estimation Tobler 
(1979). 

Theoretical motivations for the observed dependence 
between nearby observations are countless. For instance, 
Ertur and Koch (2007) used a theoretical model that posits 
physical and human capital externalities as well as 
technological interdependence between regions. The study 
showed that this leads to a reduced form growth regression 
and that an average of growth rates from neighboring regions 
should be included.  

Thomas Plümper and Eric Neumayerb (2010) identified 
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four specification issues in the analysis of spatial data. They 
argued that to avoid biased estimates of the spatial effects, 
researchers need to consider carefully how to model 
temporal dynamics, common trends and common shocks, as 
well as how to account for spatial clustering and unobserved 
spatial heterogeneity. Failure to model temporal dynamics 
and to control for common shocks and common trends in 
cross-sectional, time-series or panel data is likely to bias the 
estimated coefficient of the spatial effect variable, with the 
bias often being upward. In addition, failure to model 
appropriately spatial patterns in the dependent variable could 
lead to bias in the spatial effect estimation.  

This study investigates the significance of incorporating 
spatial effect into regression analysis. The purpose is to build 
a spatial and non spatial model, design a Monte-Carlo 
experiment and observe the point of convergence in the two 
models. The specific objective is to observe the bias that 
could emanate from omitting spatial effect in SAR model 
when it exists and to examine the relationship of the bias 
with degree of spatial autocorrelation. 

The present study is a contribution to existing work on 
incorporating locational aspect of sample data into the model. 
It is different from the existing work in that its discriminate 
between spatial and non spatial models, observe point of 
convergence in the two models, investigate bias emanating 
from omitting spatial effect when its exists. Also, it provides 
information on association between this bias and degree of 
spatial autocorrelation through a well-designed Monte Carlo 
experiment.  

The rest of the paper is organised as follows: review of 
literature, model specification and estimation techniques, 
Monte Carlo design, result presentation and discussion, and 
concluding remark. 

2. SAR Model Specification and 
Estimation 

Spatial autoregressive (SAR) model with lagged 
dependent variable is given as: 

𝑦𝑦𝑖𝑖 = 𝛽𝛽′𝑋𝑋𝑖𝑖 + 𝜌𝜌∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗≠𝑖𝑖 𝑦𝑦𝑗𝑗 + 𝑢𝑢𝑖𝑖              (1) 

Where: 
𝛽𝛽 = 𝑘𝑘 × 1 vector of regression coefficients 
𝑋𝑋𝑖𝑖  = 𝑘𝑘 × 1 vector of explicative variables at site 𝑖𝑖 

𝑤𝑤𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑛𝑛 × 1 vector of lagged dependent variable 
𝑤𝑤𝑖𝑖𝑖𝑖  = the elements of a row-standardized weight matrix 
𝜌𝜌 = Spatial effect coefficient and 𝑢𝑢~𝑁𝑁(0,𝜎𝜎2𝐼𝐼) error term 

Unlike the case of the time series analogous specification, 
the presence of the spatial lagged term amongst the 
explicative variables induces a correlation between the error 
and the lagged variable itself (see Anselin and Bera, 1998). 
Put differently, we would not want to run OLS on this model, 
since the presence of 𝑦𝑦  on both the left and right sides 
means that we have a correlation between errors and the 
regressors and the resulting estimates will be biased and 
inconsistent. 

Equation 1 can be written in a more compact matrix 
notation as  

uWyXy ++= ρβ             (2) 

Where: 
𝑦𝑦 = 𝑁𝑁 × 1 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  

    𝑋𝑋 = 𝑁𝑁 × 𝑘𝑘  matrix of observations,  
W = N × N matrix of spatial weights and 

1×=Nu  vector of independent and identically 
distributed (iid) disturbances  
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The reduced form of equation 1 is obtained as follows 
𝑦𝑦(𝐼𝐼𝑁𝑁 − 𝜌𝜌𝜌𝜌) = 𝑋𝑋𝑋𝑋 + 𝑢𝑢 

𝑦𝑦 = (𝐼𝐼 − 𝜌𝜌𝜌𝜌)−1𝑋𝑋𝑋𝑋 + (𝐼𝐼 − 𝜌𝜌𝜌𝜌)−1𝑢𝑢     (3) 
𝐸𝐸[𝑦𝑦/𝑋𝑋] = (𝐼𝐼𝑁𝑁 − 𝜌𝜌𝜌𝜌)−1𝑋𝑋𝑋𝑋     (4) 

Under the hypothesis of normality of the error term, the 
log-likelihood function of the model 1 is given by: 

 

𝑙𝑙𝑙𝑙𝑙𝑙 �𝑦𝑦
𝛽𝛽

,𝜌𝜌,𝜎𝜎2� = −(𝑁𝑁 2⁄ ) ln(2𝜋𝜋) − (𝑛𝑛 2⁄ )𝑙𝑙𝑙𝑙𝜎𝜎2 + 𝑙𝑙𝑙𝑙|𝐼𝐼 − 𝜌𝜌𝜌𝜌| − (1 2𝜎𝜎2⁄ )[(𝑦𝑦 − 𝜌𝜌𝜌𝜌 − 𝑋𝑋𝑋𝑋)′(𝑦𝑦 − 𝜌𝜌𝜌𝜌 − 𝑋𝑋𝑋𝑋)]  (5) 

Analytical solution for 𝛽𝛽 𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎2, conditional on 𝜌𝜌 and given respectively as: 

𝛽̂𝛽𝑀𝑀𝑀𝑀(𝜌𝜌) = (𝑋𝑋′𝑋𝑋)−1𝑋𝑋′(𝐼𝐼 − 𝜌𝜌𝜌𝜌)𝑦𝑦 = (𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝑦𝑦 − 𝜌𝜌(𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝑊𝑊𝑊𝑊 
𝛽̂𝛽𝑀𝑀𝑀𝑀(𝜌𝜌) = 𝑏𝑏0 − 𝜌𝜌𝑏𝑏𝐿𝐿                                                           (6) 

Where 𝑏𝑏0 = (𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎  𝑏𝑏𝐿𝐿 = (𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝑊𝑊𝑊𝑊 
Inspection show that 𝑏𝑏0 is the coefficient vector from the OLS regression of 𝑦𝑦 𝑜𝑜𝑜𝑜 𝑋𝑋, while 𝑏𝑏𝐿𝐿 is from OLS regression of 

𝑊𝑊𝑊𝑊 𝑜𝑜𝑜𝑜 𝑋𝑋. So if 𝜌𝜌 is known, we could compute the ML estimate of  𝛽𝛽. As a consequence, the residuals of these two OLS 
regressions are given as: 

          𝑒𝑒0 = 𝑦𝑦 − 𝑋𝑋𝑏𝑏0                                            (7) 
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𝑒𝑒𝐿𝐿 = 𝑊𝑊𝑊𝑊 − 𝑋𝑋𝑏𝑏𝐿𝐿 

𝜎𝜎�2
𝑀𝑀𝑀𝑀(𝜌𝜌) =

1
𝑁𝑁
���𝑦𝑦 − 𝜌𝜌𝜌𝜌 − 𝑋𝑋𝛽̂𝛽𝑀𝑀𝑀𝑀(𝜌𝜌)��

′ � ��𝑦𝑦 − 𝜌𝜌𝜌𝜌 − 𝑋𝑋𝛽̂𝛽𝑀𝑀𝑀𝑀(𝜌𝜌)�� 

𝜎𝜎�2
𝑀𝑀𝑀𝑀(𝜌𝜌) = 1

𝑁𝑁
(𝑒𝑒0 − 𝜌𝜌𝑒𝑒𝐿𝐿)′(𝑒𝑒0 − 𝜌𝜌𝑒𝑒𝐿𝐿) 

𝜎𝜎�2
𝑀𝑀𝑀𝑀(𝜌𝜌) = 1

𝑁𝑁
𝑦𝑦′(𝐼𝐼𝑁𝑁 − 𝜌𝜌𝜌𝜌)′𝑀𝑀(𝐼𝐼𝑁𝑁 − 𝜌𝜌𝜌𝜌)𝑦𝑦                            (8) 

𝑀𝑀 = 𝐼𝐼 − 𝑋𝑋(𝑋𝑋′𝑋𝑋)−1𝑋𝑋′  
Expression in 8 can be substituted into 5 to write a version of the log-likelihood function in terms of 𝜌𝜌 only. This yields the 

concentrated log-likelihood ln𝐿𝐿∗ which is given as: 

𝑙𝑙𝑙𝑙𝐿𝐿∗ �𝑦𝑦
𝜌𝜌
� =  −𝑁𝑁

2
ln(2𝜋𝜋) + ln(𝐼𝐼 − 𝜌𝜌𝜌𝜌) − 𝑁𝑁

2
ln �(𝑒𝑒0−𝜌𝜌𝑒𝑒𝐿𝐿)′ (𝑒𝑒0−𝜌𝜌𝑒𝑒𝐿𝐿)
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      =
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Maximizing this is equivalent to minimizing  

min{𝜌𝜌} �
𝑦𝑦′(𝐼𝐼𝑁𝑁−𝜌𝜌𝜌𝜌 )′𝑀𝑀(𝐼𝐼𝑁𝑁−𝜌𝜌𝜌𝜌 )𝑦𝑦

|𝐼𝐼𝑁𝑁−𝜌𝜌𝜌𝜌 |2 𝑁𝑁⁄ �        (10) 

This is also equivalent to  

min{𝜌𝜌} �
𝑒𝑒0
′ 𝑒𝑒𝑜𝑜−2𝑒𝑒0

′ 𝑒𝑒𝐿𝐿+𝜌𝜌2𝑒𝑒𝐿𝐿
′ 𝑒𝑒𝐿𝐿

∑ (𝐼𝐼𝑁𝑁−𝜌𝜌𝜔𝜔𝑖𝑖)𝑗𝑗
�         (11) 

There is need to impose a constraint on the parameter 𝜌𝜌. 
Anselin and Florax (1994) point out that the parameter 𝜌𝜌 
can take on feasible values in the range � 1

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
, 1
𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

�. This 

requires that we constrain our optimization search to values 
within this range. Note that 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 ,   𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 are respectively 
minimum and maximum Eigen value of W. 

The estimator 𝜌𝜌� is then substituted into the solution for 𝛽𝛽 
to yield 𝛽̂𝛽: 

𝛽̂𝛽𝑀𝑀𝑀𝑀 = (𝑋𝑋′𝑋𝑋)−1𝑋𝑋′(𝐼𝐼𝑁𝑁 − 𝜌𝜌�𝑊𝑊)𝑦𝑦 

𝛽̂𝛽𝑀𝑀𝑀𝑀 = (𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝑦𝑦 − 𝜌𝜌�(𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝑊𝑊𝑊𝑊 
𝛽̂𝛽𝑀𝑀𝑀𝑀 = 𝑏𝑏0 − 𝜌𝜌�𝑏𝑏𝐿𝐿                     (12) 

The steps involved in the ML estimation of the model are 
summarized below as: 

i. Perform OLS for the models 
𝑦𝑦 = 𝑋𝑋𝛽𝛽0 + 𝜀𝜀𝑜𝑜                𝑊𝑊𝑊𝑊 = 𝑋𝑋𝛽𝛽𝐿𝐿 + 𝜀𝜀𝐿𝐿  

ii. Compute residuals 𝑒𝑒0 = 𝑦𝑦 − 𝑋𝑋𝛽̂𝛽0   𝑎𝑎𝑎𝑎𝑎𝑎  𝑒𝑒𝐿𝐿 = 𝑊𝑊𝑊𝑊 −
𝑋𝑋𝛽̂𝛽𝐿𝐿  

iii. Given 𝑒𝑒0𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝐿𝐿, find 𝜌𝜌 that maximizes the 
concentrated likelihood function obtained in 9 

iv. Given 𝜌𝜌� that maximizes the concentrated ML, 
compute 𝛽̂𝛽 = 𝛽̂𝛽𝑜𝑜 − 𝜌𝜌�𝛽̂𝛽𝐿𝐿 and  

𝜎𝜎�2
𝜀𝜀 = 1

𝑁𝑁
(𝑒𝑒0 − 𝜌𝜌�𝑒𝑒𝐿𝐿)′(𝑒𝑒0 − 𝜌𝜌�𝑒𝑒𝐿𝐿)       (13) 

3. Monte Carlo Analysis 
In this section, in an attempt to assess the performance of 

the OLS estimator when spatial autocorrelation is ignored 
series of Monte Carlo experiments were set up. When spatial 
autocorrelation consistent with a diffusion process exists in 
the data generating process and a spatially lagged dependent 

variable is omitted from the model, OLS parameter estimates 
for the remaining covariates will be biased and inconsistent. 
In the Monte Carlos, the Data Generating Process (DGP) for 
the case of spatial autocorrelation takes the form:  

uXWyy +++= 10 ββρ            (14) 

Where 𝑢𝑢~𝑁𝑁(0,𝜎𝜎2𝐼𝐼).  The independent variable, 𝑋𝑋 , is 
normally distributed with a mean of 0 and a standard 
deviation of 3. Also, β0 and β1 are set to one (1).  

The study examines the bias of the OLS estimates of β1 
when spatial autocorrelation in the DGP are omitted from the 
OLS specification. In addition, the study investigate the 
performance of OLS varying both the number of 
observations (and the corresponding spatial weights matrices) 
and the degree of spatial autocorrelation, as reflected in the 
autoregressive parameters 𝜌𝜌. 

For each set of experiments, the observations are arrayed 
in regular square lattices. Monte Carlos is performed for four 
different sizes of square lattice structures: a 25 ×
25 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑁𝑁 = 25),𝑎𝑎 100 ×  100 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖 (𝑁𝑁 = 100),
𝑎𝑎 400 400 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑁𝑁 = 400), 900 × 900 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑁𝑁 =
900.  In each case a queen contiguity definition of 
neighbours is employed. The performance of OLS is 
examined for five values of 𝜌𝜌 ∶  0, 0.2, 0.5, 0.7, 0.9. For each 
combination of lattice size and  𝜌𝜌, 1000 replications were 
performed. 

In order to implement the estimation techniques discussed 
in the previous section and to observe the distribution of 𝛽𝛽1 
in the simulation, R statistical software code was developed. 

4. Monte Carlo Result 
This section of the study presents the result of the Monte 

Carlo design discussed earlier. To allow for simplicity, the 
section is divided into two. The first focus on the comparison 
of OLS and SAR model and contain information on the point 
of convergence of the two models. The second subdivision 
furnishes information on the relationship between biases of 
omitting spatial in SAR and the degree of spatial 
autocorrelation. These are discussed sequentially below. 
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4.1. OLS Versus SAR Model 

Table 1.  OLS versus SAR model 

 
N=25 N=100 

 
OLS SAR OLS SAR 

b1 0.97234 1.000338 0.98654 0.985023 

s.e(b1) 0.10502 0.032889 0.01190 0.011227 

𝜎𝜎�𝜀𝜀  0.521 0.4268 0.3269 0.3082 

𝜌𝜌�  0.2489  0.0917 

LM-pvalue  0.0018  0.0009 

LR-p-value  0.0059  0.0019 

W-p-value  0.0028  0.0012 

 
N=400 N=900 

 
OLS SAR OLS SAR 

b1 0.984737 0.984877 0.994513 0.994832 

s.e(b1) 0.006667 0.0066593 0.003877 0.0038842 

𝜎𝜎�𝜀𝜀  0.4086 0.4074 0.3606 0.3602 

𝜌𝜌�  -0.0103   

LM-pvalue  0.5412  0.5820 

LR-pvalue  0.5719  0.6465 

W-pvalue  0.5597  0.6414 

Source: Author’s computation from the simulation 

Table 1 shows the result for OLS and SAR model 
respectively for various numbers of observations considered 
in the simulation. From the table, (especially when N= 25 
and 100) the consequences of taking spatial effect into 
account are quite clear. The residual standard error of spatial 
models is much smaller than that of the least squares 

regression counterpart. In essence, spatial model performs 
better than the OLS especially where spatial effect parameter 
is highly significant as indicated by LM, LR and Wald 
diagnostic test result for spatial dependence.  

From table 1, the result of the three approaches considered 
to examine the presence of spatial effect in the data set was 
found to have the same results. For N=25 and 100 spatial 
effect parameter is found to be significant and for N= 400 
and 900 the null hypothesis of absence of spatial effect are 
accepted. The results obtained in these two cases are not 
significantly different from OLS result. Hence, it is of no use 
to go for the spatial model when it has been confirmed by a 
diagnostic test-statistic that spatial effect does not exist in the 
dataset.  

4.2. Relationship between Bias of Omitting Spatial Effect 
and Degree of Spatial Autocorrelation 

This segment of the paper examines the relationship 
between bias of omitting spatial effect and the degree of 
spatial autocorrelation. In the simulation, the values of 
spatial effect parameter (𝜌𝜌) are fixed, varying the number 
of observation and the corresponding lattice size replicated 
1000 times. In each case, the density of 𝑏𝑏1 is shown so as to 
clearly know how the bias emanating from omitted spatial is 
related to the degree of spatial autocorrelation.  

The finding from this study shows that the density of 𝑏𝑏1 is 
peakest at a high level of the spatial effect parameter. 
Therefore the bias becomes larger as the spatial effect 
parameter increases. This implies that the bias resulting from 
omitting spatial effect in SAR model is a function of degree 
or magnitude of spatial effect in the data. If the spatial effect 
parameter estimate is negligible, so also will the bias and if 
the spatial effect parameter estimate is strong so also the bias. 
See figures 1-4 for details.  

 

Figure 1.  Distributions of b1 for N=25 
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Figure 2.  Distributions of b1 for N=100 

 

Figure 3.  Distributions of b1 for N=400 

 

Figure 4.  Distributions of b1 for N=900 
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5. Concluding Remarks 
This study shows the significance of using the spatial 

autoregressive model (SAR) when spatial autocorrelation 
exist in a data set. Spatial econometrics methods allow us to 
account for dependence between observations, which often 
arise when observations are collected from points or regions 
located in space.  

The present study shows that the use of OLS to estimate 
the SAR model is not appropriate because the spatial lag is 
correlated with the error term and the included explanatory 
variable. Thus, OLS will produce biased and inconsistent 
estimate. Findings show that the spatial model performs 
better than non-spatial model because a lesser error variance 
was produced in the spatial model in comparison to the 
non-spatial model. 

The study discovered that spatial autocorrelation exists in 
cases where N=25 and 1000 and the SAR results were 
significantly different from their OLS counterpart. The 
smaller error variance in these cases signifies that the SAR 
model outperforms the OLS (non-spatial) model. The 
test-statistic values of LM, LR and Wald diagnostic tests for 
presence spatial dependence in the dataset are not significant 
hence the parameter estimate of spatial model are not 
different from their OLS counterparts. In addition, the study 
established the existence of relationship between bias 
resulting from omitting spatial effect in SAR model and the 
magnitude of spatial autocorrelation. 

Thus, the SAR model is recommended when spatial 
diagnostics show the presence of spatial autocorrelation in a 
dataset. The use of a spatial model if spatial autocorrelation 
is absent in a dataset results in waste of time and resources. 
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