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Abstract  The Beta Marshall-Olkin extended uniform (BMOEU) distribution is introduced. The rth moment, the mean, 
the variance, the cumulative distribution function, the reliability function and the hazard rate function is obtained for the new 
distribution. It is well known that an item fails when a stress to which it is subjected exceeds the corresponding strength. In 
this sense, strength can be viewed as “resistance to failure”. Good design practice is such that the strength is always greater 
than the expected stress. The safety factor can be defined in terms of strength and stress as strength/ stress. So, the BMOEU 
strength-stress model with different eight parameters will be derived here. 
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1. Introduction  
The continuous uniform distribution represents a situation 

where all outcomes in a range between a minimum and 
maximum value are equally likely. From a theoretical 
perspective, this distribution is a key one in risk analysis; 
many Monte Carlo software algorithms use a sample from 
this distribution (between zero and one) to generate random 
samples from other distributions .Also, there are a real-life 
processes that have this form of uncertainty. These could 
include for example: the position of a particular air molecule 
in a room, the point on a car tyre where the next puncture will 
occur, the number of seconds past the minute that the current 
time is, or the length of time that one may have to wait for a 
train. In oil exploration, the position of the oil-water contact 
in a potential prospect is also often considered to be 
uniformly continuously distributed. 

In statistics, when a p-value is used as a test statistic for a 
simple null hypothesis, and the distribution of the test 
statistic is continuous, then the p-value is uniformly 
distributed between 0 and 1 if the null hypothesis is true. 

Actually, there are a lot of uses for uniform distribution. 
Despite of the importance of what has been stated above, but 
the form of the distribution restricts its use in many other 
applications. 

In this paper, we introduce a generalization of the 
Extended Marshall Olkin Uniform distribution [1], referred 
to as the Beta Marshall Olkin Extended Uniform distribution 
(BMOEU) generated from the logit of a beta random 
variable. We provide a comprehensive treatment of the 
mathematical properties of this new distribution. For the new  
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distribution, we derive the probability density function, the 
cumulative distribution, the reliability function, the hazard 
rate function, the rth moment function and the stress-strength 
model. 

We proposed a distribution here with the hope it will 
attract wider applicability in other fields. The generalization 
is motivated by the work of Eugene et al. [7]. Eugene et al. 
(2002) defined the beta G distribution from a quite arbitrary 
cumulative distributionfunction (cdf), U(x) by 

𝐹𝐹(𝑥𝑥) = (1 𝛽𝛽(𝑎𝑎, 𝑏𝑏)⁄ )∫ 𝑤𝑤𝑎𝑎−1(1 −𝑤𝑤)𝑏𝑏−1𝑈𝑈(𝑥𝑥)
0  𝑑𝑑𝑑𝑑    (1) 

where a >0 and b >0 are two additional parameters whose 
role is to introduce skewness and to vary tail weight and 
𝛽𝛽(𝑎𝑎, 𝑏𝑏) = ∫ 𝑤𝑤𝑎𝑎−1(1 −𝑤𝑤)𝑏𝑏−11

0  𝑑𝑑𝑑𝑑 is the beta function. The 
class of distributions (1) has an increased attention after the 
works by Eugene et al. (2002) and Jones (2004) [11]. 
Application of 𝑋𝑋 = 𝑈𝑈−1(𝑉𝑉)  to the random variable V 
following a beta distribution with parameters a and b, V 
∼B(a, b) say, yields X with cdf (1). Eugene et al. (2002) 
defined the beta normal (BN) distribution by taking U(x) to 
be the cdf of the normal distribution and derived some of its 
first moments. General expressions for the moments of the 
BN distribution were derived (Gupta and Nadarajah, 2004) 
[9]. Nadarajah and Kotz (2004) [14] also introduced the beta 
Gumbel (BG) distribution by taking U(x) to be the cdf of the 
Gumbel distribution and provided closed-form expressions 
for the moments, the asymptotic distribution of the extreme 
order statistics and discussed the maximum likelihood 
estimation procedure. Nadarajah and Gupta (2004) [13] 
introduced the beta Frechet (BF) distribution by taking U(x) 
to be the Frechet distribution, derived the analytical shapes 
of the probability density function (pdf) and the hazard rate 
function and calculated the asymptotic distribution of the 
extreme order statistics. However, they do not investigate 
expressions for its moments and the information matrix 
which we do in this paper. Also, Nadarajah and Kotz (2005) 
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[15] worked with the beta exponential (BE) distribution and 
obtained the moment generating function, the first four 
cumulants, the asymptotic distribution of the extreme order 
statistics and discussed the maximum likelihood estimation. 
Barreto-Souza, Santos and Cordeiro (2010). 

[4] introduced the beta generalized exponential 
distribution (BGE) that includes the beta exponential and 
generalized exponential distributions as special cases. They 
provide a comprehensive mathematical treatment of this 
distribution. They derived the moment generating function 
and the rth moment thus generalizing some results in the 
literature. Expressions for the density, moment generating 
function and rth moment of the order statistics also are 
obtained also by them. They discussed estimation of the 
parameters by maximum likelihood and provide the 
information matrix. They observed in one application to real 
data set that this model is quite flexible and can be used quite 
effectively in analyzing positive data in place of the beta 
exponential and generalized exponential distributions. 
Amusan (2010) [2] defined and studied a three-parameter 
beta Maxwell distribution (BM). Various properties of the 
distribution were also discussed. The method of maximum 
likelihood was proposed to estimate the parameters of the 
distribution. Barreto-Souza, Cordeiro and Simas (2011) [3] 
derived some mathematical properties of the BF distribution 
in terms of the corresponding properties of the Frechet 
distribution. They derived also explicit expansions for the 
ordinary moments and L-moments and obtain the order 
statistics and their moments. They discussed also maximum 
likelihood estimation and calculate the information matrix 
which was not known. The information matrix is easily 
numerically determined. Two applications to real data sets 
are given by them to illustrate the potentiality of this 
distribution. Cordeiro and Lemonte (2011) [6] proposed the 
beta-half-Cauchy distribution (BHC) for modeling lifetime 
data. Various explicit expressions for its moments, 
generating and quantile functions, mean deviations, and 
density function of the order statistics and their moments are 
provided. The parameters of the new model are estimated by 
maximum likelihood, and the observed information matrix is 
derived. An application to lifetime real data shows that it can 
yield a better fit than three- and two-parameter 
Birnbaum-Saunders, gamma, and Weibull models. Zea, 
Silva, Bourguignon, Santos and Cordeiro (2012) [17] 
introduced the beta exponentiated Pareto distribution (BEP). 
Its density and failure rate functions can have different 
shapes. It contains as special models several important 
distributions discussed in the literature, such as the 
beta-Pareto and exponentiated Pareto distributions. They 
provided a comprehensive mathematical treatment of the 
distribution and derived expressions for the moments, 
generating and quantile functions and incomplete and 
L-moments. An explicit expression for Renyientropy is 
obtained. The method of maximum likelihood is used for 
estimating the model parameters and the observed 
information matrix is derived. The flexibility of the new 
model is illustrated with an application to a real data set. 

Castellares, Montenegro and Cordeiro (2013) [5] introduced 
the beta log-normal distribution (BLO) for which the 
log-normal distribution is a special case. Various properties 
of the new distribution are discussed by them. Expansions 
for the cumulative distribution and density functions that do 
not involve complicated functions are derived. They 
obtained expressions for its moments and for the moments of 
order statistics. The estimation of parameters is approached 
by the method of maximum likelihood and the expected 
information matrix is derived. The new model is quite 
flexible in analyzing positive data as an important alternative 
to the gamma, Weibull, generalized exponential, beta 
exponential and Birnbaum-Saunders distributions. The 
flexibility of the new distribution is illustrated in an 
application to a real data set. Rajab, Aleem, Nawaz and 
Daniyal (2013) [16] developed a new five parameter Beta 
Lomax Distribution (BLO) from a three parameter Lomax 
Distribution. They developed expressions for the rth moment; 
Skewness and Kurtosis of three parameters Lomax, and five 
parameters Beta Lomax Distribution. At the end, the 
Maximum Likelihood Estimators (MLE) of the parameters is 
obtained also. Merovci and Sharma (2014) [12] introduced 
beta-Lindley distribution that extends the Lindley 
distribution (BL). They provided a comprehensive 
mathematical treatment of this distribution. They derived the 
moment generating function and the rth moment thus, 
generalizing some results in the literature. Expressions for 
the density, moment generating function, and rth moment of 
the order statistics also are obtained. Further, they also 
discussed estimation of the unknown model parameters in 
both classical and Bayesian setup. The usefulness of the new 
model is illustrated by means of two real data sets. Jafari, 
Tahmasebi and Alizadeh (2014) [10] introduced a new 
four-parameter generalized version of the Gompertz model 
which is called Beta-Gompertz (BG) distribution. It includes 
some well-known lifetime distributions such as 
Beta-exponential and generalized Gompertz distributions as 
special sub-models. Some mathematical properties of the 
new distribution, such as closed-form expressions for the 
density, cumulative distribution, hazard rate function, the kth 
order moment, moment generating function, Shannon 
entropy, and the quantilemeasure are provided. They 
discussed maximum likelihood estimation of the BG 
parameters from one observed sample and derive the 
observed Fisher’s information matrix. A simulation study is 
performed in order to investigate the properties of the 
proposed estimator. At the end, in order to show the BG 
distribution flexibility, an application using a real data set is 
presented. We can write (1) as, 

𝐹𝐹(𝑥𝑥) = 𝐼𝐼𝑈𝑈(𝑥𝑥)(𝑎𝑎, 𝑏𝑏)              (2) 

Where, 𝐼𝐼𝑦𝑦(𝑎𝑎, 𝑏𝑏) = (1/𝐵𝐵(𝑎𝑎, 𝑏𝑏)∫ 𝑤𝑤𝑎𝑎−1(1 − 𝑤𝑤)𝑏𝑏−1 𝑑𝑑𝑑𝑑𝑦𝑦
0 , 

denotes the incomplete beta function ratio, i.e., the cdf of the 
beta distribution with parameters 𝑎𝑎and 𝑏𝑏 . For general 𝑎𝑎 
and 𝑏𝑏 , we can express (2) in terms of the well-known 
hypergeometric function defined by,  
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2𝐹𝐹1(𝛼𝛼,𝛽𝛽, 𝛾𝛾; 𝑥𝑥) = ∑ (𝛼𝛼)𝑖𝑖  (𝛽𝛽)𝑖𝑖
(𝛾𝛾)𝑖𝑖  𝑖𝑖!

𝑥𝑥𝑖𝑖∞
𝑖𝑖=0  

Where (𝛼𝛼)𝑖𝑖 = 𝛼𝛼(𝛼𝛼 + 1) … (𝛼𝛼 + 𝑖𝑖 − 1) denotes the 
ascending factorial. We obtain, 

𝐹𝐹(𝑥𝑥) =
𝑈𝑈(𝑥𝑥)𝑎𝑎

𝑎𝑎 𝐵𝐵(𝑎𝑎, 𝑏𝑏) 2 𝐹𝐹1(𝑎𝑎, 1 − 𝑏𝑏,𝑎𝑎 + 1;𝑈𝑈(𝑥𝑥)) 

The properties of the cdf, F(x) for any beta 𝑈𝑈  
distribution defined from a parent 𝑈𝑈(𝑥𝑥) in (1), could, in 
principle, follow from the properties of the hypergeometric 
function which are well established in the literature; see, for 
example, Section 9.1 of Gradshteyn and Ryzhik (2000) [8]. 
The probability density function (pdf) corresponding to (1) 
can be written in the form, 

𝑓𝑓(𝑥𝑥) = 1
𝐵𝐵(𝑎𝑎 ,𝑏𝑏)

𝑈𝑈(𝑥𝑥)𝑎𝑎−1�1 − 𝑈𝑈(𝑥𝑥)�𝑏𝑏−1𝑢𝑢(𝑥𝑥)     (3) 

where 𝑢𝑢(𝑥𝑥) = 𝜕𝜕𝜕𝜕(𝑥𝑥)/𝜕𝜕𝜕𝜕  is the pdf of the parent 
distribution. The pdf 𝑓𝑓(𝑥𝑥) will be mosttractable when the 

functions 𝑈𝑈(𝑥𝑥) and 𝑢𝑢(𝑥𝑥) have simple analytic expressions 
as is the caseof the MOEU distribution.  

The cdf and pdf of the Marshall Olkin Extended Uniform 
distribution (MOEU) distribution are, respectively [1], 

𝑈𝑈(𝑥𝑥) =  x (αθ + (1 − α)x)⁄  ,0 < 𝑥𝑥 < 𝜃𝜃,𝛼𝛼 > 0     (4) 

𝑢𝑢(𝑥𝑥) = αθ (αθ + (1 − α)x)2⁄ , 0 < 𝑥𝑥 < 𝜃𝜃  ,𝛼𝛼 > 0  (5) 

So, the reliability function is, 

𝑅𝑅(𝑥𝑥) = 1 − 𝑈𝑈(𝑥𝑥) = 𝛼𝛼(𝜃𝜃−𝑥𝑥)
𝛼𝛼𝛼𝛼+(1−𝛼𝛼)𝑥𝑥

         (6) 

where α  is the shape parameter and θ  is the scale 
parameter of the distribution. 

The hazard rate function of MOEU (α, θ) distribution is, 

h(x,α,θ) = θ [αθ + (1 − α)x](θ − x)⁄       (7) 

and the rth moment of MOEU (α, θ) distribution is, 

 

E(𝑋𝑋r) = αθ
(1−α)r+1 ∑

r!(−αθ )s

(r−s)!   s!  (r−s−1)
r
s=0  ∙ [(θ)r−s−1 − (αθ)r−s−1]                    (8) 

and then the first four essential moments mean, variance, skewness and kurtoses are, 

μ́1 = αθ
(1−α)2 (α − logα − 1),   μ2 = αθ2

(1−α)4 [(1 − α)2 − α(logα)2] ,  

Sk =
( αθ3

(1 − α)4 [𝛿𝛿(𝛼𝛼)] − 3 α2θ3

(1 − α)5 [2αlnα − α2 + 1][−lnα + α − 1] + 2 (αθ)3

(1 − α)6 [−lnα + α − 1]3)2

( αθ2

(1 − α)4 [(1 − α)2 − α(lnα)2])3
 

Where, 𝛿𝛿(𝛼𝛼) = −3α2lnα + α2 �α + 3
2
� − 3α + 1

2
 ,  

Kr =

{ αθ4

(1 − α)5 �4α3lnα + α3 �α + 16
3 � + 6α2 − 2α + 1

3� −   4 α2θ4

(1 − α)5 �−3α2lnα + α2 �α + 3
2� − 3α + 1

2� [−lnα + α − 1]

+ 6 α3θ4

(1 − α)7 [2αlnα − α2 + 1][−lnα + α − 1] 2 − 3 α4θ16

(1 − α)20 [−lnα + α − 1] 4 }

( αθ2

(1 − α)4 [(1 − α)2 − α(lnα)2])2
− 3 

The coefficient of variation is, 𝐶𝐶𝐶𝐶 = �(1 − α)2 − α(logα)2 �√α  (α − logα − 1)��  , α > 0 , And it depends only on 
parameter α. The q thquantile of a MOEU(α, θ) distribution is given by  

xq = 𝑈𝑈−1(q) = qαθ (1 − q(1 − α))⁄   ,0 ≤ q ≤ 1, Where 𝑈𝑈−1(∙) is the inverse distribution function. 

According to (3) and some of the above properties of a MOEU(α,θ) distribution, we get the Beta Marshall Olkin 
Extended Uniform distribution (BMOEU) with the following pdf, 

𝑓𝑓(𝑥𝑥) = (𝑈𝑈(𝑋𝑋))𝑎𝑎−1(𝑅𝑅(𝑥𝑥))𝑏𝑏−1

𝛽𝛽(𝑎𝑎 ,𝑏𝑏)
∙ 𝑢𝑢(𝑥𝑥)   , 0 < 𝑥𝑥 < 𝜃𝜃     = 𝜃𝜃  𝛼𝛼𝑏𝑏𝑥𝑥𝑎𝑎−1(𝜃𝜃−𝑥𝑥)𝑏𝑏−1

𝛽𝛽(𝑎𝑎 ,𝑏𝑏)(𝛼𝛼𝛼𝛼+(1−𝛼𝛼)𝑥𝑥)𝑎𝑎+𝑏𝑏   ,     0 < 𝑥𝑥 < 𝜃𝜃                 (9) 

The rth moment of the new BMOEU(a, b,α, θ) distribution is, 

𝐸𝐸(𝑥𝑥𝑧𝑧) = �𝑥𝑥𝑧𝑧𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
𝜃𝜃

0

 

                          = �
𝜃𝜃 𝛼𝛼𝑏𝑏𝑥𝑥𝑧𝑧+𝑎𝑎−1(𝜃𝜃 − 𝑥𝑥)𝑏𝑏−1

𝛽𝛽(𝑎𝑎, 𝑏𝑏)(𝛼𝛼𝛼𝛼 + (1 − 𝛼𝛼)𝑥𝑥)𝑎𝑎+𝑏𝑏

𝜃𝜃

0

 𝑑𝑑𝑑𝑑 
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Since, 

(𝛿𝛿 − 𝑤𝑤)𝛾𝛾−1 = 𝛿𝛿𝛾𝛾−1 ∑ (−1)𝑘𝑘 Γ𝛾𝛾
Γ𝛾𝛾−𝑘𝑘Γ𝑘𝑘+1𝛿𝛿𝑘𝑘

𝑤𝑤𝑘𝑘∞
𝑘𝑘=0                              (10) 

then, 

𝐸𝐸(𝑥𝑥𝑧𝑧) =
(𝛼𝛼𝛼𝛼)𝑏𝑏

𝛽𝛽(𝑎𝑎, 𝑏𝑏)
�(−1)𝑘𝑘

Γ𝑏𝑏
Γ𝑏𝑏−𝑘𝑘Γ𝑘𝑘+1𝜃𝜃𝑘𝑘

�
𝑥𝑥𝑘𝑘+𝑧𝑧+𝑎𝑎−1

(𝛼𝛼𝛼𝛼 + (1 − 𝛼𝛼)𝑥𝑥)𝑎𝑎+𝑏𝑏  𝑑𝑑𝑑𝑑
𝜃𝜃

0

𝑟𝑟

𝑘𝑘=0

 

And since, 

∫ 𝑤𝑤𝑚𝑚

(𝜉𝜉+𝜂𝜂𝜂𝜂 )𝑣𝑣
 𝑑𝑑𝑑𝑑𝜃𝜃

0 = � 1
𝜂𝜂𝑚𝑚+1 ∑

Γ𝑚𝑚+1(−𝜉𝜉)𝑠𝑠(𝜉𝜉+𝜂𝜂𝜂𝜂 )𝑚𝑚−𝑣𝑣−𝑠𝑠+1

Γ𝑚𝑚−𝑠𝑠+1Γ𝑠𝑠+1(𝑚𝑚−𝑣𝑣−𝑠𝑠+1)
𝑚𝑚
𝑠𝑠=0 �

0

𝜃𝜃
                          (11) 

By putting, 𝑚𝑚 = 𝑘𝑘 + 𝑧𝑧 + 𝑎𝑎 − 1, 𝑣𝑣 = 𝑎𝑎 + 𝑏𝑏, 𝜉𝜉 = 𝛼𝛼 𝜃𝜃, 𝜂𝜂 = 1 − 𝛼𝛼 we get,  

𝐸𝐸(𝑥𝑥𝑧𝑧) =
(𝛼𝛼𝛼𝛼)𝑏𝑏

𝛽𝛽(𝑎𝑎, 𝑏𝑏)
�

(−1)𝑘𝑘Γ𝑏𝑏
Γ𝑏𝑏−𝑘𝑘Γ𝑘𝑘+1 𝜃𝜃𝑘𝑘(1 − 𝛼𝛼)𝑧𝑧+𝑘𝑘+𝑎𝑎 � �

Γ𝑧𝑧+𝑘𝑘+𝑎𝑎(−𝛼𝛼𝛼𝛼)𝑠𝑠(𝛼𝛼𝛼𝛼 + (1 − 𝛼𝛼)𝑥𝑥)𝑧𝑧+𝑘𝑘−𝑏𝑏−𝑠𝑠

Γ𝑧𝑧+𝑘𝑘+𝑎𝑎−𝑠𝑠Γ𝑠𝑠+1 (𝑧𝑧 + 𝑘𝑘 − 𝑏𝑏 − 𝑠𝑠)

𝑧𝑧+𝑘𝑘+𝑎𝑎−1

𝑠𝑠=0

�
0

𝜃𝜃𝑟𝑟

𝑘𝑘=0

 

= (𝛼𝛼𝛼𝛼 )𝑏𝑏

𝛽𝛽(𝑎𝑎 ,𝑏𝑏)
∑ (−1)𝑘𝑘Γ𝑏𝑏

Γ𝑏𝑏−𝑘𝑘Γ𝑘𝑘+1𝜃𝜃𝑘𝑘(1−𝛼𝛼)𝑧𝑧+𝑘𝑘+𝑎𝑎
𝑟𝑟
𝑘𝑘=0 �∑ Γ𝑧𝑧+𝑘𝑘+𝑎𝑎 (−𝛼𝛼𝛼𝛼 )𝑠𝑠(𝜃𝜃𝑧𝑧+𝑘𝑘−𝑏𝑏−𝑠𝑠−(𝛼𝛼𝛼𝛼 )𝑧𝑧+𝑘𝑘−𝑏𝑏−𝑠𝑠)

Γ𝑧𝑧+𝑘𝑘+𝑎𝑎−𝑠𝑠Γ𝑠𝑠+1 (𝑧𝑧+𝑘𝑘−𝑏𝑏−𝑠𝑠)
𝑧𝑧+𝑘𝑘+𝑎𝑎−1
𝑠𝑠=0 �           (12) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒  𝑧𝑧 = 1  𝑡𝑡ℎ𝑒𝑒𝑒𝑒, the mean is, 

𝐸𝐸(𝑥𝑥) = (𝛼𝛼𝛼𝛼 )𝑏𝑏

𝛽𝛽(𝑎𝑎 ,𝑏𝑏)
∑ (−1)𝑘𝑘Γ𝑏𝑏

Γ𝑏𝑏−𝑘𝑘Γ𝑘𝑘+1𝜃𝜃𝑘𝑘(1−𝛼𝛼)𝑘𝑘+𝑎𝑎
𝑟𝑟
𝑘𝑘=0 �∑ Γ𝑘𝑘+𝑎𝑎+1(−𝛼𝛼𝛼𝛼 )𝑠𝑠(𝜃𝜃𝑘𝑘−𝑏𝑏−𝑠𝑠+1−(𝛼𝛼𝛼𝛼 )𝑘𝑘−𝑏𝑏−𝑠𝑠+1)

Γ𝑘𝑘+𝑎𝑎−𝑠𝑠+1Γ𝑠𝑠+1 (𝑘𝑘−𝑏𝑏−𝑠𝑠+1)
𝑘𝑘+𝑎𝑎
𝑠𝑠=0 �                 (13) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒  𝑧𝑧 = 2  , one can get the variance 𝑣𝑣(𝑥𝑥) as, 

𝐸𝐸(𝑥𝑥2) =
(𝛼𝛼𝛼𝛼)𝑏𝑏

𝛽𝛽(𝑎𝑎, 𝑏𝑏)
�

(−1)𝑘𝑘Γ𝑏𝑏
Γ𝑏𝑏−𝑘𝑘Γ𝑘𝑘+1𝜃𝜃𝑘𝑘(1 − 𝛼𝛼)𝑘𝑘+𝑎𝑎+1

𝑟𝑟

𝑘𝑘=0

� �
Γ𝑘𝑘+𝑎𝑎+2(−𝛼𝛼𝛼𝛼)𝑠𝑠(𝜃𝜃𝑘𝑘−𝑏𝑏−𝑠𝑠+2 − (𝛼𝛼𝛼𝛼)𝑘𝑘−𝑏𝑏−𝑠𝑠+2)

Γ𝑘𝑘+𝑎𝑎−𝑠𝑠+2Γ𝑠𝑠+1 (𝑘𝑘 − 𝑏𝑏 − 𝑠𝑠 + 2)

𝑘𝑘+𝑎𝑎+1

𝑠𝑠=0

� 

𝑣𝑣(𝑥𝑥) = 𝐸𝐸(𝑥𝑥2) − (𝐸𝐸(𝑥𝑥))2 

    =
(𝛼𝛼𝛼𝛼)𝑏𝑏

𝛽𝛽(𝑎𝑎, 𝑏𝑏)
�

(−1)𝑘𝑘Γ𝑏𝑏
Γ𝑏𝑏−𝑘𝑘Γ𝑘𝑘+1𝜃𝜃𝑘𝑘(1 − 𝛼𝛼)𝑘𝑘+𝑎𝑎+1

𝑟𝑟

𝑘𝑘=0

� �
Γ𝑘𝑘+𝑎𝑎+2(−𝛼𝛼𝛼𝛼)𝑠𝑠(𝜃𝜃𝑘𝑘−𝑏𝑏−𝑠𝑠+2 − (𝛼𝛼𝛼𝛼)𝑘𝑘−𝑏𝑏−𝑠𝑠+2)

Γ𝑘𝑘+𝑎𝑎−𝑠𝑠+2Γ𝑠𝑠+1 (𝑘𝑘 − 𝑏𝑏 − 𝑠𝑠 + 2)

𝑘𝑘+𝑎𝑎+1

𝑠𝑠=0

� 

      −� (𝛼𝛼𝛼𝛼 )𝑏𝑏

𝛽𝛽(𝑎𝑎 ,𝑏𝑏)
∑ (−1)𝑘𝑘Γ𝑏𝑏

Γ𝑏𝑏−𝑘𝑘Γ𝑘𝑘+1𝜃𝜃𝑘𝑘(1−𝛼𝛼)𝑘𝑘+𝑎𝑎
𝑟𝑟
𝑘𝑘=0 �∑ Γ𝑘𝑘+𝑎𝑎+1(−𝛼𝛼𝛼𝛼 )𝑠𝑠(𝜃𝜃𝑘𝑘−𝑏𝑏−𝑠𝑠+1−(𝛼𝛼𝛼𝛼 )𝑘𝑘−𝑏𝑏−𝑠𝑠+1)

Γ𝑘𝑘+𝑎𝑎−𝑠𝑠+1Γ𝑠𝑠+1(𝑘𝑘−𝑏𝑏−𝑠𝑠+1)
𝑘𝑘+𝑎𝑎
𝑠𝑠=0 ��

2
              (14) 

The cumulative distribution function can be derived as follows,  

𝐹𝐹(𝑥𝑥) = 𝜃𝜃  𝛼𝛼𝑏𝑏

𝛽𝛽(𝑎𝑎 ,𝑏𝑏)∫
𝑦𝑦𝑎𝑎−1(𝜃𝜃−𝑦𝑦)𝑏𝑏−1

(𝛼𝛼𝛼𝛼+(1−𝛼𝛼)𝑦𝑦)𝑎𝑎+𝑏𝑏  𝑑𝑑𝑑𝑑𝑥𝑥
0 ,   

𝐹𝐹(𝑥𝑥) = (𝛼𝛼𝛼𝛼 )𝑏𝑏

𝛽𝛽(𝑎𝑎 ,𝑏𝑏)
∑ (−1)𝑘𝑘Γ𝑏𝑏

Γ𝑏𝑏−𝑘𝑘Γ𝑘𝑘+1𝜃𝜃𝑘𝑘
∫ 𝑦𝑦𝑎𝑎+𝑘𝑘−1

(𝛼𝛼𝛼𝛼+(1−𝛼𝛼)𝑦𝑦)𝑎𝑎+𝑏𝑏  𝑑𝑑𝑑𝑑𝜃𝜃
0

𝑟𝑟
𝑘𝑘=0   (By using (10)) 

By using (11) with, 𝑤𝑤 = 𝑦𝑦 ,𝑚𝑚 = 𝑎𝑎 + 𝑘𝑘 − 1 ,𝑣𝑣 = 𝑎𝑎 + 𝑏𝑏 , 𝜉𝜉 = 𝛼𝛼𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝜂𝜂 = (1 − 𝛼𝛼) , we get 

𝐹𝐹(𝑥𝑥) =
(𝛼𝛼𝛼𝛼)𝑏𝑏

𝛽𝛽(𝑎𝑎, 𝑏𝑏)�
(−1)𝑘𝑘Γ𝑏𝑏

Γ𝑏𝑏−𝑘𝑘Γ𝑘𝑘+1𝜃𝜃𝑘𝑘(1 − 𝛼𝛼)𝑘𝑘+𝑎𝑎 � �
Γ𝑘𝑘+𝑎𝑎(−𝛼𝛼𝛼𝛼)𝑠𝑠(𝛼𝛼𝛼𝛼 + (1 − 𝛼𝛼)𝑦𝑦)𝑘𝑘−𝑏𝑏−𝑠𝑠

Γ𝑘𝑘+𝑎𝑎−𝑠𝑠Γ𝑠𝑠+1 (𝑘𝑘 − 𝑏𝑏 − 𝑠𝑠)

𝑘𝑘+𝑎𝑎−1

𝑠𝑠=0

�
0

𝑥𝑥𝑟𝑟

𝑘𝑘=0

 

= (𝛼𝛼𝛼𝛼 )𝑏𝑏

𝛽𝛽(𝑎𝑎 ,𝑏𝑏)
∑ (−1)𝑘𝑘Γ𝑏𝑏

Γ𝑏𝑏−𝑘𝑘Γ𝑘𝑘+1𝜃𝜃𝑘𝑘(1−𝛼𝛼)𝑘𝑘+𝑎𝑎 �∑
Γ𝑘𝑘+𝑎𝑎 (−𝛼𝛼𝛼𝛼 )𝑠𝑠

Γ𝑘𝑘+𝑎𝑎−𝑠𝑠Γ𝑠𝑠+1 (𝑘𝑘−𝑏𝑏−𝑠𝑠)
((𝛼𝛼𝛼𝛼 + (1 − 𝛼𝛼)𝑥𝑥)𝑘𝑘−𝑏𝑏−𝑠𝑠 − (𝛼𝛼𝛼𝛼)𝑘𝑘−𝑏𝑏−𝑠𝑠)𝑘𝑘+𝑎𝑎−1

𝑠𝑠=0 �𝑟𝑟
𝑘𝑘=0    (15) 

So, the reliability function will be, 

𝑅𝑅(𝑥𝑥) = 1 − 𝐹𝐹(𝑥𝑥) 

= 1 − (𝛼𝛼𝛼𝛼 )𝑏𝑏

𝛽𝛽(𝑎𝑎 ,𝑏𝑏)
∑ (−1)𝑘𝑘Γ𝑏𝑏

Γ𝑏𝑏−𝑘𝑘Γ𝑘𝑘+1𝜃𝜃𝑘𝑘(1−𝛼𝛼)𝑘𝑘+𝑎𝑎 �∑
Γ𝑘𝑘+𝑎𝑎 (−𝛼𝛼𝛼𝛼 )𝑠𝑠

Γ𝑘𝑘+𝑎𝑎−𝑠𝑠Γ𝑠𝑠+1(𝑘𝑘−𝑏𝑏−𝑠𝑠)
((𝛼𝛼𝛼𝛼 + (1 − 𝛼𝛼)𝑥𝑥)𝑘𝑘−𝑏𝑏−𝑠𝑠 − (𝛼𝛼𝛼𝛼)𝑘𝑘−𝑏𝑏−𝑠𝑠)𝑘𝑘+𝑎𝑎−1

𝑠𝑠=0 �𝑟𝑟
𝑘𝑘=0  (16) 
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And then the hazard rate is, 

ℎ(𝑥𝑥) =
𝑓𝑓(𝑥𝑥)
𝑅𝑅(𝑥𝑥)

 

=  𝜃𝜃  𝛼𝛼𝑏𝑏𝑥𝑥𝑎𝑎−1(𝜃𝜃−𝑥𝑥)𝑏𝑏−1 𝛽𝛽(𝑎𝑎 ,𝑏𝑏)(𝛼𝛼𝛼𝛼+(1−𝛼𝛼)𝑥𝑥)𝑎𝑎+𝑏𝑏�

1−(𝛼𝛼𝛼𝛼 )𝑏𝑏
𝛽𝛽 (𝑎𝑎 ,𝑏𝑏)∑

(−1)𝑘𝑘Γ𝑏𝑏
Γ𝑏𝑏−𝑘𝑘Γ𝑘𝑘+1𝜃𝜃𝑘𝑘 (1−𝛼𝛼)𝑘𝑘+𝑎𝑎 �∑

Γ𝑘𝑘+𝑎𝑎 (−𝛼𝛼𝛼𝛼 )𝑠𝑠

Γ𝑘𝑘+𝑎𝑎−𝑠𝑠Γ𝑠𝑠+1 (𝑘𝑘−𝑏𝑏−𝑠𝑠)�(𝛼𝛼𝛼𝛼+(1−𝛼𝛼)𝑥𝑥)𝑘𝑘−𝑏𝑏−𝑠𝑠−(𝛼𝛼𝛼𝛼 )𝑘𝑘−𝑏𝑏−𝑠𝑠�𝑘𝑘+𝑎𝑎−1
𝑠𝑠=0 �𝑟𝑟

𝑘𝑘=0

      (17) 

2. Stress Strength Reliability 

The Stress–strength analysis is the analysis of the strength of the materials and the interference of the stresses placed on the 
materials, where "materials" is not necessarily the raw goods or parts, but can be an entire system. Stress-Strength Analysis is 
a tool used in reliability engineering. Stress-strength analysis has been used in mechanical component design. Inferences 
about R = P[Y < X], where X and Y are two independent random variables, is very common in the reliability literature. For 
example, if X is the strength of a component which is subject to a stress Y, then R is a measure of system performance and 
arises in the context of mechanical reliability of a system. The system fails if and only if at any time the applied stress is 
greater than its strength. 

So, following we will derived the BMOEU strength-stress model with different eight parameters. 
Let x and y be the strength and stress random variables, independent of each other, follow respectively 

BMOEU(𝑑𝑑, 𝑐𝑐, 𝜆𝜆, 𝜏𝜏) and BMOEU(𝑎𝑎, 𝑏𝑏,𝛼𝛼,𝜃𝜃), then, the stress-strength reliability model is, 

𝑝𝑝(𝑦𝑦 < 𝑥𝑥) = � 𝑓𝑓𝑥𝑥(𝑥𝑥)𝐹𝐹𝑦𝑦(𝑥𝑥) 𝑑𝑑𝑑𝑑
𝜃𝜃

0
 

         = �
𝜆𝜆𝑐𝑐𝜏𝜏𝑥𝑥𝑑𝑑−1(𝜏𝜏 − 𝑥𝑥)𝑐𝑐−1

𝛽𝛽(𝑑𝑑, 𝑐𝑐)(𝜆𝜆𝜆𝜆 + (1 − 𝜆𝜆)𝑥𝑥)𝑑𝑑+𝑐𝑐

𝜃𝜃

0

∗
(𝛼𝛼𝛼𝛼)𝑏𝑏

𝛽𝛽(𝑎𝑎, 𝑏𝑏)�
(−1)𝑘𝑘Γ𝑏𝑏

Γ𝑏𝑏−𝑘𝑘Γ𝑘𝑘+1𝜃𝜃𝑘𝑘(1 − 𝛼𝛼)𝑘𝑘+𝑎𝑎 � �
Γ𝑎𝑎+𝑘𝑘(−𝛼𝛼𝛼𝛼)𝑠𝑠

Γ𝑎𝑎+𝑘𝑘−𝑠𝑠Γ𝑠𝑠+1(𝑘𝑘 − 𝑏𝑏 − 𝑠𝑠)
((𝛼𝛼𝛼𝛼 + (1 − 𝛼𝛼)𝑥𝑥)𝑘𝑘−𝑏𝑏−𝑠𝑠

𝑘𝑘+𝑎𝑎−1

𝑠𝑠=0

𝑟𝑟

𝑘𝑘=0

− (𝛼𝛼𝛼𝛼)𝑘𝑘−𝑏𝑏−𝑠𝑠)� 𝑑𝑑𝑑𝑑 

=
𝜆𝜆𝑐𝑐𝜏𝜏(𝛼𝛼𝛼𝛼)𝑏𝑏

𝛽𝛽(𝑑𝑑, 𝑐𝑐)𝛽𝛽(𝑎𝑎, 𝑏𝑏)
�

(−1)𝑘𝑘Γ𝑏𝑏
Γ𝑏𝑏−𝑘𝑘Γ𝑘𝑘+1𝜃𝜃𝑘𝑘(1 − 𝛼𝛼)𝑘𝑘+𝑎𝑎

𝑟𝑟

𝑘𝑘=0

�
Γ𝑎𝑎+𝑘𝑘(−𝛼𝛼𝛼𝛼)𝑠𝑠

Γ𝑎𝑎+𝑘𝑘−𝑠𝑠Γ𝑠𝑠+1(𝑘𝑘 − 𝑏𝑏 − 𝑠𝑠)

𝑘𝑘+𝑎𝑎−1

𝑠𝑠=0

∗ 

�∫ 𝑥𝑥𝑑𝑑−1(𝜏𝜏−𝑥𝑥)𝑐𝑐−1(𝛼𝛼𝛼𝛼+(1−𝛼𝛼)𝑥𝑥)𝑘𝑘−𝑏𝑏−𝑠𝑠

(𝜆𝜆𝜆𝜆+(1−𝜆𝜆)𝑥𝑥)𝑑𝑑+𝑐𝑐 𝑑𝑑𝑑𝑑 − (𝛼𝛼𝛼𝛼)𝑘𝑘−𝑏𝑏−𝑠𝑠 ∫ 𝑥𝑥𝑑𝑑−1(𝜏𝜏−𝑥𝑥)𝑐𝑐−1

(𝜆𝜆𝜆𝜆+(1−𝜆𝜆)𝑥𝑥)𝑑𝑑+𝑐𝑐 𝑑𝑑𝑑𝑑
𝜃𝜃

0
𝜃𝜃

0 �, 

Below, we'll solve integrals inside the brackets above each one separately, so the solution of the first integral is, 

𝐼𝐼1 = �
𝑥𝑥𝑑𝑑−1(𝜏𝜏 − 𝑥𝑥)𝑐𝑐−1(𝛼𝛼𝛼𝛼 + (1 − 𝛼𝛼)𝑥𝑥)𝑘𝑘−𝑏𝑏−𝑠𝑠

(𝜆𝜆𝜆𝜆 + (1 − 𝜆𝜆)𝑥𝑥)𝑑𝑑+𝑐𝑐 𝑑𝑑𝑑𝑑
𝜃𝜃

0
 

= �
(−1)𝑘𝑘Γ𝑐𝑐𝜏𝜏𝑐𝑐−𝑙𝑙−1

Γ𝑐𝑐−𝑙𝑙Γ𝑙𝑙+1

∞

𝑙𝑙=0
�

𝑥𝑥𝑑𝑑+𝑙𝑙−1(𝛼𝛼𝛼𝛼 + (1 − 𝛼𝛼)𝑥𝑥)𝑘𝑘−𝑏𝑏−𝑠𝑠

(𝜆𝜆𝜆𝜆 + (1 − 𝜆𝜆)𝑥𝑥)𝑑𝑑+𝑐𝑐 𝑑𝑑𝑑𝑑
𝜃𝜃

0
(By using (10)) 

Since, 

(𝜉𝜉 + 𝜂𝜂𝜂𝜂)𝑣𝑣 = 𝜉𝜉𝑣𝑣 ∑ 𝑣𝑣!
(𝑣𝑣−𝑝𝑝)! 𝑝𝑝!

(𝜂𝜂
𝜉𝜉
𝑤𝑤)𝑝𝑝∞

𝑝𝑝=0                                  (18) 

𝑤𝑤𝑤𝑤𝑤𝑤ℎ  𝜉𝜉 = 𝛼𝛼𝛼𝛼 , 𝜂𝜂 = (1 − 𝛼𝛼) 𝑎𝑎𝑎𝑎𝑎𝑎  𝑣𝑣 = 𝑘𝑘 − 𝑏𝑏 − 𝑠𝑠, we get,  

𝐼𝐼1 = �
(−1)𝑙𝑙Γ𝑐𝑐 𝜏𝜏𝑐𝑐−𝑙𝑙−1

Γ𝑐𝑐−𝑙𝑙Γ𝑙𝑙+1

∞

𝑙𝑙=0
�

𝑥𝑥𝑑𝑑+𝑙𝑙−1

(𝜆𝜆𝜆𝜆 + (1 − 𝜆𝜆)𝑥𝑥)𝑑𝑑+𝑐𝑐

𝜃𝜃

0
(𝛼𝛼𝛼𝛼)𝑘𝑘−𝑏𝑏−𝑠𝑠�

Γ𝑘𝑘−𝑏𝑏−𝑠𝑠+1 ((1 − 𝛼𝛼)𝑥𝑥)𝑝𝑝

Γ𝑝𝑝+1Γ𝑘𝑘−𝑏𝑏−𝑠𝑠−𝑝𝑝+1(𝛼𝛼𝛼𝛼)𝑝𝑝
 𝑑𝑑𝑑𝑑

∞

𝑝𝑝=0
 

                         = � �
(−1)𝑙𝑙Γ𝑐𝑐 𝜏𝜏𝑐𝑐−𝑙𝑙−1

Γ𝑐𝑐−𝑙𝑙Γ𝑙𝑙+1
(𝛼𝛼𝛼𝛼)𝑘𝑘−𝑏𝑏−𝑝𝑝−𝑠𝑠

Γ𝑘𝑘−𝑏𝑏−𝑠𝑠+1(1 − 𝛼𝛼)𝑝𝑝

Γ𝑝𝑝+1Γ𝑘𝑘−𝑏𝑏−𝑠𝑠−𝑝𝑝+1

∞

𝑝𝑝=0

∞

𝑙𝑙=0
�

𝑥𝑥𝑑𝑑+𝑙𝑙+𝑝𝑝−1

(𝜆𝜆𝜆𝜆 + (1 − 𝜆𝜆)𝑥𝑥)𝑑𝑑+𝑐𝑐

𝜃𝜃

0
 𝑑𝑑𝑑𝑑 
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Since, ∫ 𝑥𝑥𝑑𝑑+𝑙𝑙+𝑝𝑝−1

(𝜆𝜆𝜆𝜆+(1−𝜆𝜆)𝑥𝑥)𝑑𝑑+𝑐𝑐
𝜃𝜃

0  𝑑𝑑𝑑𝑑 = 1
(1−𝜆𝜆)𝑑𝑑+𝑙𝑙+𝑝𝑝 ∑

Γ𝑑𝑑+𝑙𝑙+𝑝𝑝 (−𝜆𝜆𝜆𝜆 )𝑗𝑗

Γ𝑑𝑑+𝑙𝑙+𝑝𝑝−𝑗𝑗 Γ𝑗𝑗+1(𝑙𝑙+𝑝𝑝−𝑐𝑐−𝑗𝑗 )
��(𝜆𝜆𝜆𝜆 + (1 − 𝜆𝜆)𝑥𝑥)𝑙𝑙+𝑝𝑝−𝑐𝑐−𝑗𝑗 ��0

𝜃𝜃𝑑𝑑+𝑙𝑙+𝑝𝑝−1
𝑗𝑗=0  

by using (11) with 𝑚𝑚 = 𝑑𝑑 + 𝑙𝑙 + 𝑝𝑝 − 1 , 𝑣𝑣 = 𝑑𝑑 + 𝑐𝑐 , 𝜉𝜉 = 𝜆𝜆𝜆𝜆 𝑎𝑎𝑎𝑎𝑎𝑎 𝜂𝜂 = 1 − 𝜆𝜆 we get, 

𝐼𝐼1 = � �
(−1)𝑙𝑙Γ𝑐𝑐  Γ𝑘𝑘−𝑏𝑏−𝑠𝑠+1

Γ𝑐𝑐−𝑙𝑙Γ𝑙𝑙+1Γ𝑝𝑝+1Γ𝑘𝑘−𝑏𝑏−𝑠𝑠−𝑝𝑝+1(1 − 𝜆𝜆)𝑑𝑑+𝑙𝑙+𝑝𝑝 (𝛼𝛼𝛼𝛼)𝑘𝑘−𝑏𝑏−𝑝𝑝−𝑠𝑠(1 − 𝛼𝛼)𝑝𝑝
∞

𝑝𝑝=0

∞

𝑙𝑙=0
𝜏𝜏𝑐𝑐−𝑙𝑙−1 

                          ∗  �
Γ𝑑𝑑+𝑙𝑙+𝑝𝑝(−𝜆𝜆𝜆𝜆)𝑗𝑗

Γ𝑑𝑑+𝑙𝑙+𝑝𝑝−𝑗𝑗 Γ𝑗𝑗+1(𝑙𝑙 + 𝑝𝑝 − 𝑐𝑐 − 𝑗𝑗)
{(𝜆𝜆𝜆𝜆 + (1 − 𝜆𝜆)𝜃𝜃)𝑙𝑙+𝑝𝑝−𝑐𝑐−𝑗𝑗 − (𝜆𝜆𝜆𝜆)𝑙𝑙+𝑝𝑝−𝑐𝑐−𝑗𝑗 }

𝑑𝑑+𝑙𝑙+𝑝𝑝−1

𝑗𝑗=0

     

The solution of the second integral is, 

𝐼𝐼2 = ∫ 𝑥𝑥𝑑𝑑−1(𝜏𝜏−𝑥𝑥)𝑐𝑐−1

(𝜆𝜆𝜆𝜆+(1−𝜆𝜆)𝑥𝑥)𝑑𝑑+𝑐𝑐  𝑑𝑑𝑑𝑑𝜃𝜃
0 = 𝜏𝜏𝑐𝑐−1 ∑ (−1)𝑙𝑙Γ𝑐𝑐

Γ𝑐𝑐−𝑙𝑙Γ𝑙𝑙+1𝜏𝜏𝑙𝑙
∞
𝑙𝑙=0 ∫ 𝑥𝑥𝑑𝑑+𝑙𝑙−1

(𝜆𝜆𝜆𝜆+(1−𝜆𝜆)𝑥𝑥)𝑑𝑑+𝑐𝑐 𝑑𝑑𝑑𝑑
𝜃𝜃

0  (by using (10)) 

By using (11) with,  𝑚𝑚 = 𝑑𝑑 + 𝑙𝑙 − 1 , 𝑣𝑣 = 𝑑𝑑 + 𝑐𝑐 , 𝜉𝜉 = 𝜆𝜆𝜆𝜆 𝑎𝑎𝑎𝑎𝑎𝑎 𝜂𝜂 = 1 − 𝜆𝜆 , we get, 

𝐼𝐼2 = �
(−1)𝑙𝑙Γ𝑐𝑐𝜏𝜏𝑐𝑐−1

Γ𝑐𝑐−𝑙𝑙Γ𝑙𝑙+1𝜏𝜏𝑙𝑙(1 − 𝜆𝜆)𝑑𝑑+𝑙𝑙 �
Γ𝑑𝑑+𝑙𝑙(−𝜆𝜆𝜆𝜆)𝑗𝑗

Γ𝑑𝑑+𝑙𝑙−𝑠𝑠Γ𝑗𝑗+1(𝑙𝑙 − 𝑐𝑐 − 𝑗𝑗)
�{(𝜆𝜆𝜆𝜆 + (1 − 𝜆𝜆)𝑥𝑥)𝑙𝑙−𝑐𝑐−𝑗𝑗 }�

0
𝜃𝜃

𝑑𝑑+𝑙𝑙−1

𝑗𝑗=0

∞

𝑙𝑙=0

 

      = �
(−1/𝜏𝜏)𝑙𝑙Γ𝑐𝑐𝜏𝜏𝑐𝑐−1(1 − 𝜆𝜆)−(𝑑𝑑+𝑙𝑙)

Γ𝑐𝑐−𝑙𝑙Γ𝑙𝑙+1
�

Γ𝑑𝑑+𝑙𝑙(−𝜆𝜆𝜆𝜆)𝑗𝑗

Γ𝑑𝑑+𝑙𝑙−𝑗𝑗 Γ𝑗𝑗+1(𝑙𝑙 − 𝑐𝑐 − 𝑗𝑗)
{(𝜆𝜆𝜆𝜆 + (1 − 𝜆𝜆)𝜃𝜃)𝑙𝑙−𝑐𝑐−𝑗𝑗 − (𝜆𝜆𝜆𝜆)𝑙𝑙−𝑐𝑐−𝑗𝑗 }

𝑑𝑑+𝑙𝑙−1

𝑗𝑗=0

∞

𝑙𝑙=0

 

Finally the stress-strength reliability is 

𝑝𝑝(𝑦𝑦 < 𝑥𝑥) =
𝜆𝜆𝑐𝑐𝜏𝜏(𝛼𝛼𝛼𝛼)𝑏𝑏

𝛽𝛽(𝑑𝑑, 𝑐𝑐)𝛽𝛽(𝑎𝑎, 𝑏𝑏)
�

(−1)𝑘𝑘Γ𝑏𝑏
Γ𝑏𝑏−𝑘𝑘Γ𝑘𝑘+1𝜃𝜃𝑘𝑘(1 − 𝛼𝛼)𝑘𝑘+𝑎𝑎

𝑟𝑟

𝑘𝑘=0

�
Γ𝑎𝑎+𝑘𝑘(−𝛼𝛼𝛼𝛼)𝑠𝑠

Γ𝑎𝑎+𝑘𝑘−𝑠𝑠Γ𝑠𝑠+1(𝑘𝑘 − 𝑏𝑏 − 𝑠𝑠)

𝑘𝑘+𝑎𝑎−1

𝑠𝑠=0

∗ 

�∑ ∑ (−1)𝑙𝑙Γ𝑐𝑐  Γ𝑘𝑘−𝑏𝑏−𝑠𝑠+1
Γ𝑐𝑐−𝑙𝑙Γ𝑙𝑙+1Γ𝑝𝑝+1Γ𝑘𝑘−𝑏𝑏−𝑠𝑠−𝑝𝑝+1(1−𝜆𝜆)𝑑𝑑+𝑙𝑙+𝑝𝑝 (𝛼𝛼𝛼𝛼)𝑘𝑘−𝑏𝑏−𝑝𝑝−𝑠𝑠(1 − 𝛼𝛼)𝑝𝑝∞

𝑝𝑝=0
∞
𝑙𝑙=0 𝜏𝜏𝑐𝑐−𝑙𝑙−1 ∑ Γ𝑑𝑑+𝑙𝑙+𝑝𝑝 (−𝜆𝜆𝜆𝜆 )𝑗𝑗

Γ𝑑𝑑+𝑙𝑙+𝑝𝑝−𝑗𝑗 Γ𝑗𝑗+1(𝑙𝑙+𝑝𝑝−𝑐𝑐−𝑗𝑗 )
�(𝜆𝜆𝜆𝜆 +𝑑𝑑+𝑙𝑙+𝑝𝑝−1

𝑗𝑗=0

(1 − 𝜆𝜆)𝜃𝜃)𝑙𝑙+𝑝𝑝−𝑐𝑐−𝑗𝑗 − (𝜆𝜆𝜆𝜆)𝑙𝑙+𝑝𝑝−𝑐𝑐−𝑗𝑗 } − (𝛼𝛼𝛼𝛼)𝑘𝑘−𝑏𝑏−𝑠𝑠 ∑ (−1/𝜏𝜏)𝑙𝑙Γ𝑐𝑐𝜏𝜏𝑐𝑐−1(1−𝜆𝜆)−(𝑑𝑑+𝑙𝑙)

Γ𝑐𝑐−𝑙𝑙Γ𝑙𝑙+1
∑ Γ𝑑𝑑+𝑙𝑙(−𝜆𝜆𝜆𝜆 )𝑗𝑗

Γ𝑑𝑑+𝑙𝑙−𝑗𝑗 Γ𝑗𝑗+1(𝑙𝑙−𝑐𝑐−𝑗𝑗 )
�(𝜆𝜆𝜆𝜆 +𝑑𝑑+𝑙𝑙−1

𝑗𝑗=0
∞
𝑙𝑙=0

(1 − 𝜆𝜆)𝜃𝜃)𝑙𝑙−𝑐𝑐−𝑗𝑗 − (𝜆𝜆𝜆𝜆)𝑙𝑙−𝑐𝑐−𝑗𝑗 }�                                                                 (19) 

3. Summary and Conclusions  
In spite of the great importance of the uniform distribution 

uses, but unfortunately the form of the distribution and its 
properties reduced the distribution applications, especially in 
real life. This issue has made us think to construct other 
distributions based on the uniform distribution, So that the 
new distributions have flexible forms and properties to 
represent a lot of other applications. 

The Beta Marshall-Olkin extended uniform (BMOEU) 
distribution is introduced. Some important distributional 
properties is obtained for the new distribution, alongside the 
BMOEU strength-stress model with different eight 
parameters will be derived here. 
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