
International Journal of Sports Science 2016, 6(2): 52-61 
DOI: 10.5923/j.sports.20160602.06 

Cardiac Remodeling and Physical Exercise:                 
A Brief Review about Concepts and Adaptations 

Paula A. M. Cavalcante1, Mauro S. Perilhão1, Ariana A. da Silva1,                                    
Andrey J. Serra3, Aylton F. Júnior1, Danilo S. Bocalini1,2,* 

1Translational Physiology Laboratory, Postgraduate Program in Physical Education, São Judas Tadeu University (USJT),                
São Paulo, SP, Brazil 

2Translational Physiology Laboratory, Aging Science, São Judas Tadeu University (USJT), São Paulo, SP, Brazil 
3Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil 

 

Abstract  Training variable control, is relateed to frequency, duration, and intensity, that  respond to the promoting 
changes in physical fitness. However, adaptations related to different exercise intensities are still controversial, both in 
regards to cardiovascular disorder prevention and rehabilitation. There are few studies dealing with cardiac adaptations under 
different exercise intensities, and that a better understanding physiological cardiac remodeling may inspire the design of a 
strategy to improve ventricular function in cardiac approach. Thus the objective of this review was to assess the influence of 
chronic aerobic exercise on cardiac adaptations, with a focus on different exercise intensities, as well as presenting a 
conceptual approach on cardiac remodeling process. Also was included the specific characteristics of cardiac remodeling in 
each cardiac adequacy step during training. New research trends were also outlined in order to guide studies into developing 
new therapy strategies for controlling cardiovascular diseases. 
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1. Introduction 
The chronic effect of aerobic exercise has been studied in 

order to further and effectively understand the adaptations 
caused in humans. Based on this perspective, the actions of 
regular physical exercise and improvements of functional 
capacity are important factors in improving health. Their 
beneficial effects on the cardio circulatory system are well 
described in literature [1-8]. 

However, in relation to exercise intensity on biological 
and clinical effects, the guidelines is controversial both in 
cardiovascular disease prevention and in the rehabilitation 
field [9,10]. Although increased training intensity may result 
in further improving physical aptitude and maximum oxygen 
consumption (VO2max) [2], moderate intensity exercise is 
usually recommended, as it is equally efficient [9]. 

This literature review assesses the influence of chronic 
aerobic exercise on cardiac adaptations considering there are 
few studies in literature regarding cardiac adaptations in 
different exercise intensities, and that a better understanding 
of the physiological cardiac remodeling may lead to a 
strategy capable of improving ventricular function in cardiac  
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dysfunction [11, 12]. In particular, this review will focus on 
the discussion regarding the different exercise intensities, 
presenting a conceptual approach on the cardiac remodeling 
process and its particular characteristics in each cardiac 
adaptation step for physical training. New research trends 
were also outlined in order to guide studies into developing 
new therapeutic strategies for controlling cardiovascular 
diseases. 

2. Main Body 
The most relevant original scientific studies (animals and 

human) were from 1979 to 2015, analyzed in this review, at 
the following databases: Science Citation, Index, Scopus, 
Sport Discus, Scielo, and National Library of Medicine, 
combining the following: keywords: endurance training, 
physical exercise, cardiac function, ventricular function, 
cardiac remodeling, ventricular remodeling and cardiac and 
ventricular adaptations. Studies investigating the effects of 
physical exercise and cardiac parameters with and training 
variables (as well as human and animal studies) were 
considered inclusion criteria. 

3. Cardiac Remodeling 
Cardiac remodeling (CR) is a group of genetic, molecular, 
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cellular, and interstitial changes in the myocardium which 
are anatomically manifested by changes in mass, size, and 
geometry of the heart chambers and function stemming from 
hemodynamic overload [74-76]. 

Recent studies [77-79] suggest epigenetic changes in the 
DNA, resulting from physical exercise, can also change the 
functions of the cardiovascular system, although there is 
insufficient evidence to establish a direct link between 
epigenetic modulations and changes, caused by exercise, in 
the heart and blood vessels [78]. This likely occurs due to the 
cardiovascular field of research not being nearly as advanced 
as others in investigating epigenetics [77]. Nevertheless, 
evidence reveal physical exercise is capable of neutralizing 
the development of pathological epigenetics in diseases such 
as hypertension, atherosclerosis, and fibrosis [79]. As such, it 
is possible that epigenetic changes may also be mentioned as 
part of the concept of cardiac remodeling in the near future. 

Following an analysis of new trends, a recent study [80] 
showed that it is possible to reduce cardiac hypertrophy 
causing blockage of TLR4 in the brain in mice suffering 
from arterial hypertension induced by angiotensin II. The 
actions of receptor toll-like 4 (TLR4) are associated with the 
development and progression of cardiovascular diseases [81]. 
Dange et al [80] proved there could be a bidirectional link 
between the brain suffering from stress and pathological 
cardiac hypertrophy. Researchers speculated that the toll-like 
receptors’ activity in the brain, particularly TLR4, is key in 
structure modulation and cardiac function. 

Characterized as end product of several types of 
hemodynamic stimulus, the CR may be called physiological 
during normal development, or in athletes [75], or 
pathological, common to multiple aggressions to the heart. 
The aggressions can be injury (myocardial infarction), 
chronic pressure overload (hypertension, aortic stenosis) or 
volume (aortic or mitral insufficiency), inflammation 
(myocarditis), or expression of a genetic program leading to 
cardiomyopathy [82]. These events allow the heart to adapt 
to new conditions and activate important mediators 
including wall stress, neuro hormones (sympathetic nervous 
system, renin-angiotensin, aldosterone and endothelin), 
cytokines, nitric oxide and oxidative stress [75]. 

The main adaptation of the heart to physical training is the 
CR [24, 69, 83, 84], and the cardiac adaptations are related 

to structural and functional cardiac changes, influenced by 
the gain of functional ability acquired in training. The major 
physiological mechanisms attributed to the CR is increased 
contractility [24, 85-87], improved transient Ca2+ 
intracellular affecting ventricular function [87-89], increased 
expansion with significant improvements in myocardial 
oxygenation [90], and additional endothelium - dependent 
functions that prevent ischemic events [9]. However, CR’s 
physiological answers are not uniform and vary according to 
the type and intensity of the exercise performed, as well as 
the physical training program [91] and is directly related to 
maximal aerobic capacity or VO2 max [92, 93]. 

The beginning of the CR process is driven by a 
hemodynamic stimulus from a transient overload, such as 
what occurs in growth and physical training or a persistent 
overload arising from events such as myocardial infarction 
or from some diseases such as hypertension, as shown in 
Figure 1. In this perspective, CR results may have different 
consequences and outcomes according to the type and the 
time of the stimulus generator [12, 94]. Thus, the CR, 
considering one of the most significant results of chronic 
adaptation to exercise, derives in myocyte hypertrophy in 
cardiac performance to suit the demands of the body [95, 
96]. 

The growth phase and physical training lead to 
physiological hypertrophy, is characterized by a lack of 
fibrosis and altered expression of postnatal hypertrophic 
genes, and in this case, changes in the expression of fetal 
genes, classically associated with the development of 
pathological hypertrophy, do not occur [36, 49, 70, 71, 97, 
98]. This suggests physiological hypertrophy induced by 
exercise depends more on the mRNA transcript for protein 
synthesis, and the maintenance of synthesized protein [97], 
as shown in Figure 2. 

Although both physiological and pathological cardiac 
hypertrophy are associated with an increase in the heart mass, 
the physiological hypertrophy is associated with a structure 
and a normal or increased cardiac function [12, 25, 26, 49, 
97-100] whereas the pathological hypertrophy is associated 
with a complex series of events, including the upregulation 
of fetal genes, histopathology and cardiac dysfunction [12, 
100]. 

 

Figure 1.  Steps of cardiac remodeling 
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Figure 2.  Diagram of the signaling pathways involved in induction of physiological cardiac hypertrophy and pathological. RTK, tyrosine kinase receptor; 
mTOR, target of rapamycin in mammals; NA, noradrenaline; PLC, phospholipase C; DAG, diacylglycerol; IP3, inositol 1,4,5-triphosphate; MAPK, 
mitogenactivated protein kinase; JNK, c-Jun amino-terminal kinase; PKC, protein kinase C; PI3-kinase, phosphatidylinositol 3-kinase; ERK, extracellular 
signal regulated kinase; Ang II, angiotensin II; ET-1, endothelia-1 (endothelin-1); GPCR L-protein coupled receptor; NFAT, nuclear factor of activated T 
cells; IGF1, similar to insulin growth factor 1; S6Ks, ribosomal S6 kinases. The performance of the physiological stimulus via IGF1-PI3K (p110α) can 
inhibit the signaling molecules of G protein (GPCRs) activated by pathological stimuli, preventing the progression of heart disease 

In physiological CR, the increasing volume of myocytes is 
done by the synthesis of new components, as the increase in 
contents of contractile proteins leading to predominant 
increase of myofibrils. Great changes in the stromal features 
do not occur, so there is no functional damage of the body  
[4, 26, 101]. In dynamic exercises, in which athletes perform 
isotonic exercises such as in swimming, cycling, running and 
walking, the main hemodynamic patterns are increased heart 
rate and stroke volume, the two components of cardiac 
output [101]. In this case, the heart overload is 
predominantly volumetric, inducing the eccentric left 
ventricular to hypertrophy, with the addition of sarcomeres 
in series, which results in an increased cardiac chamber 
without loss of function [26, 28, 91]. This form of 
remodeling is homogeneous, and has the effect of increasing 
the contractile force [102]. 

Considering that the physiological changes caused by 
exercises has a favorable effect on the pathological CR, a 
better understanding of physiological CR can provide a 
strategy to improve ventricular function after cardiac 
dysfunction [11, 12, 26, 103]. Therapeutic interventions 
based on gene stimuli leading to physiological growth may 
provide an additional strategy for treating or reversing heart 
failure [11, 12, 26, 103]. In this respect, the role of the 
physiological stimulus via IGF1-PI3K (p110α) can inhibit 
the signaling of molecules of G protein (GPCRs) activated 
by pathological stimuli, preventing the progression of heart 
disease [103] (Figure 2). 

Aerobic endurance training induces chronic enlargement 
of the myocardium that begins with an enhanced contractile 
function [87]. From this perspective, the concentration of 

intracellular free Ca2+ is the critical factor regulating the 
cardiac myocyte function and primarily responsible for the 
contractile state of the myocardium [104-107]. 

At the end of systole, the Ca2+ influx is stopped and the RS 
is no longer stimulated to release Ca2+. At this time, the RS 
reuptake cytosolic Ca2+ using a calcium pump, called 
SERCA2a, which is the main responsible structure for 
maintaining the homeostasis of the intracellular Ca2+ 
involved in myocardial relaxation process [105]. The 
increased expression of SERCA2a protein appears to 
improve cardiac inotropism due to prolonged ventricular 
filling time and greater accumulation of Ca2+ in RS [70]. 
Other studies have also shown high intensity cardio 
increased the protein expression of SERCA2a [24, 36, 70], 
in the phospholamban (PLB) phosphorylated at threonine 17 
(PLB-Tre17) [36], without changing the protein levels of 
PLB [36, 70], in the left ventricle in female normotensive 
rats. 

The Frank-Starling Law determined the relationship 
between stretching and contraction force in the healthy heart, 
i.e., the greater the amount of blood reaching the heart, the 
higher the contraction force [105, 109]. A perform better 
Frank-Starling mechanism may be associated with increased 
sensitivity of myofilaments to calcium, especially when the 
muscle fiber was extended, generating more active tension 
[95, 110]. 

Several studies [21, 110-114] tested the contractility in 
rats by analyzing the papillary muscles, and in this respect, 
the front and rear papillary muscles of the left ventricle are 
larger and stronger compared to those found in the right 
ventricle [115]. Thus, in order to analyze the conventional 
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mechanical parameters in the maximum length (Lmax), 
calculated under isometric contraction [21, 116], the 
papillary muscles are experimentally used instead of the 
myocardium muscle fibers themselves, as they are organized 
in a very complex way [115], preventing the analysis of these 
parameters.  

Studies suggest that individuals well conditioned with 
aerobic training, have a lower resting HR [117-119], 
indicating a greater parasympathetic activity [120, 121] or 
less sympathetic activity [122]. The lower resting HR can 
still occur due to other factors resulting from a training 
program, such as increased venous return and systolic 
volume [123]. 

The main function of the heart is ventricular ejection, 
because the stroke volume must be ensured at a minimally 
compatible level with tissue perfusion. From this perspective, 
the CR induced by physical exercise is responsible for the 
improvement of the cardiovascular system capacity, and the 
main adaptive response is the increase in stroke volume, 
which contributes to a higher cardiac output observed in 
trained individuals [105]. Studies in humans [11] and trained 
animals [20, 19, 24, 9, 21] showed improvement in the 
ventricular function. 

4. Cardiac Adaptation in Chronic 
Aerobic Exercise 

Effects of modality 

Within the exercise protocols that were used, positive 
effects of chronic aerobic training both in humans [2, 11, 
13-16] and animals [9, 17, 18] were shown to improve 
ventricular function, with particular increase in cardiac 
output and stroke volume. Other studies have also assessed 
performance in isolated hearts [19, 20], papillary muscles 
[21, 22], and isolated myocytes [9, 23, 24]. All of these 
studies highlighted improvements in cardiac function. 

Another aspect to consider is the different in magnitude of 
cardiac hypertrophy, which is directly related to the training 
protocol that was used [25-28]. In this regard, swimming is 
frequently used in exercise physiology studies on mice, as 
swimming is an innate ability [29, 30] with decreased costs 
compared to using treadmills. Furthermore, studies using 
this model detected similarities in adapting to exercise, 
particularly in regards to what was observed in humans [27, 
30]. 

Thus, swimming training in mice is recognized for its 
efficient introduction of robust cardiac hypertrophy 
compared to exercising on treadmills [18, 27], promoting 
significant increase in the end diastolic volume of the left 
ventricle [18, 31]. While following this line of thinking, 
Schable & Scheuer (1981) [18] showed that chronic 
swimming training in mice led to improvements of the left 
ventricle’s contractile performance, although there was a 
notable presence of hypertrophy compared to treadmill 
running, in which they were not observed or hypertrophy or 
improved function. 

Indeed, most studies of treadmill running were unable to 
observe cardiac hypertrophy in mice [18, 32, 33], but some 
researchers noticed its presence in trained mice under 
running protocols [34, 35]. In both of Kemi’s (2002, 2007) 
[34, 36] studies involving high intensity training on treadmill, 
there was a significant increase in the size of cardiomyocytes, 
and both contractility and cardiac function were reinforced. 
This suggests the high intensity in treadmill or 
wheel-training programs also appears to be effective in 
inducing physiological hypertrophy [27]. 

Effects of intensity 

Not much is known from the standpoint of adaptations 
related to different intensities. In order to reduce the 
cardiovascular risk factors, the exercise intensity estimate 
calculated from reserve heart rate usually fluctuates between 
60 and 80% [37]. However, professionals and conservative 
institutions usually prescribe intensity of aerobic exercise for 
adults and the elderly, regardless of whether or not they are at 
risk of cardiovascular disease, based on the ventilator 
threshold offered by ergospirometry. For individuals 
suffering from cardiac insufficiency, prescription of the 
upper limit is established to be 10% lower than the value 
registered on the respiratory compensation point, thus 
preventing exercise from being carried out with 
decompensated metabolic acidosis [38]. 

Although high intensity exercise is generally avoided due 
to the risks on cardiac disease patients, Rognmo et al. [2], in 
2012, revealed that the adverse event rate associated with 
this kind of training is low. Therefore, it can be considered 
adequate for patients with coronary arterial disease.  

In fact, several studies [1, 2, 11, 14, 39, 40] showed 
increased effectiveness in obtaining physical capacity, 
quality of life, and risk factor control when the population 
was submitted to higher intensity training, showing the 
importance and safety of increased intensity. These findings 
may change certain paradigms in the future [38]. 

It is also known that vigorous exercise may greatly and 
progressively increase of sudden cardiac death and 
myocardium failure in susceptible individuals [41]. In this 
analysis, the ideal dosage of high intensity training is still 
perceived as a subject of research. It has already been shown 
that a single weekly session of high intensity exercise can 
reduce the risks of cardiovascular death in male and female 
with no records of such diseases [42] and in patients with 
established coronary disease [43]. 

The recommendations presented by ACSM and AHA [44] 
related to chronic diseases prevention in adults and the 
elderly includes a 5-day routine with 30 minute sessions of 
moderate-vigorous aerobic activity, or a 3-day routine with 
20 minute sessions of vigorous activity or a combination of 
both intensities. These recommendations also suggest that an 
increase of aerobic activity dose may be necessary for some 
groups that attempt to prevent the transition from excessive 
weight or obesity [45]. Still, there is no prescription of 
possible exercise prevention excess related to diseases. 
However, it appears that it is suggested, at least from a public 
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health perspective, to restrict vigorous physical training to 60 
minutes a day, with the maximum hours per week not 
exceeding 5 hours, including 1 or 2 days off from high 
intensity exercises [45, 46]. 

In fact, excessive exercise may be cardiotoxic in some 
responsiveness individuals [47-49] and following this 
approach, there is a relationship between the accumulated 
hours of exercise and the risk of atrial fibrillation [47]. 
Studies on mice, without pathogenic agents [50] and in 
marathon athletes [51] who underwent excessive training 
throughout the years revealed an association with 
myocardium inflammation and fibrosis. This leads to a 
substrate for arrhythmogenesis and myocardium dysfunction. 
However, the subjacent mechanisms have yet to be cleared 
up, although the atrial and structural changes, including 
dilatation and fibrosis, are present [47]. 

Additionally, recent studies [52, 53] suggest that long 
distance runners may show, throughout years of 
uninterrupted training, increased levels of atherosclerosis 
and coronary diseases. Excessively high doses of resistance 
exercise in certain genetically predisposed individuals or 
with pre-existing diseases [48, 49] may lead to dilatation and 
cardiac dysfunction [46], particularly on the right side of the 
heart and the ventricular septum, which conducts the release 
of cardiac markers, such as troponin and cerebral natriuretic 
peptide. This results in malignant ventricular arrhythmia and 
increased risk of sudden cardiac death [46]. Even so, there 
are still certain segments of the literature dealing with 
themes capable of establishing the limit of exercise for 
potential cardiac toxicity, tracking individuals at risk, and 
designing ideal physical training programs to optimize 
cardiovascular health [45]. 

It is for this reason that the evidence that many years of 
high intensity training may lead to cardiac fibrosis or 
acceleration of atherosclerosis may appear to be relatively 
weak, considering there is no definitive argument that 
excessive endurance training may likely be harmful for the 
human heart [46]. Finally, evidences may lead to studies [54, 
55], signaling that excessively high levels of endurance 
training may prevent the decrease of complacence and 
stretching of blood vessels, as seen in the healthy aging. 

The importance of exercise intensity was shown by studies 
on humans [2, 11, 15, 56] and mice undergoing treadmill 
training [9, 24, 34]. These studies demonstrated that high 
intensity physical aerobic exercise may be more favorable 
for adaptations in cardiorespiratory fitness and cardiac 
function, compared to low and moderate intensity exercise, 
further suggesting that vascular and peripheral changes may 
contribute to the effects which depend on intensity, such 
arterial endothelial function and its regulating mechanisms 
[17]. From this standpoint, the study conducted by [9] on 
mice using treadmills, without pathogenic agents, showed 
that cardiovascular adaptations to training depend on 
intensity. The close correlation among VO2max, the 
dimensions of cardiomyocytes, and contractile capability 
suggested that there is a significant benefit under high 
intensity compared to the effects on endothelial function 

caused by regular exercise under moderate intensity [9]. 
With this aspect in mind, epidemiological and clinical 

approaches have shown that physical exercise adaptations 
may depend of both on intensity and total volume of training 
[15, 16, 57-60]. Such fact may be associated with the 
metabolic equivalent or maximum consumption of oxygen. 
In this analysis, it is likely that the oxygen transport system 
undergoes beneficial adaptation, which becomes more 
evident through higher VO2max values as a result of 
function adaptations stemming from the cardiac remodeling 
process, as caused by aerobic physical training [61]. Thus, 
peak oxygen consumption (VO2peak) has shown as an 
important clinical reference, having been identified as one of 
the greatest independent predicting agents of mortality, both 
in healthy individuals and those susceptible to cardiac 
diseases [37, 57, 62, 63, 64]. 

However, despite the importance of this marker, upon 
analyzing the general recommendations both for prevention 
and rehabilitation, literature reveals intensity variations 
corresponding between 40% to 85% of the VO2max [65, 66], 
causing controversies regarding the biological and clinical 
effects between moderate and high intensity exercises [9, 10, 
67]. As such, from a physical aptitude standpoint, intensity 
variation differs between the VO2max gains both in humans 
[13, 68] and in animals [9, 24, 36, 69, 70, 71], be them 
healthy [9, 11, 24, 36, 68-73] or at risk of cardiac diseases 
[13, 15, 16], reiterating the idea that the adaptations are 
conditioned to exercise intensity. 

5. Conclusions 
Studies confirm the myocardial adaptations are closely 

related to the gain of VO2 max. However, much effort is still 
needed to assess the effects of chronic intensity of aerobic 
exercise in the cardiovascular system, especially at the 
molecular level, to find out strategies to prevent and treat 
cardiovascular diseases. In this context, it is necessary to 
further studies related to the effects of physical exercise in 
epigenetic modulation, as this type of intervention may be an 
interesting strategy in the cardiovascular field. 

The integration of studies involving the responses of the 
immune system in the brain and heart seems to be a trend in a 
near future. These findings may help develop new 
therapeutic strategies to control cardiovascular diseases. 
Future researches will contribute to better understanding if 
longitudinal follow-up in large groups of endurance athletes 
(e.g. marathon runners), in order to assess and determine the 
exercise limit for potential cardiac toxicity, considering the 
tracking of individuals at risk. 
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