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Abstract  This paper presents the use of Support Vector Machines (SVM) methodology for fault detection and diagnosis. 
Two approaches are addressed: the SVM for classification (Support Vector Classification – SVC) and SVM for regression 
(Support Vector Regression – SVR). A comparison was made between the two techniques through the study of a reactor of 
cyclopentenol production. In the case studied, different fault scenarios were introduced and it was evaluated which technique 
was able to detect and diagnose them. Finally, a comparison was made between the fault detection methodologies based on 
SVM and Dynamic Principal Component Analysis (DPCA) based detection techniques for a jacketed CSTR. 
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1. Introduction 
The monitoring of control systems is related to the ability 

of supervising the operation of industrial plants while 
evaluating the loss of performance caused by oscillations, 
disturbances, faults in sensors, and valve stiction. It also 
contains action such as diagnosing possible causes of 
problems that may degrade the productive capacity of the 
process, alarms management and providing strategies on 
how to act to maintain or even improve the operation 
efficiency. 

Discovering abnormalities in control systems is a very 
important task. There are processes variations that might be 
connected to various sources, so, process plants containing 
control loops with poor performance are often found in an 
industrial scenario [1]. An important source of control 
degradation and safety issues are caused by faults in process 
control loops. 

There are different techniques for fault detection in the 
literature [2-5]. Nowadays, the Support Vector Machine 
(SVM, also Support Vector Networks) is an alternative for 
fault detection and diagnostics. The original SVM algorithm 
was proposed by Vladimir N. Vapnik [6], and provides a 
powerful tool for pattern recognition [7-8] to deal with 
problems that have nonlinear, large and limited data sample.  
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The support vectors utilize a hyperplane with maximum 
margin to separate different classes of data producing a 
satisfactory overall performance. Thus, this methodology 
can provide a single solution with a strong regularized 
feature that is very suitable for classification problems 
poorly conditioned. The SVM technique has been used for 
various applications such as face recognition, time series 
forecasting [9], fault detection [10-11] and modeling of 
nonlinear dynamical systems [12]. This paper presents the 
results of fault detection in a reaction system for the 
production of cyclopentenol in a CSTR (Continuous Stirred 
Tank Reactor) with three simulated faults, utilizing the 
techniques of statistical machine learning support vector 
machine SVC and SVR, and for a jacketed CSTR with one 
simulated fault, the dimensionality reduction technique 
DPCA (Dynamic Principal Component Analysis) is also 
compared with the evaluated SVM techniques. 

2. Methodologies for Fault Detection 
2.1. Support Vector Machines for Classification (SVC) 

In machine learning, support vector machines for 
classification (SVC) are supervised learning models with 
associated learning algorithms that analyze data and 
recognize patterns. The basic SVM takes a set of input data 
and predicts, for each given input, which of two possible 
classes form the output, making it a non-probabilistic binary 
linear classifier. Given a set of training examples, each 
marked as belonging to one of two categories, an SVC 
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training algorithm builds a model that assigns new examples 
into one or other category. An SVC model is a representation 
of the examples as points in space, mapped so that the 
examples of the separate categories are divided by a clear 
gap that is as wide as possible. New examples are then 
mapped into that same space and predicted to belonging to a 
category based on which side of the gap they are [13]. 

In addition to performing linear classification, SVCs can 
efficiently perform non-linear classification using what is 
called as kernel trick, implicitly mapping their inputs into 
high-dimensional feature spaces. 

More formally, a support vector machine constructs a 
hyperplane or set of hyperplanes in a high- or 
infinite-dimensional space, which can be used for 
classification, regression, or other tasks. Intuitively, a good 
separation is achieved by the hyperplane that has the largest 
distance to the nearest training data point of any class 
(so-called functional margin), since in general the larger the 
margin the lower the generalization error of the classifier. 

The idea of using SVC for separating two classes is to find 
support vectors (i.e. representative training data points) to 
define the bounding planes, in which the margin between the 
both planes is maximized. The number of support vectors 
increases with the complexity of the problem. To define SVC 
mathematically, the training data for the two classes are first 
stacked into an n × m matrix X, where n is the number of 
observations and m the number of variables.  

Denote xi as a column vector representing the ith row of X. 
An n × n diagonal matrix Y with +1 and −1 entries is then 
used to specify the membership of each xi in class +1 or −1. 
In SVC, the prime problem is to separate the set of training 
vectors belonging to two separate classes, 

𝐷𝐷 = {(𝑥𝑥1, 𝑦𝑦1),⋯ , (𝑥𝑥𝑙𝑙 , 𝑦𝑦𝑙𝑙)}, 𝑥𝑥 ∈ ℝ∗, 𝑦𝑦 ∈ {−1,1}    (1) 
with a hyperplane, 

〈𝑤𝑤, 𝑥𝑥〉 + 𝑏𝑏 = 0                (2) 
The set of vectors is said to be optimally separated by the 

hyperplane if it is separated without error and the distance 
between the closest vectors to the hyperplane is maximal. 
There is some redundancy in Eq. 2, and without loss of 
generality it is appropriate to consider a canonical 
hyperplane [6], where the parameters w, b are constrained by 

min𝑖𝑖�〈𝑤𝑤, 𝑥𝑥𝑖𝑖〉 + 𝑏𝑏� = 1          (3) 

This constraint on the parameterization is preferable to 
alternatives in simplifying the formulation of the problem. In 
words it states that: the norm of the weight vector should be 
equal to the inverse of the distance, of the nearest point in the 
data set to the hyperplane. 

The distance d(w, b; x) of a point x from the hyperplane (w, 
b) is according to 

𝑑𝑑(𝑤𝑤, 𝑏𝑏; 𝑥𝑥) = �〈𝑤𝑤,𝑥𝑥𝑖𝑖〉+𝑏𝑏�
‖𝑤𝑤‖

             (4) 

The optimal hyperplane is given by maximizing the 
margin ρ , subject to the constraints of Eq. 3. The margin is 
given by 

𝜌𝜌(𝑤𝑤, 𝑏𝑏) = min
𝑥𝑥𝑖𝑖:𝑦𝑦 𝑖𝑖=−1

𝑑𝑑(𝑤𝑤, 𝑏𝑏; 𝑥𝑥𝑖𝑖) + min
𝑥𝑥𝑖𝑖:𝑦𝑦 𝑖𝑖=1

𝑑𝑑(𝑤𝑤, 𝑏𝑏; 𝑥𝑥𝑖𝑖) 

= min
𝑥𝑥𝑖𝑖:𝑦𝑦 𝑖𝑖=−1

�〈𝑤𝑤, 𝑥𝑥𝑖𝑖〉 + 𝑏𝑏�
‖𝑤𝑤‖

+ min
𝑥𝑥𝑖𝑖:𝑦𝑦 𝑖𝑖=1

�〈𝑤𝑤, 𝑥𝑥𝑖𝑖〉 + 𝑏𝑏�
‖𝑤𝑤‖

 

=
1

‖𝑤𝑤‖
� min
𝑥𝑥𝑖𝑖:𝑦𝑦 𝑖𝑖=−1

�〈𝑤𝑤, 𝑥𝑥𝑖𝑖〉 + 𝑏𝑏� + min
𝑥𝑥𝑖𝑖:𝑦𝑦 𝑖𝑖=1

�〈𝑤𝑤, 𝑥𝑥𝑖𝑖〉 + 𝑏𝑏�� 

= 2
‖𝑤𝑤‖

                                   (5) 

Hence the hyperplane that optimally separates the data is 
the one that minimizes 

Φ(𝑤𝑤) = 1
2
‖𝑤𝑤‖2             (6) 

It is independent of b provided Eq. 3 is satisfied (i.e. it is a 
separating hyperplane) changing b will move it in the normal 
direction to itself. Accordingly the margin remains 
unchanged but the hyperplane is no longer optimal in that 
and it will be nearer to one class than the other. To consider 
how minimizing Eq. 6 is equivalent to implementing the 
SRM principle, suppose that the following bound holds in 

‖𝑤𝑤‖ < 𝐴𝐴                 (7) 
Then from Eq. 3 and Eq. 4, 

𝑑𝑑(𝑤𝑤, 𝑏𝑏; 𝑥𝑥) ≥ 1
𝐴𝐴
              (8) 

The SVC has to be trained with data from normal 
operations and faulty conditions of the system, making it 
possible to detect the type of failure. The system builds a 
vector with all the classified failures for all available data. 

2.2. Support Vector Machines for Regression (SVR) 

The SVM for regression (SVR) utilizes the normal 
operating data to build a model that predicts outputs for 
determined inputs. 

The SVR foresees the results for every input applied to 
the model, resulting in a difference between the real value 
and the predicted value for the output variables. 

SVMs can also be applied to regression problems by the 
introduction of an alternative loss function [14]. The loss 
function must be modified to include a distance measure. 

Similarly to the classification problem, a non-linear model 
is usually required to adequately model plant data. In the 
same manner as the non-linear SVC approach, a non-linear 
mapping can be used to map the available plant data into a 
high dimensional feature space where linear regression is 
performed. The kernel approach is again employed to 
address the dimensionality. The non-linear SVR solution, 
using an 𝜖𝜖-insensitive loss function, is given by 

max
𝛼𝛼,𝛼𝛼∗

𝑊𝑊(𝛼𝛼, 𝛼𝛼∗) = max
𝛼𝛼,𝛼𝛼∗

�𝛼𝛼𝑖𝑖∗(𝑦𝑦𝑖𝑖 − 𝜖𝜖) − 𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖 − 𝜖𝜖)
𝑙𝑙

𝑖𝑖=1

 

−1
2
∑ ∑ (𝛼𝛼𝑖𝑖∗ − 𝛼𝛼𝑖𝑖)𝑙𝑙

𝑗𝑗=1
𝑙𝑙
𝑖𝑖=1 �𝛼𝛼𝑗𝑗∗ − 𝛼𝛼𝑗𝑗 �𝐾𝐾�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 �  (9) 

with constraints, 
0 ≤ 𝛼𝛼𝑖𝑖, 𝛼𝛼𝑖𝑖∗ ≤ 𝐶𝐶,   𝑖𝑖 = 1,⋯ , 𝑙𝑙

∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗) = 0𝑙𝑙
𝑖𝑖=1

        (10) 
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Solving Eq. 9 with constraints Eq. 10 to evaluate the 
Lagrange multipliers, 𝛼𝛼𝑖𝑖 , 𝛼𝛼𝑖𝑖∗, and the regression function is 
given by 

𝑓𝑓(𝑥𝑥) = ∑ (𝛼𝛼�𝑖𝑖 − 𝛼𝛼�𝑖𝑖∗)𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥) + 𝑏𝑏�𝑆𝑆𝑆𝑆𝑆𝑆       (11) 

where 

〈𝑤𝑤�, 𝑥𝑥〉 = ∑ (𝛼𝛼�𝑖𝑖 − 𝛼𝛼�𝑖𝑖∗)𝐾𝐾�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 �𝑙𝑙
𝑖𝑖=1

𝑏𝑏� = − 1
2
∑ (𝛼𝛼�𝑖𝑖 − 𝛼𝛼�𝑖𝑖∗)�𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑟𝑟) + 𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑠𝑠)�𝑙𝑙
𝑖𝑖=1

   (12) 

As with the SVC the equality constraint may be dropped if 
the Kernel contains a bias term, b, being accommodated 
within the Kernel function and the regression function is 
given by 

𝑓𝑓(𝑥𝑥) = ∑ (𝛼𝛼�𝑖𝑖 − 𝛼𝛼�𝑖𝑖∗)𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥)𝑙𝑙
𝑖𝑖=1         (13) 

The optimization criteria for the other loss functions are 
similarly obtained by replacing the dot product with a kernel 
function. The 𝜖𝜖 -insensitive loss function is attractive 
because unlike the quadratic and Huber cost functions, 
where all the plant data will be support vectors, the SV 
solution can be sparse. The quadratic loss function produces 
a solution which is equivalent to ridge regression, or zeroth 
order regularization, where the regularization parameter is 
given by 

𝜆𝜆 = 1
2𝐶𝐶

                  (14) 

The fault detection happens when divergence between the 
predicted output data and the actual real output data takes 
place. If the divergence is larger than a certain number, in 
this case used as 3σ (three times the standard deviation of 
training normal operation data), the fault is detected. 

The system builds a vector with all the instants where the 
fault was detected or not. The SVR is not capable of 
identifying the type of fault occurred, because this 
methodology utilizes only the data points of normal 
operation condition of the plant. 

2.3. Dynamic Principal Component Analysis (DPCA) 

The PCA technique is used to build statistical models 
based on historical data of the process, indicated primarily 
for large industrial processes, with lots of important 
variables for process control. 

With the statistical model obtained by PCA, it is possible 
to detect failures using the most important variables of the 
process, designing the data even in a reduced dimensional 
space, i.e. all the process information is preserved, however, 
the PCA technique allows using a data set of reduced size 
and which captures the system variability. 

Several researchers [15-19] have used the PCA as a tool 
for monitoring industrial processes, because this technique 
allows reducing the size of a data set of a multivariable 
process being analyzed and has a simple implementation 
[20]. 

Consider the matrix of historical data 𝑋𝑋 ∈ ℝ𝑛𝑛𝑛𝑛𝑛𝑛  
containing n samples of m process variables collected under 
normal operation. This matrix must be normalized to zero 
mean and unitary variance with the scale parameter vectors 

𝑥̅𝑥 and  as the mean and variance vectors, respectively. The 
next step to calculate PCA is to construct the covariance 
matrix S: 

𝑆𝑆 = 1
𝑛𝑛−1

𝑋𝑋𝑇𝑇𝑋𝑋 = 𝑉𝑉Λ𝑉𝑉𝑇𝑇            (15) 

with the diagonal matrix 𝛬𝛬 = 𝛴𝛴𝑇𝑇𝛴𝛴 ∈ ℝ𝑛𝑛𝑛𝑛𝑛𝑛  contains the 
eigenvalues 𝜆𝜆 of real non-negative and decreasing 
magnitude (𝜆𝜆1 ≥ 𝜆𝜆2 ≥ ⋯ ≥ 𝜆𝜆𝑚𝑚 ≥ 0). 

The main objective of PCA is to capture the variations of 
the data while minimizing the effect of the possible presence 
of random noise, since they affect the PCA representation, so 
it is very common to use the value a (number of principal 
components) highest eigenvalues 𝜆𝜆  to ensure the main 
objective of the technique. This dimension reduction is 
motivated to protect the approach from detecting systems 
failure that is in fact random noise [21]. 

With the a highest eigenvalue belonging to the columns of 
the matrix V it is possible to write the matrix 𝑃𝑃 ∈ ℝ𝑚𝑚𝑚𝑚𝑚𝑚 , so: 

𝑇𝑇 = 𝑋𝑋𝑋𝑋                  (16) 
The matrix T contains the projection of the observations 

in X in a smaller space, and the projection of T, in the 
m-dimensional observation space is: 

𝑋𝑋� = 𝑇𝑇𝑇𝑇𝑇𝑇                (17) 
The residual matrix E can be determined by the 

difference of 𝑋𝑋 and 𝑋𝑋�: 
𝐸𝐸 = 𝑋𝑋 − 𝑋𝑋�              (18) 

Finally the original data space can be calculated by: 
𝑋𝑋 = 𝑇𝑇𝑃𝑃𝑇𝑇 + 𝐸𝐸              (19) 

a) Number of components (a) to be retained in a PCA model 
In literature, there are various techniques for obtaining the 

number of principal components. These techniques are 
intended to decouple the changes in state of the random 
variations to this, determining the appropriate number of 
eigenvalues that must be maintained in the model PCA. The 
most common techniques are: 
 Scree procedure; 
 Cumulative percent variance (CPV), which can be 

obtained according to: 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑎𝑎) = ∑ 𝜆𝜆𝑖𝑖
𝑎𝑎
𝑖𝑖=1

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑆𝑆)
            (20) 

 Prediction residual sum of squares; 
 Cross-validation procedure; 
 Parallel analysis: it has the highest performance when 

compared with other techniques and is frequently used [20]. 
An algorithm for the calculation proposed in [21] as follows: 

1. generate a set of data normally distributed with zero 
mean and unitary variance with the same dimension as the 
real data set (m variables and n observations); 

2. do a PCA on the data; 
3. get the eigenvalues sorted in decreasing order; 
4. plot the eigenvalues of the original data along with 

data normally distributed; 
5. get a through the intersection between the profiles. 

So far, what has been discussed using the PCA technique 
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for monitoring control systems, does not take into account 
the statistical dependence on past observations, i.e., the 
technique only considers observations in a given time, which 
in industrial processes that statement is not valid due to the 
small time for sampling, which in many cases are in the order 
of seconds [21]. The statistical independence is achieved 
only for sampling intervals from 2-12 h [22]. 

One way to account for the effect of this dependence for 
processes with short time of sampling intervals is to take into 
account the temporal correlations, doing now with the PCA 
method is extended with the previous observations g in each 
observation vector, as follows [21]: 

𝑋𝑋(𝑘𝑘 − 𝑔𝑔, : ) = �𝑋𝑋𝑘𝑘𝑇𝑇 𝑋𝑋𝑘𝑘−1 
𝑇𝑇 𝑋𝑋𝑘𝑘−2 

𝑇𝑇 … 𝑋𝑋𝑘𝑘−𝑔𝑔 
𝑇𝑇 �

𝑘𝑘 = 1,2, … , 𝑛𝑛
     (21) 

with 𝑥𝑥𝑘𝑘𝑇𝑇  the observation vector of dimension m in the 
sampling instant k. 

This method is known as dynamic PCA or DPCAm [21]. 
Studies were performed to obtain automatically g [23], 
however, experiments indicate that g = 1 or 2 is acceptable, 
when using PCA in process monitoring. 
b) Fault Detection 

The most common techniques used in the detection and 
diagnosis of faults in multivariable processes are: Hotelling 
T2 Statistics and Q Statistics (square prediction error - SPE). 
These techniques were applied in this work, which is aimed 
at detecting possible faults in control loops. One can 
calculate the statistic T2 as follows [22]: 

𝑇𝑇2 = 𝑥𝑥𝑇𝑇𝑃𝑃𝛬𝛬𝛼𝛼−1𝑃𝑃𝑇𝑇𝑥𝑥              (22) 
where 𝜦𝜦𝜶𝜶 is a squared matrix formed by the first a rows and 
columns of 𝜦𝜦 by PCA model, and the process is considered 
normal for a given significance level α if 

𝑇𝑇2 ≤ 𝑇𝑇𝛼𝛼2 = �𝑛𝑛2−1�𝑎𝑎
𝑛𝑛(𝑛𝑛−𝑎𝑎)

𝐹𝐹𝛼𝛼(𝑎𝑎, 𝑛𝑛 − 𝑎𝑎)       (23) 

where Fα(a,n−a) is the critic value of the Fisher-Snedecor 
distribution with α the level of significance that takes values 
between 90% and 95%. 

The Q statistic can be calculated by: 
𝑄𝑄 = 𝑟𝑟𝑇𝑇𝑟𝑟

𝑟𝑟 = (𝐼𝐼 − 𝑃𝑃𝑃𝑃𝑇𝑇)𝑥𝑥
               (24) 

The limits of this statistic can be calculated by: 

𝑄𝑄𝛼𝛼 = 𝜃𝜃1 �
ℎ0𝑐𝑐𝛼𝛼�2𝜃𝜃2

𝜃𝜃1
+ 1 + 𝜃𝜃2ℎ0(ℎ0−1)2

𝜃𝜃1
2 �

1
ℎ0      (25) 

where cα is the value of the normal distribution with α as the 
level of significance. 

3. Case Studies 
3.1. Case study #1 - Cyclopentenol Reactor 

A cyclopentenol reactor is investigated for three different 

fault patterns and the results for fault detection and diagnosis 
indicate that the SVC and SVR used have greater reliability 
and faster detection. The SVM methods used for faults 
diagnostics seem to deliver better results for the scenarios 
investigated compared to the dimensionality reduction 
method. 

Consider a reaction mechanism known as van der Vusse 
reaction [24]. The major reaction is the transformation of 
cyclopentadiene (component A) in the product 
cyclopentenol (component B). A parallel reaction occurs 
producing a byproduct, dicyclopentadiene (component D). 
Furthermore, cyclopentenol reacts again forming an 
unwanted product cyclopentanediol (component C). All of 
these reactions can be described by the following reaction 
scheme 

𝐴𝐴
𝑘𝑘1→ 𝐵𝐵

𝑘𝑘2→ 𝐶𝐶
2𝐴𝐴

𝑘𝑘3→ 𝐷𝐷
               (26) 

The reactor inlet contains only low reactant A in 
concentration 0AC . Assuming that the density of the liquid 
is constant and a distribution of an ideal residence time inside 
the reactor, the reactor dynamics equations van der Vusse 
(Figure 1) [25]. The reaction coefficient rates 𝑘𝑘1, 𝑘𝑘2 and 𝑘𝑘3 
depend exponentially on the rector temperature according to 
the Arrhenius law. 

 

Figure 1.  Reactor for producing cyclopentenol [25] 

It is assumed that the reactor temperature, the 
concentration of cyclopentenol in the reactor, the 
temperature of the cooling jacket, the flow rate of heat 
removed and the reagent are obtained by measuring 
instruments. For the purposes of simulation, we added a 
Gaussian noise of mean 0 and variance 1x10-5 for 
concentration and 1x10-3 for other measurements. The input 
flow of reactant A, F , and the amount of heat removed by 

the refrigerant, jQ , are the manipulated variables and 
subject to the following restrictions presented in 

50 𝐿𝐿
ℎ
≤ 𝐹̇𝐹 = 𝑢𝑢1 ≤ 350 𝐿𝐿

ℎ

−8500 𝑘𝑘𝑘𝑘
ℎ
≤ 𝑄̇𝑄𝑗𝑗 = 𝑢𝑢2 ≤ 0 𝑘𝑘𝑘𝑘

ℎ

        (27) 
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Figure 2.  Behavior of the input and output variables – Normal operation 

Table 1.  Symbols and nominal values with units 

h Level in reactor (0.6 m) 

qF Feed flow rate of reactor feed stream (1.67 L/s) 

q Flow rate of reactor outlet stream (1.67 L/s) 

qC Coolant flow rate (0.25L/s) 

A Cross-sectional area of reactor (0.167 m2) 

T Temperature in reactor (402.35 K) 

TF Temperature of reactor feed stream (320 K) 

ΔHr Heat of reaction (– 50 kJ/mol) 

Cp Heat capacity of reactor contents (kJ/(kg K)) 

Cpc Heat capacity of coolant (kJ/(kg K)) 

CA Concentration of species A in reactor (0.0372 mol/L) 

CAF Concentration of species A in reactor feed stream (1 mol/L) 

k0 Reaction pre-exponential factor (1.2 × 109 s-1) 

Ea Reaction activation energy (kJ/mol) 

R Universal gas constant (kJ/(mol K)) 

Ea /R = 8750 K 

U Heat transfer coefficient (kJ/(s K m2)) 

AC Area available for heat transfer (m2) 

U AC = 0.834 kJ/(s K) 

TC Temperature of coolant in cooling jacket (345.44 K) 

TCF Temperature of coolant feed (300 K) 

ρ Density of reactor contents (kg/L) 

ρCp = 0.239 kJ/(L K) 

ρC Density of coolant (kg/L) 

ρCCpc = 4.175 kJ/(L K) 

VC Volume of the jacket (10 L) 

It was shown that for a constant rate of heat removed and a 
variation 50 − 1500 𝑙𝑙 ℎ⁄  feed of reactant to the reactor, this 
process exist for six regions with different degrees of 
non-linearity [26]. The normal operation simulated for this 
case study is presented in Figure 2. 

3.2. Case study #2 – A non-isothermal CSTR 

The process used for the case study is a non-isothermal 
CSTR [27]. This case was studied because of the wide range 
of fault types and conditions available. A schematic 
diagram of the non-isothermal CSTR model is shown in 
Figure 3. 

The nonlinear mass and energy balances are given by the 
following equation 

𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

=
𝑞𝑞𝐹𝐹 − 𝑞𝑞
𝐴𝐴

 

𝑑𝑑𝐶𝐶𝐴𝐴
𝑑𝑑𝑑𝑑

=
1
𝐴𝐴ℎ

(𝑞𝑞𝐹𝐹𝐶𝐶𝐴𝐴𝐴𝐴 − 𝑞𝑞𝐶𝐶𝐴𝐴) − 𝑘𝑘0𝐶𝐶𝐴𝐴𝑒𝑒
−𝐸𝐸𝐸𝐸
𝑅𝑅𝑅𝑅  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
1
𝐴𝐴ℎ

(𝑞𝑞𝐹𝐹𝑇𝑇𝐹𝐹 − 𝑞𝑞𝑞𝑞) +
𝑈𝑈𝐴𝐴𝐶𝐶
𝜌𝜌𝐶𝐶𝑝𝑝𝐴𝐴ℎ

(𝑇𝑇𝐶𝐶 − 𝑇𝑇) + 

+ (−∆𝐻𝐻𝑟𝑟)
𝜌𝜌𝐶𝐶𝑝𝑝

𝑘𝑘0𝐶𝐶𝐴𝐴𝑒𝑒
−𝐸𝐸𝐸𝐸
𝑅𝑅𝑅𝑅  

𝑑𝑑𝑇𝑇𝐶𝐶
𝑑𝑑𝑑𝑑

= 𝑞𝑞𝐶𝐶
𝑉𝑉

(𝑇𝑇𝐶𝐶𝐶𝐶 − 𝑇𝑇𝐶𝐶) − 𝑈𝑈𝐴𝐴𝐶𝐶
𝜌𝜌𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝 𝑉𝑉𝐶𝐶

(𝑇𝑇𝐶𝐶 − 𝑇𝑇)    (28) 

The level (h) and temperature (T) PI control, as seen in 
Figure 3, are tuned in appropriate dimensions as KC = – 3, τI 
= 90s, and KC = – 0.2, τI = 18s, manipulating the variables q 
and qC, respectively. 

To illustrate the application of the methods presented in 
this study, it was created the following faulty scenario: It was 
considered a sensor failure of CSTR level after 1200s, 
caused by instrument damage, causing an incorrect 
measurement of 3% less than last correct measurement. 
Figures 4 and 5 show the behavior of the control system 
before the fault taking place. It was noted that a sensor failure 
caused instability in the control loop because of the incorrect 
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information of the sensor. It was not possible for the 
manipulated variables to operate in another region to 
compensate for sensor failure. 

Table 1 represents the symbols and units for the 
non-isothermal CSTR. 

 
Figure 3.  Non isothermal CSTR 

4. Results and Discussion 
4.1. Case study #1 - Cyclopentenol Reactor 

For this system, it was chosen a flow constraint from 50 
to 350 𝑙𝑙 ℎ⁄ . To control the process were designed two PID 
(Proportional-Integral-Derivative) controllers, one for 
controlling the concentration of product output and another 
for controlling the reactor temperature. The setpoint value 
for the concentration of cyclopentenol and reactor 
temperature were 0.69883 𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑙⁄  and 407.031 𝐾𝐾 , 
respectively. These values are relative to a steady state 
operation, with a reactant feed flow rate of 112 𝑙𝑙 ℎ⁄  (𝑢𝑢1) 
and a rate of removed heat of −2856.91 𝑘𝑘𝑘𝑘 ℎ⁄  (𝑢𝑢2). 

The process and subsequent detection and diagnosis of 
faults in the production process of cyclopentenol were 
performed through computer simulation with the free 
mathematical software SciLab®. For illustration, it is 
considered the existence of two faulty scenarios in the 
process operation [25]. 

 
Figure 4.  Behavior of h and q with the fault in the level sensor 

 
Figure 5.  Behavior of T and qC with the fault in the level sensor 
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The fault #01 considers that the reactor temperature sensor 
is gets damaged in a certain instant giving a 1% higher value 
than the last correct measurement produced by the sensor. To 
the reactor temperature measurement was added a random 
noise generated by a normal distribution with zero mean and 
1x10-3 variance. Figure 5 shows the behavior of the output 
and input variables with a fault #01 taking place at the time 
instant of 8h. 

The fault #02 was simulated by making a blocking in the 
valve of reactant flow to give a flow 30% lower than the one 
at steady state. Figure 6 shows output and input variables 
with a fault #02 taking place at the time instant of 8h.  

The results for the operating conditions investigated for 
the CSTR are summarized in Table 3. The results contain 
performance metrics for fault detection and diagnosis with 
SVC and SVR. The algorithms SVC and SVR were applied 
using the LibSVM [28] library in SciLab®. The parameters 
for SVC were chosen as 𝐶𝐶 = 137.187 and core (kernel) 
given by a radial basis 𝐾𝐾(𝑢𝑢, 𝑣𝑣) = exp(−𝛾𝛾|𝑢𝑢 − 𝑣𝑣|2) 
function where 𝛾𝛾 = 1910.852 . These parameters were 

found through a search, aiming at the best model for the SVC. 
For SVR, the parameters are 𝐶𝐶 = 100  and core (kernel) 
given by the radial basis function with 𝛾𝛾 = 0.5  and 
𝜖𝜖 = 0.05. 

The methods used were able to find the instant in which 
the fault was recognized (TFR) and the moment when the 
fault has been diagnosed correctly for the first time (TF). 

To assess the quality of the fault detection methodology, 
the delay detection (TAD) in hours, which is the amount of 
time elapsed since the instant at which the fault took place 
and was correctly diagnosed for the first time was evaluated, 
and the indices of Eqs. 29 - 32 were introduced. 

operation)faulty  with sampling of (#
detected) scenariofaulty  with sampling of (#

=FFD   (29) 

operation) normal with sampling of (#
detected) scenariofaulty  with sampling of (#

=NFD   (30) 

operation)faulty  with sampling of (#
detected)operation  normal with sampling of (#

=FND (31) 

 
Figure 6.  Behavior of the input and output variables – Fault #01 

 
Figure 7.  Behavior of the input and output variables – Fault #02 
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operation) normal with sampling of (#
detected)operation  normal with sampling of (#

=NND (32) 

Table 3.  Simulation Results for Case study #1 (20h of Operation, 0.05h 
Sampling Time. Fault Taking Place at Instant 8h) 

Oper. Fault #01 Fault #02 
Method SVC SVR SVC SVR 
TFR (h) 8.55 8.10 8.10 8.15 
TF (h) 8.50 8.05 8.05 8.10 
𝐷𝐷𝐹𝐹 𝐹𝐹⁄  100.0% 100.0% 100.0% 100.0% 
𝐷𝐷𝐹𝐹 𝑁𝑁⁄  4.33% 0.41% 0.41% 1.66% 
𝐷𝐷𝑁𝑁 𝐹𝐹⁄  0.00% 0.00% 0.00% 0.00% 
𝐷𝐷𝑁𝑁 𝑁𝑁⁄  95.67% 99.59% 99.59% 98.34% 

TAD (h) 0.50 0.05 0.05 0.10 

4.2. Case study #2 - Non-isothermal Reactor 

4.2.1. Principal Component Analysis (PCA) 

The technique DPCAm (Dynamic Principal Component 
Analysis) was used in this study for detecting a failure in the 
level sensor. We used parallel analysis technique to 

determine the number of dimensions being removed from the 
PCA model, in this example, which has six measured 
variables (h, T, CA, TC, q and qC) a was found to be equal to 3, 
a = 3. The cumulative percent variance (CPV) was 95.82%. 

Given by Eq. 20 the data matrix is built with two delays (g 
= 2), and this technique DPCAm causes the X dimension to 
increase, for example, for normal operating data there are 6 
measured variables with the delay of three sampling time, 
and 1001 observations (1001 samples) for each variable, 
making the dimension of 𝑋𝑋 ∈ ℝ1798𝑥𝑥27. 

Figure 8 shows the statistical T2 and Q applied to the 
“experimental” data collected. Note that the statistics are 
below the limits specified for the indication of failure, 
calculated by Eq. 23 and Eq. 24, respectively. It also set an 
alarm region, with a limit of 10% higher than calculated by 
Eq. 23 and Eq. 24. Figure 9 shows the T2 and Q statistics for 
the level sensor failure. It was noted that at the moment when 
the failure has been simulated, (after 1200s) the methods are 
instantly able to indicate the presence of failure, since the 
statistics T2 and Q were well above the limits calculated by 
Eq. 23 and Eq. 24, showing the efficiency of the technique. 

 
Figure 8.  T2 and Q statistics for data without fault 

 
Figure 9.  T2 and Q statistics for data with fault 
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4.2.2. Support Vector Machine (SVM) 

a) SVM for Classification (SVC) 
When the SVM for classification was trained, the normal 

operation and fault(s) data points are utilized. The LibSVM 
was used for building the model, and it returns an accuracy of 
99.8% for the model. It spent three sampling times for the 
model to detect the failure, applied in the time of 1200s. 
Figures 10 and Figure 11 show the behavior of the control 
system utilized as an example for fault detection with SVC. 
Figure 12 shows the representation for the classification over 
the time, where 0 is for normal operation and 1 for faulty 
operation. 
b) SVM for Regression (SVR) 

When the fault detection algorithm for SVM regression is 
applied, only the data for normal operation are used for 

training the model. Once the model predicts output data of 
the system, it is important to compare the actual output of the 
system with the output provided from the model. When the 
actual data and predicted move away from each other, hence 
it is configured a system failure. 

For this case, it is utilized a kernel with a radial bases 
function 𝐾𝐾(𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑒𝑒(−γ|𝑢𝑢 − 𝑣𝑣| + 𝐶𝐶)𝑑𝑑 , where γ = 0.5, C = 
100 and d = 3. 

Figures 10 and 11 show the behavior of the control system 
with the fault utilized for fault detection with the SVM for 
regression. It took three sampling times for this methodology 
to detect the failure, applied at the time of 1200s. Figure 13(a) 
shows the representation for the classification over the time, 
where 0 is for normal operation and 1 for faulty operation. 
Figure 13(b) shows the predicted data and the real data for 
the simulation. 

 

Figure 10.  Behavior of h and q with the fault in level sensor 

 

Figure 11.  Behavior of T and qC with the fault in level sensor 
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Figure 12.  SVC - Detection. 0 – Normal operation; 1 – Faulty Operation 

 

(a) 

 

(b) 

Figure 13.  (a) SVM for Regression - Detection. 0 – Normal operation; 1 – Faulty Operation; (b) Predicted Data vs. Real Data 
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5. Conclusions 
The SVC and SVR are new methods for detection and 

diagnosis of failures. The SVM methodology is promising 
for process monitoring in situations where process efficiency 
and industrial safety are addressed by an automatic 
monitoring system. The results for the cyclopentenol reactor 
with two failures show that although both methodologies 
may be used for detecting faults, it seems that SVR is faster 
than the SVC to detect failures, but these results might 
depend on the specific problem. Overall, both methods gave 
satisfactory results. Nevertheless, SVC has one great 
advantage over SVR, it has the ability of diagnosing faults. 
To conclude, both methodologies could be used 
simultaneously in a process monitoring system, taking 
advantage of the fast detecting time of the SVR approach and 
the classification capability of the SVC based methodology.  

The SVM methods compared with the PCA show that the 
SVM methodology, with less information than the PCA, is 
better than the classic method for fault detection to the 
non-isothermal reactor for the faulty scenario evaluated.  
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