
Science and Technology 2024, 14(2): 31-40

DOI: 10.5923/j.scit.20241402.03

Software Supply Chain Security- Core Systems

and Security Guidelines

Anupam Mehta
1,*

, Davinder Pal Singh
2
, Viplove Karhade

3
, Preyansh Matharoo

4

1Product Security, Stripe, Ashburn, USA
2Technical Architect, Salesforce, Toronto, Canada

3Product Security, Salesforce, Aldie, USA
4Product Security, Salesforce, San Francisco, USA

Abstract Securing the software supply chain has become crucial in today’s development environment, where

vulnerabilities can severely impact organizational integrity and data security. This paper provides a framework for

strengthening key components of the software supply chain, including Source Code Management (SCM) systems,

Continuous Integration (CI) systems, Continuous Deployment (CD) systems, and artifact storage. For each component, we

outline core security practices, such as architectural design, access management, logging, and monitoring. These measures

provide actionable steps for mitigating risks, protecting intellectual property, and maintaining compliance with industry

standards, ultimately enhancing the integrity and reliability of software delivery pipelines. Implementing these security

practices reinforces the software supply chain's resilience against evolving threats, enabling organizations to deliver reliable,

secure software.

Keywords Software Supply Chain Security, Source Code, Continuous Integration and Deployment

1. Introduction

As software supply chains grow more interconnected,

they become increasingly vulnerable to security breaches.

Each software lifecycle phase, from code development to

deployment, presents unique risks that attackers can exploit.

Key components in this ecosystem include Source Code

Management (SCM) systems, Continuous Integration (CI)

systems, Continuous Deployment (CD) pipelines, and artifact

storage solutions. Each of these systems plays a vital role in

delivering software securely and reliably but also introduces

potential entry points for threat actors. This paper explores

these core components, detailing security challenges and

presenting comprehensive recommendations designed to

mitigate risks and enhance the resilience of the software

supply chain.

2. Software Supply Chain Overview

The software supply chain encompasses all stages

involved in developing, testing, and deploying software,

similar to a manufacturing process where each part must

operate securely to ensure a quality final product. This paper

* Corresponding author:

anupammeht@gmail.com (Anupam Mehta)

Received: Nov. 3, 2024; Accepted: Nov. 21, 2024; Published: Nov. 22, 2024

Published online at http://journal.sapub.org/scit

focuses on critical systems—SCM, CI, CD, and artifact

storage—that streamline the delivery of updates and fixes.

However, each system can serve as an entry point for

attackers, underscoring the need for robust security practices

across the entire chain.

The software supply chain includes all the steps, tools, and

systems involved in building, testing, and deploying software.

Think of it like a manufacturing process, where each part—

from coding and integration to storage and deployment—

needs to work smoothly and securely to get the final product

into users' hands. Key parts of this chain are systems like

Source Code Management (SCM) tools, Continuous Integration

(CI) platforms, Continuous Deployment (CD) processes, and

artifact storage repositories. Together, they help organizations

develop software quickly and deliver updates and fixes to

customers.

However, just as a physical supply chain can have weak

links, so can the software supply chain. Each system in

this chain is a potential target for attackers, who look for

vulnerabilities that can give them a foothold to introduce

malicious code, disrupt operations, or steal sensitive information.

Recent incidents [1] [2] [3] have shown how a single

security gap in one part of the chain can lead to far-reaching

consequences for the affected company and its partners and

customers. Securing the software supply chain is a crucial

focus for teams managing development and operations.

Securing the software supply [8] chain means protecting

each system involved—ensuring that only authorized people

can make code changes that the build process produces

32 Anupam Mehta et al.: Software Supply Chain Security- Core Systems and Security Guidelines

trusted software, and that anything released or stored hasn’t

been tampered with. By tightening security across these

areas, organizations can reduce the chances of a supply chain

attack, boost trust in their processes, and deliver software

more safely and reliably.

2.1. Emerging Threat Landscape in Software Supply

Chain Security

The software supply chain is a complex ecosystem comprising

interconnected systems that support critical processes

such as code management, artifact storage, integration, and

deployment. Due to their interconnected nature, these

systems are increasingly vulnerable to sophisticated attacks

that target multiple stages of the supply chain. Below is

an overview of common threats that affect Source Code

Management (SCM) systems, Continuous Integration (CI)

systems, Continuous Deployment (CD) systems, and artifact

storage solutions. Addressing these threats [4] is essential to

maintain the integrity, security, and resilience of the software

delivery pipeline.

 Unauthorized Access: Attackers target SCM, CI, CD,

and artifact storage systems to gain unauthorized access

to sensitive data and intellectual property. Weak access

controls and improper credential management increase

this risk, making robust authentication methods like

Multi-Factor Authentication (MFA) and Role-Based

Access Control (RBAC) essential across all systems.

 Code and Artifact Tampering: Malicious actors

may inject or alter code and artifacts at various stages,

resulting in compromised software being deployed. SCM

systems are particularly susceptible to code tampering,

while artifact storage systems are vulnerable to malware

injection. Regular integrity checks, code reviews, and

artifact signing can help detect and mitigate tampering

attempts.

 Credential Theft and Insider Threats: Stolen credentials

or insider access can lead to unauthorized modifications

across SCM, CI, CD, and artifact storage systems.

Implementing RBAC, conducting regular access reviews,

and logging all access activities are crucial to reducing

these risks and ensuring accountability.

 Dependency and Supply Chain Poisoning: Many

software projects rely on third-party libraries and open-

source dependencies, which can introduce vulnerabilities.

Dependency confusion and typosquatting attacks can

compromise these dependencies, especially in automated

build and deployment processes. Maintaining a Software

Bill of Materials (SBOM), performing regular dependency

audits, and using trusted repositories help prevent supply

chain poisoning.

 Configuration Weaknesses: Default or insecure

configurations in CI/CD pipelines and artifact storage

systems are common entry points for attackers. Regular

configuration audits, adherence to security standards,

and applying hardening measures to all systems are

necessary to minimize misconfiguration risks.

 Insufficient Logging and Monitoring: Inadequate

logging and monitoring can delay the detection of

unauthorized access, tampering, or failed build and

deployment activities across SCM, CI, CD, and artifact

systems. Comprehensive logging and centralized

monitoring with alerting capabilities enhance visibility

and enable a quicker response to suspicious activities.

 Data Encryption Deficiencies: Data within SCM,

artifact storage, and deployment pipelines is at risk

if not encrypted both at rest and in transit. Weak

encryption practices expose sensitive code and artifacts

to unauthorized access, making it critical to apply

strong cryptographic controls, such as TLS for data in

transit and AES-256 [5] for data at rest.

 Dependency Management Gaps: Automated CI/CD

processes may inadvertently incorporate outdated or

vulnerable third-party components, increasing exposure

to supply chain attacks. Regular scanning, dependency

validation, and updates are essential to ensure that

builds are secure and up-to-date.

 Configuration Drift and Compliance Issues: In CD

environments, unauthorized or unsupervised changes

can result in configuration drift, undermining both security

and compliance. Continuous audits, secure default

configurations, and compliance checks help maintain

consistent, secure configurations.

2.2. Common Security Recommendations for

Software Supply Chain Systems [6]

2.2.1. Architecture, Design, and Operational Process

 Architecture and Design: A secure supply chain system

begins with a robust architectural framework. Teams

managing supply chain systems must maintain detailed

architecture diagrams that outline all components, such

as build nodes, repositories, and artifact storage.

 Data Flow Diagrams (DFDs): DFDs should also be

created to visualize how data moves between different

systems, allowing for easier identification of potential

vulnerabilities.

 Security Assessment: Organizations must perform

security assessments for any changes to the supply

chain system or the introduction of new features. These

assessments should include penetration testing, code

reviews, and threat modeling to identify vulnerabilities

before implementation.

 Operational Runbook: The supply chain system should

have a comprehensive operational runbook that describes

all security controls, communication protocols, and

exception workflows. This document serves as a reference

for security practices, outlining how teams should

respond to security incidents.

2.2.2. Network and Infrastructure Security

The supply chain system must implement stringent

network security measures to protect against unauthorized

 Science and Technology 2024, 14(2): 31-40 33

access and data breaches.

 TLS Configuration: All endpoints communicating

with the supply chain system must have Transport

Layer Security (TLS) enabled, ensuring secure data

transmission.

 Endpoint Allowlisting: Establish a list of approved

endpoints that can communicate with the supply chain

systems. This restricts access to only trusted sources

and minimizes the risk of external threats.

 Egress Documentation: Document all egress endpoints

to monitor and control outbound traffic from the supply

chain systems. This practice prevents unauthorized data

leaks and ensures that all external communications are

monitored.

 System Hardening: Follow vendor hardening guides

for the supply chain system to ensure that all components

are securely configured. This includes applying best

practices for securing build nodes and containerized

environments.

 Patch Management: Organizations must regularly

apply security patches to the supply chain system

components, following established patch management

policies to address vulnerabilities promptly.

2.2.3. Identity and Access Management (IAM)

A robust IAM strategy is critical to securing supply chain

systems and ensuring that only authorized personnel have

access to sensitive resources.

 Authentication Standards: Adhere to established

authentication standards for all users and systems

interacting with the supply chain systems. Multi-factor

authentication (MFA) must be enforced to add a layer

of security.

 RBAC Implementation: Implement role-based access

control (RBAC) to ensure that users can only access

resources necessary for their roles/team. Regularly

review user roles and permissions to prevent privilege

creep.

 Inter-Tier Authentication: Implement inter-tier

authentication and authorization between different

components of the supply chain systems, ensuring that

communication between systems is authenticated and

authorized.

2.2.4. Logging and Monitoring

Effective logging and monitoring are crucial for detecting

and responding to security incidents in supply chain systems.

 Audit Logging: Generate and securely store logs for all

access to sensitive data and administrative actions

within the supply chain system. Logs should be

protected from unauthorized access and tampering.

 Centralized Logging: Utilize a centralized logging

system to aggregate logs from various components of

the supply chain system. This facilitates real-time

monitoring and analysis of security events. Centralized

logging systems such as ELK (Elasticsearch, Logstash,

Kibana) or Splunk can help aggregate logs for real-time

analysis.

 Security Activity Logging: Implement logging for

security activities performed during the supply chain

system pipeline, such as static code analysis and malware

scanning. This information is essential for auditing and

incident response.

2.2.5. Storage Security

Data stored within supply chain systems must be managed

and protected appropriately to prevent unauthorized access

and data breaches.

 Data Encryption: All sensitive data must be encrypted

both at rest and in transit. Organizations should manage

encryption keys securely, ensuring that sensitive keys

are not accessible to unauthorized personnel.

 Backup and Restore Policies: Follow established

backup and restore policies to ensure that data is stored

securely and can be restored in the event of a breach or

data loss. Regularly test backup processes to ensure

data integrity.

2.3. Recent Software Supply Chain Attacks

In this section we talk about a few software supply

chain attacks [11] from the past few years that demonstrate

the vulnerabilities exploited in software development and

deployment pipelines.

 SolarWinds (2020): In one of the most significant

software supply chain attacks to date, attackers infiltrated

SolarWinds’ build system, embedding malware known

as Sunburst into the Orion software platform. This

malicious code was distributed through a legitimate

software update, allowing attackers to access networks

and gather sensitive data. Approximately 18,000 Solar

Winds customers were affected, including prominent

U.S. government agencies and corporations. This breach

revealed the risks associated with compromised software

updates and led to increased scrutiny around supply

chain security in trusted software products.

 Kaseya VSA (2021): Attackers exploited a vulnerability

in Kaseya’s Virtual System Administrator (VSA),

a tool used for IT management, to deliver ransomware

to Kaseya’s customers. The REvil ransomware group

leveraged the VSA platform to install ransomware across

networks, affecting about 1,500 organizations globally.

This incident underscored the dangers of vulnerabilities

in remote management tools and illustrated the widespread

impact a compromised IT management solution can

have on an organization’s clients and network security.

 Dependency Confusion Attacks (2021): A researcher

demonstrated how “dependency confusion” could be

exploited by registering internal package names on

public repositories such as npm, PyPI, and RubyGems.

In several cases, companies’ build systems mistakenly

34 Anupam Mehta et al.: Software Supply Chain Security- Core Systems and Security Guidelines

downloaded these public packages, some containing

malicious code, instead of the intended internal versions.

Companies like Microsoft, Apple, and Tesla were

among those affected. This attack brought attention

to the security risks in third-party dependencies and

internal package management, prompting companies to

adopt stricter policies around dependency management

and package sourcing.

 Log4Shell Vulnerability in Log4j (2021): The Log4Shell

vulnerability, discovered in the Log4j logging library,

exposed a critical flaw that allowed attackers to execute

arbitrary code by logging a crafted payload. Given

Log4j’s widespread use in web applications, servers,

and enterprise software, the vulnerability sparked a

global response to patch and protect affected systems.

Organizations such as Amazon, Microsoft, and Apple

were impacted. This event highlighted the importance

of securing open-source dependencies and maintaining

rigorous vulnerability management processes for

widely-used software components.

 3CX VoIP Supply Chain Attack (2023): In 2023,

attackers targeted the build process of the 3CX desktop

application, a widely-used VoIP and communication

tool, injecting malware into the application. The

compromised software was then distributed to 3CX

customers, which included multiple organizations.

This attack underscored the risks of insufficient build

process security, emphasizing the need for integrity

controls around software builds, even in trusted applications

used for secure communication.

3. Source Code Management Systems

3.1. Overview

Source Code Management (SCM) systems are central

to modern software development, allowing organizations

to efficiently manage, store, and deploy their code. Due

to the critical nature of the data they hold, SCM systems

are high-value targets for cyberattacks. Breaches can lead

to intellectual property theft, loss of competitive edge, and

compromised software integrity. This section outlines

essential security practices for SCM [10] systems, with

recommendations aligned with industry standards such as

ISO 27001 [8] and the NIST framework. A layered security

approach—incorporating network security, identity management,

data classification, and continuous monitoring—ensures

comprehensive protection and compliance with regulatory

requirements.

3.2. Security Recommendations and Considerations for

SCM Systems

This section focuses on tailored security practices

and controls that address the unique vulnerabilities and

operational needs of SCM systems, supplementing the

broader recommendations provided in Section 2.2.

Access Control and Authentication

 Implement Multi-Factor Authentication (MFA) for all

users to prevent unauthorized access to source code

systems.

 Automate account management to flag and remove

accounts that no longer require access. Enforce SSH

key rotation and regular password updates to secure

access further.

Webhook Security

 Secure webhooks with authentication tokens and IP

allowlists to ensure only authorized systems can trigger

events and receive data from SCM.

Branching and Repository Controls

 Enforce branch protection rules, such as code review

requirements or prohibiting direct commits to main

branches, to safeguard critical branches.

 Set repositories to private by default, enforce strict

access control policies, and monitor for unauthorized

changes.

Pull Request Reviews

 Require multiple reviewers for pull requests, enforce

approval workflows, and enable code signing to ensure

that only validated code is merged.

Pre-Commit Hooks and Standards

 Use pre-commit hooks to enforce coding standards,

prevent sensitive data exposure, and perform security

scans before commits are finalized.

Role-Based Access Control (RBAC)

 Restrict repository access based on user roles, granting

permissions only as necessary for each developer’s

responsibilities.

Commit Signing

 Require developers to sign commits with GPG keys,

ensuring that only verified and trusted code authors

contribute to the codebase.

Automated Sensitive Data Scanning

 Integrate tools that automatically scan repositories for

sensitive data (e.g., API keys, credentials) to prevent

accidental exposure.

Branch Policies and Lifecycle Management

 Enforce naming conventions and lifecycle policies on

branches to organize code management and prevent

unauthorized changes in protected branches.

Automated Vulnerability Scanning

 Schedule regular scans on repositories to identify

vulnerabilities, outdated dependencies, and code

weaknesses, ideally integrating these scans into the CI

pipeline.

Audit Logging and Monitoring

 Enable and review audit logs to track actions like merges,

branch deletions, or permission changes, and to identify

 Science and Technology 2024, 14(2): 31-40 35

unusual or unauthorized activity.

Pull Request Templates

 Use pull request templates to guide developers in

following security guidelines, including describing

code changes and verifying tests.

Inactive Account Management

 Regularly review and disable inactive accounts with

SCM access to reduce the risk of unauthorized access

through unused accounts.

By implementing the minimum security expectations

outlined above, organizations can prevent unauthorized access,

ensure compliance with industry standards, and protect their

source code from tampering, thereby safeguarding their

intellectual property.

4. Artifact Storage Systems

4.1. Overview

Artifact storage systems are essential for managing the

storage and distribution of software artifacts, such as container

images, libraries, and build packages, throughout the

development and deployment lifecycle. Due to the critical

nature of these artifacts, protecting artifact storage is crucial

to ensure that only secure, verified, and untampered artifacts

reach production environments. This section provides specific

security recommendations aligned with best practices to

address the unique risks associated with artifact storage.

4.2. Security Recommendations and Considerations for

Artifact Storage Systems

This section focuses on tailored security practices and controls

that address the unique vulnerabilities and operational needs

of Artifact Storage systems, supplementing the broader

recommendations provided in Section 2.2.

Integrity Checks and Artifact Signing

 Use hashing and digital signing to verify artifact

integrity before storage and deployment. Only publish

signed artifacts to the artifact storage service to verify

the integrity of artifacts before deployment.

 Implement integrity validation mechanisms to

automatically flag artifacts with mismatched signatures

or hashes.

Dependency and Version Management

 Maintain a clear versioning strategy for artifacts,

allowing easy rollbacks in case a compromised artifact

is detected. Implement a policy to archive or remove

outdated or vulnerable artifacts from storage.

 Source third-party dependencies from approved

repositories, and validate dependency hashes and security

assessments before use.

Automated Vulnerability Scanning

 Schedule regular vulnerability scans on artifacts stored

in the artifact storage system, notifying artifact owners

of scan results and creating tasks for remediation.

 Ensure automated scans detect vulnerabilities before

storage and deployment to prevent the distribution of

vulnerable artifacts.

Webhook and API Security

 Secure webhooks and APIs with authentication tokens,

IP allowlisting, and rate limiting to ensure only

authorized systems can interact with artifact storage.

 Regularly review and rotate service account passwords,

API keys, and disable unused keys to reduce exposure

to unauthorized access.

Configuration Management and Hardening

 Follow vendor-provided hardening guidelines (e.g.,

for Artifactory, Nexus Repository Manager) to secure

configurations, disable unnecessary services, and reduce

the attack surface.

 Document all configuration changes and perform regular

audits to ensure security best practices are upheld.

 Only privileged users must be able to make configuration

changes to the artifact storage systems and supporting

components.

Documentation and Ownership

 Document all data types stored in the artifact

storage system, including metadata about artifact types

(e.g., container images, Helm charts) and ownership

information to ensure accountability.

 Enforce ownership policies for all artifacts, ensuring

clear tracking and accountability within the artifact

storage system.

Retention and Cleanup Policies

 Establish and enforce retention policies to automatically

archive or delete obsolete artifacts, reducing clutter and

minimizing the storage of potentially vulnerable artifacts.

 Prune artifacts identified as vulnerable within seven

days of last use and implement rollback strategies for

deleted third-party dependencies.

Exception Tracking and Break Glass Scenarios

 Track any exceptions granted to teams for artifact

management, ensuring they are documented and limited

to designated teams or members.

 Document break glass scenarios allowing direct uploads

to the artifact storage system, and require multi-factor

authentication to approve and track these instances.

Incident Response and Backup Protocols

 Ensure backup systems are configured securely to protect

artifact data, with encryption for all stored backups, and

regularly test restore procedures to ensure data integrity.

By implementing these security recommendations,

organizations can protect the integrity and confidentiality of

artifacts, reducing the risk of compromised artifacts reaching

production and enhancing the overall security of the software

supply chain.

36 Anupam Mehta et al.: Software Supply Chain Security- Core Systems and Security Guidelines

5. Continuous Integration (CI) Systems

5.1. Overview

Continuous Integration (CI) systems are vital for

automating the processes of building, testing, and preparing

code for deployment. They streamline development workflows

and allow for rapid integration of new code. However,

CI systems handle sensitive code and configuration data,

making them prime targets for attackers seeking to inject

malicious code or exploit insecure configurations. This

section outlines key security practices for CI [10] systems,

focusing on tailored recommendations to protect the CI

pipeline’s integrity.

5.2. Security Recommendations and Considerations for

CI Systems

This section focuses on tailored security practices and

controls that address the unique vulnerabilities and operational

needs of Continuous Integration systems, supplementing the

broader recommendations provided in Section 2.2.

Build Environment Security and Isolation

 Secure CI build environments by isolating them from

production and other critical environments, ensuring

that compromised builds do not affect other systems.

 Use containerization or virtualization to sandbox builds,

reducing the risk of lateral movement if a build

environment is compromised.

Access Control and Authentication

 Apply Role-Based Access Control (RBAC) to limit

permissions to essential personnel, and enforce

Multi-Factor Authentication (MFA) for access to CI

systems.

 Automate user access reviews and deactivate accounts

that no longer need access, ensuring that only necessary

users can modify CI configurations and build pipelines.

Source Code and Artifact Integrity

 Implement code signing and artifact signing to ensure

that only verified and trusted code artifacts pass through

the CI pipeline.

 Use hashing and other integrity checks to detect

unauthorized modifications in build artifacts before and

after CI processes.

Dependency and Version Management

 Regularly scan dependencies within CI builds for

vulnerabilities, and configure dependency validation to

ensure only approved libraries are used.

 Maintain a clear version control strategy, allowing easy

rollbacks if a vulnerability or issue is discovered in a

dependency.

Automated Security and Vulnerability Scanning

 Integrate security scanning tools (e.g., static code analysis,

dependency checks) into the CI pipeline to automatically

detect vulnerabilities before code progresses to deployment

stages.

 Conduct vulnerability assessments on build artifacts to

ensure compliance with organizational security policies,

and alert artifact owners if issues are detected.

Logging, Monitoring, and Audit Trails

 Enable comprehensive logging for all build and access

activities, including build failures, modifications, and

deletions. Store logs securely for audit purposes.

 Use centralized monitoring solutions to aggregate and

review CI logs, allowing for real-time alerts on anomalies

or unauthorized actions within the CI environment.

Configuration Management and Hardening

 Harden CI tools by following vendor-provided security

guidelines, and disable unused plugins, integrations,

and default configurations that could introduce

vulnerabilities.

 Regularly audit CI configurations to ensure that

hardening practices remain intact and that security

configurations align with organizational policies.

Secrets Management

 Store all credentials, tokens, and API keys in an approved

secrets management solution (e.g., HashiCorp Vault,

AWS Secrets Manager) rather than embedding them

directly in CI scripts or code.

 Rotate secrets regularly and restrict access to secrets

only to the CI processes that require them, reducing

exposure in case of a compromise.

Webhook and API Security

 Secure webhooks with authentication tokens and IP

allowlisting to ensure that only authorized external

systems can trigger CI processes.

 Periodically review and rotate API keys and disable

any unused keys to reduce exposure to unauthorized CI

triggers or integrations.

Pipeline Access Reviews and Expired Resource Cleanup

 Regularly review pipeline access rights and permissions to

confirm that only authorized users and services can

interact with the CI pipeline.

 Implement cleanup processes for expired or obsolete

build resources to prevent accumulation of untracked,

potentially vulnerable artifacts or dependencies within

the CI system.

Incident Response and Backup Protocols

 Develop an incident response plan specific to CI

environments, detailing steps for identifying, isolating,

and recovering from security incidents within the CI

pipeline.

 Ensure regular backups of CI configurations and scripts,

securely stored and encrypted, with periodic tests of

restore capabilities to validate backup integrity.

By following these security recommendations, organizations

can significantly reduce the risks associated with CI systems.

Implementing these tailored security measures ensures that

CI pipelines maintain their integrity, protect sensitive data,

and deliver secure and reliable code to subsequent stages in

 Science and Technology 2024, 14(2): 31-40 37

the software delivery lifecycle.

6. Continuous Deployment (CD) Systems

6.1. Overview

Continuous Deployment (CD) systems automate the

release of software applications by deploying artifacts

generated from Continuous Integration (CI) processes into

production environments. CD systems enable rapid and

reliable software delivery, but they also present unique

security challenges. If compromised, a CD system could

result in unauthorized deployments, configuration drift, and

the propagation of malicious artifacts. This section outlines

security practices tailored to CD [10] systems to ensure the

integrity, security, and stability of deployments.

6.2. Security Recommendations and Considerations for

CD Systems

Environment Isolation and Segmentation

 Isolate CD environments from production environments

using network segmentation to prevent lateral movement

in the event of a compromise.

 Separate staging, testing, and production environments,

and control access to production to reduce the risk of

unauthorized modifications during deployment.

Pipeline Integrity and Deployment Verification

 Validate the integrity of deployment artifacts using

digital signatures or hashing to ensure that only verified

artifacts are deployed into production.

 Implement automated verification steps in the CD

pipeline, such as checksum validation and artifact signing,

to confirm artifact integrity before deployment.

Configuration Management and Drift Prevention

 Regularly review and audit deployment configurations

to prevent unauthorized changes and configuration drift,

which could introduce vulnerabilities or misalignments

in production.

 Use configuration management tools (e.g., Ansible,

Puppet, Spinnaker) to automate and enforce consistent

configurations across environments, minimizing the

risk of manual configuration errors.

Automated Vulnerability Scanning and Compliance

Checks

 Integrate automated security scans in the CD pipeline to

check for vulnerabilities in deployment artifacts before

they reach production. Ensure that compliance checks

are also enforced to meet industry and organizational

standards.

 Schedule periodic vulnerability assessments on deployed

artifacts and configurations in production environments

to catch any overlooked issues.

Logging, Monitoring, and Audit Trails

 Enable logging for all deployment activities, including

artifact deployment, configuration changes, and user

access to the CD system. Store logs securely and

monitor them for anomalies.

 Use centralized monitoring solutions to aggregate and

analyze CD logs in real time, allowing for prompt response

to unauthorized deployment attempts or suspicious

activity.

Secrets Management

 Store all credentials, API keys, and tokens required by

CD processes in an approved secrets management

solution (e.g., HashiCorp Vault, AWS Secrets Manager),

and avoid embedding secrets directly in deployment

scripts.

 Rotate secrets regularly and restrict access to deployment

credentials to only those processes or individuals that

require them.

Rollback and Recovery Procedures

 Establish automated rollback mechanisms to quickly

revert deployments if issues are detected post-deployment.

Define rollback strategies for specific failure scenarios,

such as artifact corruption or deployment errors.

 Regularly test rollback and recovery procedures to

ensure that they work effectively and that deployment

teams are trained in their use.

Deployment Approval and Release Gates

 Require approvals from designated stakeholders before

deploying to production, ensuring that critical deployments

are reviewed and vetted.

 Set up release gates for high-risk deployments, including

automated testing, compliance verification, and manual

checks where necessary to increase deployment confidence.

Deployment Freeze Windows

 Define deployment freeze windows during critical

times (e.g., holiday seasons or high-traffic periods) to

prevent unintended disruptions in production.

 Implement controls to block non-essential deployments

during freeze periods unless explicitly authorized

through a documented process.

Webhook and API Security

 Secure webhooks and APIs that trigger deployments

with authentication tokens and IP allowlists to prevent

unauthorized deployment actions.

 Periodically rotate API tokens and disable unused

webhooks to reduce exposure to unauthorized triggers

or attacks.

By implementing these security recommendations,

organizations can better safeguard their CD systems from

unauthorized access, configuration drift, and deployment of

compromised artifacts. Following these practices ensures

38 Anupam Mehta et al.: Software Supply Chain Security- Core Systems and Security Guidelines

that CD pipelines maintain their integrity, and that deployments

remain secure and reliable in production environments.

7. Additional Systems and Process

While core systems such as Source Code Management

(SCM), Continuous Integration (CI), Continuous Deployment

(CD), and artifact storage are crucial, there are additional

systems and processes within the software supply chain that

play equally important roles in maintaining security, resilience,

and compliance. These additional systems [10] involve

dependency management, third-party risk management,

infrastructure-as-code (IaC) management, testing frameworks,

and incident response processes, all of which help reduce

security vulnerabilities and streamline software delivery.

7.1. Dependency and Third-Party Library Management

Software development increasingly relies on third-party

libraries, open-source components, and external dependencies.

These third-party components introduce potential vulnerabilities

into the supply chain, as attackers can exploit dependencies

to introduce malicious code or leverage outdated components

with known vulnerabilities.

Security Recommendations:

 Implement a Software Bill of Materials (SBOM) to

document all dependencies used within the software,

facilitating vulnerability tracking and compliance.

 Enforce regular dependency audits and vulnerability

scanning for all third-party libraries to ensure components

remain secure and up-to-date.

 Use trusted repositories for dependencies and limit the

use of unverified or less popular third-party libraries.

 Adopt automated dependency management tools to

detect and notify teams about outdated or vulnerable

dependencies.

7.2. Infrastructure-as-Code (IaC) and Configuration

Management

Infrastructure-as-Code (IaC) is a key process in modern

DevOps practices, enabling organizations to define and

manage infrastructure configurations through code. However,

misconfigurations in IaC can introduce vulnerabilities across

deployment environments and lead to security risks in

production.

Security Recommendations:

 Apply static analysis and security checks on IaC scripts

to identify misconfigurations before deployment.

 Use role-based access control (RBAC) and policy-as-code

tools (e.g., Open Policy Agent) to enforce security policies

and control who can make changes to infrastructure.

 Regularly review and update IaC templates to reflect

changes in security standards and infrastructure

requirements.

 Monitor IaC deployments and configurations to detect

and resolve configuration drift in real time.

7.3. Secrets Management

Secrets management is essential for protecting sensitive

credentials, tokens, and API keys used throughout the

software supply chain. Poor handling of secrets can lead to

unauthorized access to critical systems and data.

Security Recommendations:

 Store secrets in secure secrets management solutions

(e.g., HashiCorp Vault, AWS Secrets Manager) rather

than embedding them in code or configuration files.

 Enforce multi-factor authentication (MFA) for access

to secrets management tools.

 Regularly rotate and audit secrets, ensuring that they

remain current and securely managed.

 Implement logging and monitoring for all access and

modifications to secrets to detect suspicious activities.

7.4. Testing and Quality Assurance (QA) Processes

Testing and QA processes are critical to identifying security

flaws and ensuring software reliability before deployment.

This includes both functional testing and security testing,

which are essential to maintaining a secure software supply

chain.

Security Recommendations:

 Integrate security testing tools (e.g., static and dynamic

analysis tools) into CI/CD pipelines to identify

vulnerabilities early in the development lifecycle.

 Use containerized or isolated environments for testing

to prevent accidental exposure of sensitive data or

configurations.

 Conduct regular penetration testing on staging

and production environments to identify potential

vulnerabilities and misconfigurations.

 Implement automated regression testing to ensure that

updates do not introduce new vulnerabilities or functional

errors.

7.5. Monitoring and Incident Response

Effective monitoring and incident response are essential

components of a resilient software supply chain, allowing

teams to detect and respond to threats before they can escalate.

Security Recommendations:

 Establish real-time monitoring across all supply chain

systems (SCM, CI/CD, artifact storage, etc.) to detect

anomalies or suspicious activities.

 Create an incident response plan tailored to the software

supply chain, with clearly defined roles, responsibilities,

and procedures.

 Regularly conduct incident response drills and tabletop

exercises to ensure teams are prepared to respond

quickly and effectively to security events.

 Implement log aggregation and analysis solutions (e.g.,

Splunk, ELK Stack) to centralize logs from all systems

 Science and Technology 2024, 14(2): 31-40 39

for efficient incident investigation and response.

7.6. Compliance and Regulatory Adherence

As software supply chains increasingly come under

scrutiny, organizations must ensure that their processes and

systems adhere to a growing body of regulatory standards

and industry best practices. Adherence to standards such

as GDPR, HIPAA, SOC 2, and ISO/IEC 27001 is crucial,

especially in highly regulated sectors like healthcare, finance,

and government.

Non-compliance not only risks regulatory penalties but

can also result in reputational damage and legal liabilities if

security lapses compromise sensitive information..

Following are few relevant standards and regulations for

Software supply chain security:

 The Center for Internet Security (CIS) Benchmark for

Supply Chain Security

 Supply Chain Levels for Software Artifacts (SLSA)

standard

 The National Institute of Standards and Technology

(NIST) published

 Secure Software Development Framework (SSDF) 1.1

 NIST SP 800-161 - Cybersecurity Supply Chain Risk

Management Practices for Systems and Organizations

 Internet Engineering Task Force (IETF) compiled The

Supply Chain Integrity, Transparency, and Trust (SCITT)

standard

 Executive Order 14028

 FDA-2021-D-1158-Cybersecurity in Medical Devices

 PCI DSS v4 - Requirement 6: Develop and Maintain

Secure Systems and Software

 European Union’s Cyber Resilience Act

 European Union’s Digital Operational Resilience for

the Financial Sector (DORA)

Ensuring that all components of the software supply chain

meet these requirements helps prevent regulatory penalties

and fosters trust with customers.

Security Recommendations:

 Each organization must comply with its respective

regulations and standards based on the industry sector

they fall in. For e.g. Healthcare sector organizations

must adhere to HIPAA regulations, Finance industry

handling payment card information (PCI) must comply

with PCI DSS.

 Conduct regular audits of supply chain processes to

ensure compliance with applicable industry standards

and regulatory requirements.

 Implement data governance policies to ensure data

handling within SCM, CI/CD, and artifact storage

systems meet legal and regulatory standards.

 Use policy-as-code frameworks (e.g., Open Policy Agent)

to automate compliance checks within CI/CD pipelines.

Policy-as-code allows organizations to enforce data

protection standards and access controls in real-time,

ensuring that each deployment adheres to regulatory

requirements without manual intervention.

 Maintain a compliance dashboard to track and report on

the compliance status of different components within

the software supply chain.

 Stay updated with changes in regulations and incorporate

them into security practices and supply chain policies.

Non-compliance with these regulations can lead to severe

legal and financial repercussions. For example, GDPR

violations can result in fines up to €20 million or 4% of global

annual revenue, whichever is higher. Additionally, security

lapses that expose sensitive data may lead to lawsuits, loss of

customer trust, and damage to an organization’s reputation.

Proactively implementing regulatory-aligned security

practices helps avoid these risks, strengthens trust with

clients and partners, and enhances the organization's overall

security posture.

By integrating compliance-driven security practices into

their software supply chains, organizations can better manage

regulatory risks, reduce legal liabilities, and build customer

confidence in their data protection and privacy measures.

8. Conclusions

The security of the software supply chain [9] is essential

for ensuring that digital products remain trustworthy,

compliant, and resilient against evolving threats. This paper

highlights the primary vulnerabilities across core systems—

SCM, CI, CD, and artifact storage—and provides practical,

standards-based recommendations to mitigate these risks. By

implementing the outlined security controls, organizations

can significantly reduce their exposure to supply chain

attacks, safeguard intellectual property, and strengthen their

overall software delivery process. Continuous vigilance and

adherence to best practices are key to maintaining a secure

and resilient supply chain.

REFERENCES

[1] Source Code Leakage - https://www.usenimbus.com/post/so
urce-code-leak-what-it-is-and-5-high-profile-examples.

[2] Codecov breach - exposure of information stored in CI
environments https://www.zdnet.com/article/codecov-breach
-impacted-hundreds-of-customer-networks/.

[3] Heroku breach from 2022 - Improper integrations with SCM
https://blog.heroku.com/april-2022-incident-review.

[4] National Institute of Standards and Technology (NIST).
(2015). Supply Chain Risk Management Practices for Federal
Information Systems and Organizations (Special Publication
800-161). NIST. Retrieved from https://csrc.nist.gov/publica
tions/detail/sp/800-161/rev-1/final.

[5] National Institute of Standards and Technology (NIST)- AES
https://www.nist.gov/publications/advanced-encryption-stan
dard-aes.

40 Anupam Mehta et al.: Software Supply Chain Security- Core Systems and Security Guidelines

[6] OWASP Foundation. (2020). OWASP Software Assurance
Maturity Model (SAMM), Version 2.0. OWASP. Retrieved
from https://owaspsamm.org/.

[7] International Organization for Standardization. (2013).
ISO/IEC 27001: Information Security Management. ISO.
Retrieved from https://www.iso.org/standard/54534.html.

[8] Cybersecurity & Infrastructure Security Agency (CISA).
(2022). Securing the Software Supply Chain for Developers.
CISA. Retrieved from https://cisa.gov/publication/securing-
software-supply-chain-developers.

[9] Sonatype. (2022). 2022 State of the Software Supply Chain.
Sonatype. Retrieved from https://www.sonatype.com/resources
/white-paper/state-of-the-software-supply-chain-2022.

[10] Microsoft Security Blog. (2020, March 12). Security in DevOps:
A Security Practitioner’s Guide. Microsoft. Retrieved from
https://www.microsoft.com/security/blog/2020/03/12/securit
y-in-devops/.

[11] Software Supply Chain Attacks

 SolarWinds (2020) FireEye. (2020, December 13). Highly
Evasive Attacker Leverages SolarWinds Supply Chain to
Compromise Multiple Global Victims with SUNBURST
Backdoor. FireEye Threat Research. Retrieved from

https://www.fireeye.com/blog/threat-research/2020/12/evasi
ve-attacker-leverages-solarwinds-supply-chain-compromises
-with-sunburst-backdoor.html.

 Kaseya VSA (2021) CISA. (2021, July 4). Compromise of
Kaseya VSA Platform and Associated Ransomware Attack.
Cybersecurity & Infrastructure Security Agency (CISA).
Retrieved from https://us-cert.cisa.gov/ncas/current-activity/
2021/07/04/compromise-kaseya-vsa-platform-and-associated
-ransomware-attack.

 Dependency Confusion Attacks (2021) Birsan, A. (2021,
February 10). Dependency Confusion: How I Hacked Into
Apple, Microsoft and Dozens of Other Companies. Medium.
Retrieved fromhttps://medium.com/@alex.birsan/dependenc
y-confusion-4a5d60fec610.

 Log4Shell Vulnerability in Log4j (2021) Apache Software
Foundation. (2021, December 10). Log4j Security
Vulnerability CVE-2021-44228. Apache Logging Services.
Retrieved from https://logging.apache.org/log4j/2.x/security.
html.

 3CX VoIP Supply Chain Attack (2023) CrowdStrike. (2023,
March 29). CrowdStrike Investigates Supply Chain Attack
Involving 3CX Desktop App. CrowdStrike Blog. Retrieved from
https://www.crowdstrike.com/blog/crowdstrike-investigates-
supply-chain-attack-involving-3cx-desktop-app/.

Copyright © 2024 The Author(s). Published by Scientific & Academic Publishing

This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

