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Abstract  Lately, joint modeling has been reckoned as a very efficient technique for studying combinations of 
longitudinal and survival data generated from medical studies. In this paper we have developed a joint model to 
simultaneously study the longitudinal repeated measures on CD4 cell counts and the time to event (event being defined as 
loss to follow up) process of HIV/AIDS patients undergoing Anti-retroviral therapy (ART) treatment at Dr. Ram Manohar 
Lohia Hospital’s ART centre, New Delhi, India. Apart from increasing the risk of the HIV infection to progress to AIDS, the 
event of loss to follow up in patients undergoing ART seriously interferes with the development, improvement, and 
validation of treatment techniques being used in the therapy. The fact that the problem of loss to follow up from ART has 
been understated in studies based on ART centers in India has motivated us to investigate the effect of various clinical, 
socioeconomic and demographic factors on the hazard of loss to follow up in patients undergoing ART treatment. The results 
of the joint model have been compared with those of the separate analyses of the longitudinal and the survival data. The 
parameter estimates of both methods are consistent; however, the joint analysis supports the dependence of the hazard of lost 
to follow up from ART treatment on the rate of change in CD4 counts, apart from the patient’s baseline CD4 count. The 
estimated overall survival probability for HIV/AIDS patients retained on antiretroviral therapy was 0.81; 95%CI (0.76- 0.87).  
Keywords  HIV, AIDS, Antiretroviral Therapy, Joint modeling, Longitudinal data 

 

1. Introduction 
Longitudinal data and survival data often arise together in 

biomedical and clinical studies, where patients are followed 
up over time, and biomarkers are recorded repeatedly at 
different time points. There are various dynamic medical 
scenarios (viz. Liver cirrhosis studies in which our interest 
lies in the association of serum bilirubin and the time to death, 
Cancer studies in which we investigate the association 
between prostate specific antigen levels and the time to 
development of prostate cancer, HIV studies where interest 
lies in the association between CD4 cell counts (or viral load) 
and time to AIDS or death, or even Diabetics research where 
interest lies in the association of patients’ hemoglobin level 
and time to death) where both the association structure of 
repeated biomarkers measurements and the primary survival 
endpoints are studied. Various standard methods are 
available for analyzing such data separately, viz. linear  

 
* Corresponding author: 
prafulla86@gmail.com (Prafulla Kumar Swain) 
Published online at http://journal.sapub.org/statistics 
Copyright © 2015 Scientific & Academic Publishing. All Rights Reserved 

mixed effects (LME) models for longitudinal data, and Cox 
proportional hazard (PH) models for survival data. LME 
model describes the process of the repeated measures on 
biomarkers over time while Cox PH model evaluates the 
effect of covariates on the hazard of an event. However, the 
use of separate models may be inappropriate and may 
provide biased inferences because they fail to take into 
account the association between the two components of the 
data [1]. One approach of studying the two components 
together is to incorporate the longitudinal measurements 
directly into the Cox model as time varying covariates, but 
this method does not account for the measurement errors in 
the time varying covariates and, therefore, can cause the 
estimated relative risk parameter in the time dependent Cox 
model to be biased towards the null [2]. Moreover, the time 
varying covariates are assumed to experience changes in 
their values at the times of follow up visits only and are 
assumed to remain constant during the time intervals in 
between these follow up visits, which is unrealistic in most 
of the situations.   

In the circumstances discussed above, a joint model is 
desirable over separate models or even over the time 
dependent Cox model, to understand the association between 
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the longitudinal and the time to event processes. Joint 
modeling can be perceived to be a sophisticated and complex 
approach in terms of estimation, however, its superiority 
comes from its ability to model the longitudinal repeated 
biomarkers measurements and the survival processes 
together while also taking into account the association 
between them. By including the random effects model for 
longitudinal data in the survival model, the patterns of a 
biomarker’s performance and the relationship between its 
progression and survival time can be characterized. In this 
way, joint modeling provides less biased estimates and more 
efficient inferences than separate models [3, 4]. 

Joint modeling has been extensively studied by many 
authors in the last two decades. Tsiatis and Davidian (2004) 
[5] provided a very thorough overview of early work on joint 
models, including those of De Gruttola and Tu (1994) [6], 
Wulfsohn and Tsiatis (1997) [4], Henderson et al. (2000) [7], 
and Wang and Taylor (2001) [8], among others. More recent 
work, including Ding and Wang (2008) [9], Nathoo and 
Dean (2008) [10], Ye et al. (2008) [11], Albert and Shih 
(2010) [12], Jacqmin-Gadda et al. (2010) [13], Rizopoulos, 
(2012) [14], Wu et al. (2010) [15], and Huang et al. (2011) 
[16], have extensively discussed the development, 
estimation and applications of joint models. 

Yi-Kuang Tseng et al., [17] used a joint modeling (graphic 
approach) to model survival time and time dependent CD4 
count simultaneously for AIDS patients in Taiwan. Rui 
Martins et al. (2012) [18] developed a Bayesian hierarchical 
model for jointly modeling longitudinal and spatial survival 
data for a cohort of patients with HIV/AIDS in Brazil. Yi- 
Kuang Tseng et al. (2005) [19] proposed a viable joint 
modeling approach for accelerated failure time data and 
longitudinal and time-independent covariates. Thiebaut R. et 
al. (2005) [20], proposed a parametric joint modeling of 
bivariate longitudinal markers and a lognormal survival 

model for the time to drop out of HIV 1 infected patients 
starting antiretroviral treatment in Europe. 

Although many authors have applied joint modeling in 
HIV/AIDS epidemiology, most of their work has covered the 
joint modeling of the longitudinal CD4 cell counts and the 
survival times for the event death. In this paper we have 
made an attempt to develop a joint model of longitudinal 
CD4 cell counts and time to loss to follow up in HIV/AIDS 
patients undergoing antiretroviral therapy in an ART centre 
in Delhi, India.  

The introduction of free ART services in India in 2004 has 
significantly reduced the mortality and morbidity in HIV 
populations. However, a successful treatment of individual 
patients and the monitoring and evaluation of ART 
programmes, both depend on regular and complete patient 
follow up [21]. Possible loss to follow up occurred after 
initiation of ART may be due to the regime side effects or 
due to their poor health conditions like having lower CD4 
counts or due to migration or even due to some social and 
psychological causes. Patients who are lost from ART 
programme develop drug resistance virus which ultimately 
results in drug failure [22]. As a result, such patients are at a 
higher risk of illness and death because of AIDS related 
conditions. The severity of the problem of discontinuation of 
patients from the ART programme, leading to loss to follow 
up, makes it essential to conduct a proper investigation to 
identify the responsible factors. The factors leading to loss to 
follow up may also vary from country to country because of 
the dissimilarity in their socio-economic structures and also 
due to the difference in the level of awareness among the 
patients and their family members in those countries. 
However, there is a dearth of literature on investigating 
predictors of loss to follow up after initiation of ART in India, 
[23].   

 

Figure 1.  Schematic representation of Joint model for HIV/ AIDS patients on ART 
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Besides, accurate measures of loss to follow up are 
valuable for understanding processes and programmatic 
details, and they are critical to evaluating clinical outcomes. 
Therefore it is very important to study the loss to follow up in 
the presence of associated risk factors and biomarkers. The 
main objective of this paper is to build a joint model; 
simultaneous modeling of longitudinal CD4 counts and time 
to event (i.e loss to follow up) process and linking them using 
unobserved random effects through the use of a shared 
parameter model. The results are also compared with those 
obtained from separate analyses of the longitudinal and the 
survival data. The diagrammatical representation of joint 
modeling of longitudinal data and survival data has been 
depicted in the figure 1. 

CD4 cell counts are a very important type of white blood 
cells that orchestrates the immune response of the body. CD4 
cell count per cubic millimeter of blood is widely used as a 
biomarker for HIV disease progression and as an eligibility 
criterion to start antiretroviral therapy. Successful treatment 
for HIV patients depends on the therapy’s ability to restore 
immune functions. Researchers have advocated that disease 
progression among patients with HIV infection is delayed 
substantially when CD4 counts increase in response to 
treatment [24, 25]. Identification of factors influencing 
disease progression is vital to effective care for patients and 
to improve their survival and quality of life. Apart from the 
assessment of clinical features and risk factors in patients, 
the detection of characteristics associated with a more rapid 
progression of CD4 counts can help identify patients who 
may benefit from closer and more frequent clinical follow up 
and earlier treatment interventions [24]. We anticipate that 
the path of changes in CD4 biomarker will have an impact on 
the major HIV complications.  

The paper is organized as follows; section 2 describes 
material and methods used and section 3 presents the results 
and findings. Finally the discussions and concluding remarks 
are presented in sections 4 and 5 respectively. 

2. Material and Methods 
2.1. Study Population 

We have considered 1259 adult (>18 years age) 
HIV/AIDS patients who were undergoing Antiretroviral 
Therapy in the ART centre of Dr. Ram Manohar Lohia 
Hospital, New Delhi, India, during the period April 2004 to 
November 2009, and were followed up through the ART 
routine register records till December 2010. Both 
longitudinal and survival data were recorded. The 
longitudinal response variable CD4 cell counts per mm3 of 
blood were measured approximately every 6 months 
irrespective of their visit to ART centres. The event of 
interest was time to loss to follow up of the patients from 
ART treatment. As per National AIDS Control Programme 
(NACO) guidelines patients missing ART refills/ 
appointments for more than three consecutive months at an 
ART centre are considered as lost to follow up. During the 

study period 15.7% of the total patients were dead and 7.9% 
patients were lost to follow up from the treatment care. The 
baseline information such as age, sex, CD4 count, mode of 
transmission (MOT), weight, smoking habit, alcohol habit 
and hemoglobin were collected. These variables were 
entered into the model as categorical variables – Sex 
(male/female), MOT (sexual/Blood+IDU/Unknown), 
smoking (yes/no), alcohol (never/ever) and continuous 
variables-Age, Hemoglobin and Weight. The category 
‘sexual’ of the covariate MOT included both Homosexual 
and Heterosexual transmissions. The software packages 
survival and JM in R have been used for data analysis. 

2.2. Methodology 

The study accommodates two different approaches of 
modeling the longitudinal CD4 data and the time to event 
data, viz. the separate modeling approach and the joint 
modeling approach (figure 1). 

2.2.1. Separate Modeling  

A linear mixed model has been used for the longitudinal 
CD4 data and the time to event data has been modeled using 
a Cox proportional hazard model. 

2.2.2. Joint Modeling 

Here our objective is to incorporate a time dependent 
covariate measured with error (longitudinal CD4 
measurements of HIV/AIDS patients on ART) in a time to 
event model (loss to follow up being the event of our 
interest).  

Suppose we have a set of n individuals followed over time. 
Let Ti (i=1,2,…n) be the time to loss to follow up of ith 
HIV/AIDS patient on ART, and Ci be the corresponding 
censoring time. Let δi = I(Ti ≤ Ci ) be the censoring indicator 
such that δi = 0 if the survival time of ith individual is right 
censored and δi = 1, otherwise. Thus the observed survival 
data are {(ti, δi), i = 1,2,…n}, where ti = min(Ti, Ci ). 

A joint model is comprised of two sub-models, one for the 
longitudinal process and the other for the survival process. In 
this study, the joint distribution of the event times and 
longitudinal measurements is modeled via a set of random 
effects that are assumed to account for the associations 
between these two outcomes, as was earlier proposed by Gao 
et al. 2011 to analyze the direct impact of biomarkers 
variability on the survival outcome in a joint modeling set 
up.  
The Submodels Specifications  

In joint modeling framework, the longitudinal data are 
delineated by a conventional linear model assuming 
homogeneity within subject variance. However, such a 
homogeneity assumption automatically precludes the 
assessment of the research question “whether individuals 
with different levels of CD4 variability have different 
susceptibility to loss to follow from ART treatment”. 
Consequently, the joint model proposed in this study 
combines both approaches; that is, it relates the variability of 
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longitudinal CD4 counts to time to loss to follow up of 
patients and also adds a frailty to the survival sub model. 
Frailty term in the survival sub model accounts for the 
heterogeneity among patients in terms of the CD4 trajectory 
affecting the time to event process.     
Longitudinal submodel 

Linear mixed effect models are widely used to model 
continuous longitudinal data (i.e CD4 counts). The sequence 
of measurements yi1, yi2, …yini for the ith subject at times ti1, 
ti2, …tini is modeled as (Laired and Ware, 1982) [26] 

  ( )ij i ij ijy W t= +∈                 (1) 

( ) ( ) ( )i ij i ij i ij i iW t X t Z t b uβ δ′ ′= + +       (2) 

ib ~ N(0, Ψ), �ij~N(0, σ2) 
Where yij is the observed longitudinal response for the ith 

patient measured at jth time point. ( )i ijX t′  and ( )i ijZ t′  
are the design matrices for fixed (β) and random (bi) effects 
respectively. Furthermore, we also have a vector of 
covariates (possibly time dependent), ui � Ui, and 
corresponding regression coefficient δ. We assume that the 
�ij is independent of the random effects, and that cov(�ij, �ik) 
= 0 (where i ≠ j). The term ( )i ijW t

 
can be viewed as the 

true individual level CD4 trajectories after they have been 
adjusted for the overall mean trajectory and other fixed 
effects. 
Survival Submodel 

The Cox proportional hazard submodel is given by 

0( / , ) ( )exp( ( ) )i i i ij ih t b v h t W t vα ϕ= +      (3) 

Where h0(t) is the baseline hazard function, α denotes the 
association parameter and � is a set of regression coefficients 
associated with a set of covariates (again possibly time 
dependent), vi � Ui. The value of the biomarker, as estimated 
by the longitudinal submodel, is included in the survival 
linear predictor as a time-varying covariate. 

If the covariate is included in both submodels, we can 
obtain an overall effect on survival as the longitudinal 
trajectory of the marker, multiplied by the association 
parameter, plus the direct effect on survival.  
Maximum Likelihood Estimation 

The likelihood method is a widely used approach for the 
parameter estimation in the joint model. Assuming that 
censoring and timing of longitudinal measurements are 
non-informative, the likelihood function L with the observed 
data for each subject (Xi, δi, Zi, ti) is given by Wulfson and 
Tsiatis (1997).  
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The maximization of this function (4) with respect to θ 
requires a combination of numerical integration and 
optimization algorithms, because both the integral with 
respect to the random effects in (5) and in the survival 
function given by (7) do not have an analytical solution. 
Despite some authors have employed standard numerical 
integration techniques, such as Monte Carlo or Gaussian 
quadrature, the Expectation-Maximization (EM) algorithm 
described by Wulfsohn and Tsiatis (1997) has been 
traditionally preferred. The intuitive idea behind the EM 
algorithm is to maximize the log-likelihood in two steps: the 
Expectation (E) step, where missing data is first completed, 
so we replace the log-likelihood of the observed data with a 
surrogate function, and then by maximizing the surrogate 
function with respect to θ in the M-step. The closed form of 
maximum likelihood estimates are obtained by the 
Newton-Raphson method. 

3. Results 
Table 1 shows the baseline descriptive statistics of 

HIV/AIDS infected patients on ART. Out of the total 1259 
patients 851 (67.6%) were males and the remaining 408 
(32.6%) were females. Majority (64%) of the infected 
patients had reported sexual mode of HIV transmission, 
including both homosexual and hetro-sexual modes of 
transmission, followed by those with unknown mode of 
transmission who accounted for 26.3% of the total, and 9.7% 
of them had experienced blood+ IDU route of HIV infections. 
37.01% and 34.4% of the infected patients had habits of 
smoking and drinking alcohol (ever) respectively. The 
median (IQR) age at the start of ART was 33 (29-39) years. 
The median weight at baseline was 50 kg (with IQR; 44-56). 
The mean (SD) hemoglobin level at the initiation of ART 
was 11.05 (1.73) and the mean (SD) CD4 count at baseline 
was 192.06 (105.28) cells/mm3. Figure 2 shows the profile of 
longitudinal CD4 cell count measurements over time for 
HIV/AIDS patients, separately for censored and event cases. 
The plotted profiles tend to generate a linearly increasing 
pattern which rationalizes the use of Linear Mixed Effect 
model to analyze the trajectory of CD4 cell count. 
Comparison of box plots (figures 4.1-4.4) constructed for 
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different categories of patients formed on the basis of the 
factors, sex, mode of transmission, smoking habit and 
alcohol consumption exhibits higher median CD4 counts for 
(a) female patients as compared to that of males, (b) patients 
with unknown mode of transmission than those with known 
modes of transmission, (c) regular smokers as compared to 
that of non smokers, and (d) alcohol consumers as compared 
to that of non consumers. 

Figure 3 shows the Kaplan-Meier survival plot of 
HIV/AIDS patients retained on antiretroviral therapy. The 
estimated overall survival probability for HIV/AIDS patients 
retained on antiretroviral therapy was 0.81; 95%CI (0.76- 
0.87). Table 2 shows the estimates and corresponding 
standard error and p-value for the parameters of the two 
models, i.e. separate and joint models. In longitudinal 
submodel the predictors, time, sex, age, mode of 
transmission, and weight were found to be statistically 
significant at 5% level of significance.   

The coefficient for the time effect has a positive sign 
indicating that on an average the CD4 cell count increases 
with time. The estimate average longitudinal regression 
coefficients for gender is positive and significantly different 
from zero, suggesting that the female patients had higher 
CD4 cell counts than males during the follow up. The 
regression coefficient for age is -1.369 (P-value < 0.003), 
suggesting that as age of patients increases there is 
significant decrease in CD4 count cells/mm3, level over the 
time. Similarly, the other predictors like weight and 
hemoglobin coefficients 2.791 (P- value<0.001) and 4.187 
(P- value < 0.05) respectively, indicates that CD4 count 
increases over the study period as unit increases in weight 
and hemoglobin level of patients.    

In survival submodel, sex, age, hemoglobin and smoking 
status are not found to be significant predictor for loss to 
follow up event, whereas an alcoholic patient had [exp(0.711) 
= 2.036] times higher risk of lost to follow up as compared to 

non-alcoholic patient. There is significantly higher hazard of 
loss to follow up from the treatment associated with rural 
patients as compared to the patients who belong to urban area. 
Patients with unknown mode of HIV transmission had a 
lower hazard for loss to follow up as compared to that of 
patients with sexual mode of transmission. Weight is 
positively associated with the trajectory of the CD4 count 
and also, significantly lower hazard for loss to follow up is 
associated with patients having higher weight after initiation 
of ART.  

The estimates of the parameters of the separate and joint 
models are quite similar to each other but not identical, 
however the estimate of the association parameter in the joint 
analysis is significantly different from zero, providing strong 
evidence of association between the two submodels. The 
estimate of the association parameter due to the slope (trend) 
of CD4 count is negative (-0.213), indicates that the slope of 
CD4 count is negatively associated with the hazard of loss to 
follow up of patients from ART treatment. This indicates that 
an increasing trend in the CD4 count in patients undergoing 
ART treatment significantly reduces the risk of loss to follow 
up of those patients. Figure 5, shows the diagnostic plots for 
the fitted joint model for HIV/AIDS patients on ART. The 
top left panel depicts the subject specific residual for the 
longitudinal measurements on CD4 cell counts plotted 
against their corresponding fitted values and the residuals 
can be seen to be trending very close along the fitted line. 
The top right panel shows a Normal Q-Q plot of the 
standardized subject specific residuals for longitudinal 
process which is almost coinciding with the reference line 
passing through the origin and hence, is validating our 
assumption of normality of the error term in the longitudinal 
submodel. The bottom panels depict an estimate of the 
marginal survival and an estimate of the marginal cumulative 
risk function for the event process. 

 

Figure 2.  Longitudinal CD4 cell count measurements over time for HIV/AIDS patients, separately for censored/event 

Time (Months)

CD
4 

ce
ll c

ou
nt

s

0

10

20

30

40

0 20 40 60

Censored

0 20 40 60

Event

 



104 Gurprit Grover et al.:  A Joint Modeling Approach to Assess the Impact of CD4 Cell Count   
on the Risk of Loss to Follow up in HIV/AIDS Patients on Antiretroviral Therapy 

Table 1.  Baseline characteristics of HIV/AIDS infected patients on ART 

Characteristics                           Category No. of patients Percent 

Sex Male 851 67.6 

 Female 408 32.4 

MOT Sexual 806 64 

 Blood+IDU 122 9.7 

 Unknown 331 26.3 

Smoking No 793 62.99 

 Yes 466 37.01 

Alcohol Never 826 65.61 

 Ever 433 34.39 

Location status Urban 1056 83.87 

 Rural 203 16.13 

Status Event 100 7.94 

 Censored 1159 92.06 

Median Age (IQR) 33 (29 -39) 

Median Weight (IQR) 50 (44 - 56) 

Mean HB ( SD) 11.05 (1.73) 

Mean CD4 count at baseline (SD) 192.06 (105.38) 

Table 2.  Comparison of separate and joint models of longitudinal CD4 counts and time to loss to follow up from ART 

  
Separate Analysis Joint Analysis 

Longitudinal 
sub-model  

(CD4 count) 

Parameters Est. value Std.Error P-value Est.value Std.Error P-value 

Intercept 42.191 32.343 0.192 42.359 32.225 0.189 

Time 8.688 0.171 0.000 8.684 0.172 0.000 

Sex (Female) 48.205 9.515 0.000 48.180 9.480 0.000 

Age -1.368 0.462 0.003 -1.369 0.460 0.003 

Smoking (yes) -16.930 10.681 0.113 -16.914 10.641 0.112 

MOT(Blood+IDU) 8.334 13.074 0.524 8.332 13.027 0.522 

MOT(Unknown) -43.934 7.875 0.000 -43.893 7.846 0.000 

Weight 2.792 0.370 0.000 2.791 0.369 0.000 

Alcohol (Ever) 18.025 10.818 0.096 18.016 10.778 0.095 

Location (Rural) -1.230 0.432 0.067 -1.243 0.421 0.066 

Hemoglobin 4.187 2.120 0.049 4.188 2.113 0.047 

Survival 
sub-model (Time 

to loss to 
follow-up) 

Intercept 
   

-10.204 1.208 0.000 

Sex (Female) -0.107 0.307 0.726 -0.086 0.312 0.784 

Age 0.006 0.013 0.655 0.006 0.013 0.643 

Smoking (yes) 0.086 0.293 0.769 0.087 0.295 0.769 

MOT (Blood+IDU) 0.519 0.328 0.113 0.541 0.328 0.099 

MOT (Unknown) -0.789 0.247 0.001 -0.893 0.244 0.000 

Weight -0.023 0.011 0.042 -0.023 0.012 0.055 

Alcohol (Ever) 0.683 0.305 0.025 0.711 0.306 0.020 

Location (Rural) 0.320 0.123 0.007 0.318 0.120 0.006 

Hemoglobin 0.046 0.061 0.450 0.050 0.061 0.414 

Association 
   

-0.213 0.011 0.007 

 
log(shape) 

   
0.904 0.099 0.000 
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Figure 3.  K-M Survival plot for HIV/AIDS patients retained on ART 

 

Figure 4.1.  Box plot for CD4 counts by Sex 

 

Figure 4.2.  Box plot for CD4 counts by mode of transmission 
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Figure 4.3.  Box plot for CD4 counts by smoking status 

 

Figure 4.4.  Box plot for CD4 counts by alcohol status 

 

Figure 5.  Diagnostic plots for the fitted joint model for HIV/AIDS patients on ART 
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4. Discussion 
In this paper, we have studied the relationship between the 

trajectory of CD4 counts over time and the risk of loss to 
follow up of HIV/AIDS patients who started on ART using 
joint modeling with longitudinal random effects sub-model 
and a Cox proportional hazard sub-model. Also we have 
compared the results of the joint model with those obtained 
from separate analyses of the longitudinal and survival data.  

The joint analysis has established significant dependence 
of the hazard of loss to follow up from ART treatment on the 
rate of change in CD4 counts, apart from the patient’s 
baseline CD4 count. So, in clinical perspective, the trajectory 
of the CD4 count of patients undergoing ART treatment can 
prove to be a vital indicator about the risk of losing them to 
follow up. This knowledge becomes very crucial for 
devising methods to minimize morbidity and mortality rates 
due to HIV/AIDS condition as loss to follow up is expected 
to result in magnified exposure to serious risks in patients.  

Although, the parameter estimates of both the separate 
analysis and the joint analysis are consistent, a considerable 
amount of difference is apparent between their values, 
possibly due to the model correction accounting for the 
correlation between the longitudinal CD4 counts and the 
time to loss to follow up from the ART treatment.  

To our knowledge, there is a dearth of literature that 
highlights the problems of loss to follow up among 
HIV/AIDS infected patients started on ART treatment in 
India. Gerardo Alvarez-Uria et al. 2013 [23], have described 
the predictors associated with loss to follow up in HIV 
infected patients in a large cohort study in Anantapur, 
Andhra Pradesh, India. In this study, they have reported 10.3% 
loss to follow up during their study period, which is slightly 
higher than that of our data. Dalal et al. (2008) [27] and Geng 
et al. (2008) [28] have reported high proportion of patients 
lost to follow during the course of ART Treatment in 
resource-limited settings in South Africa and Africa 
respectively.    

While predictors like mode of transmission, location 
status and weight at the start of ART, even being significant 
predictors of loss to follow up, cannot be controlled or 
improved upon during the course of ART, alcohol addiction 
can be dealt with by introducing a dedicated consultancy 
programme as a part of the ART. Since the risk of loss to 
follow up increases by around 2.036 times for alcoholic 
patients, curbing this addiction can significantly reduce the 
risk of losing the patients during the course of ART. 
Migration might also be one of the important factors that 
could increase the risk of loss to follow up from ART 
programme (Bygrave et al., 2010) [31].  

There are many studies which have supported joint 
modeling of longitudinal data and survival time to the event 
process over separate modeling [1, 8], which has been again 
emphasized upon by the results of our study which has 
shown a very significant association between the 
longitudinal trajectory of the CD4 count and the time to 
event. 

The previous studies have claimed that the patients having 
low socioeconomic status and those who are illiterate are 
significantly associated with loss to follow up from the 
treatment. In this study we were not able to capture these two 
important predictors in our model. Presence of opportunistic 
infections including TB and the nature of ART initial 
regimen are some other important factors which can have 
significant effect on the event of loss to follow up and can be 
included in the joint model set up for further analysis. The 
travel time and travel costs can also be major impediments 
for HIV patients to come to the clinics [29, 30], supporting 
the current policy of decentralization of ART centres by the 
Government of India. 

Moreover, we have used only one ART centre data for 
analysis that may not be representative for the whole country. 
Considering the socioeconomic diversity of India, our results 
need to be substantiated by similar survival studies from 
other parts of India to conjure up a comprehensive picture of 
HIV/AIDS epidemiology in India. 

5. Conclusions 
In conclusion, the retention of patients in HIV-care is still 

a great challenge and the trajectory of CD4 cell count 
promises to be a crucial factor in predicting the event of loss 
to follow up. Also, joint models give a proper platform to 
study such situations where the association of longitudinal 
data with the time to event has utmost importance. So, joint 
model should be preferred over separate models for 
longitudinal and survival data analysis. 
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