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Abstract  Entropy production was calculated for the driven lattice gas on small two-dimensional square, hexagonal and 
triangular lattices. Steady-state and time-dependent properties were calculated with the master equation, using the complete 
transition matrix for all configurations. Entropy production from dissipated work or from probability current was the same 
for transition rates that preserved local detailed balance. Entropy production was calculated along several relaxation paths. 
Steady states, on all three lattices, were not states of either maximum or minimum entropy production. 
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1. Introduction 
Driven non-equilibrium systems produce entropy. This 

work examines entropy production in a statisti-
cal-mechanical model that is simple enough so that calcula-
tions are transparent, include all system states, and require no 
approximations beyond numerical calculations. The system 
studied in this work is the driven lattice gas(DLG)[1-3] In the 
DLG model an external field drives particles across a lattice. 
There are pairwise attractions between particles. The freez-
ing transition of the equilibrium lattice gas is modified by the 
field. Under some conditions, high-density strips with 
smooth interfaces are observed under the field’s action. 

Work done on the gas by the field is largely (at steady state, 
completely) exhausted to a heat bath. Dissipation of work to 
heat makes entropy production a property of the DLG, as it is 
of other driven systems. The hypothetical principle of 
maximum entropy production[4-10] or the converse princi-
ple of minimum entropy production would suggest that en-
tropy production may be not just a property but an organizing 
principle of driven systems such as the DLG. Recent dis-
cussions of the role of entropy production in non-equilibrium 
systems include those by Ross, Vellela and Qian and At-
tard[11-13] A critical review of entropy-production ideas, 
giving a thorough historical perspective from Carnot’s work 
through the present, was written by Velasco, García-Colín 
and Uribe[14] The present work is a largely numerical study 
of the meaning and possible extrema of entropy production 
in the simple, well-defined DLG model. If DLG steady states 
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are characterized by extreme entropy production then en-
tropy production will vary monotonically, either steadily 
rising or steadily falling on the way to steady state. 
Non-monotone total entropy production during relaxation, 
shown below, argues against entropy production as an ade-
quate extremum principle for the DLG on small lattices. 

This work uses small lattices, small enough that the master 
equation is solved for the probabilities of all configurations. 
Issues of sampling and kinetic barriers, which are factors in 
interpreting Monte-Carlo and molecular dynamics results for 
large lattices, are avoided. A disadvantage of the 
small-lattice all-configuration method is that the results are 
not for the thermodynamic limit of infinite-size lattices. 
Dependence of entropy production on system size is likely to 
be complicated, as in a recent study of entropy production for 
a chemical reaction on a lattice, as a function of lattice 
size[15] The behavior of entropy production in the thermo-
dynamic limit where extremum principles are intended to 
apply, is outside the scope of the present small-lattice work. 
The present work does not address applicability of an ex-
tremum entropy production principle for lattices of infinite 
size. 

The Kovacs effect, non-monotone relaxation following 
change in temperature,[16] is observed in the DLG. For the 
DLG, a more pronounced Kovacs-like effect is non- mono-
tone relaxation following change in field strength. 

Nonequilibrium fluctuation theorems relate probabilities 
of positive and negative entropy production rates, as dis-
cussed in recent reviews[17,18] Fluctuation theorems are 
applicable to small systems, have been applied to stochastic 
systems,[19] and presumably could be applied to small 
driven lattice gases. However, because the present work 
focuses simply on entropy production, and not on its fluc-
tuations, calculations of fluctuations in the driven lattice gas 
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are outside the scope of this work. 

2. Model 
This work used lattices small enough that the master 

equation could be solved for several eigenvectors. The 
largest lattices for which solutions were obtained had twenty 
four sites. In all cases lattices were half filled, because that 
gives the critical density in the case of zero field. The number 
of configurations of twelve particles on twenty four sites is 
24!/(12!)2=2704156 configurations. Although calculations 
were done for lattices containing up to and including twenty 
four sites, and for all aspect ratios, this paper reports only 
results for these three 24-site lattices: 6×4 square, 4×3 tri-
angular, and 2×3 hexagonal lattices. The lattice notation is 
nx×ny, where nx and ny are the number of unit cells in the x 
and y directions. The field, when nonzero, is in the y direc-
tion. 

 
Figure 1.  Square 6×4, triangular 4×3 and hexagonal 2×3 lattices. Half of 
the vertices are occupied. Edges show  nearest-neighbor interactions. 
Dimensions are in units of the nearest-neighbor distance. Dashed lines 
show system boundaries. Dotted lines show the unit cell nearest the origin 

Larger lattices would be good to reduce boundary effects. 
However, the next larger lattices(e.g., 8×4 square, 4×4 tri-
angular, and 2×4 hexagonal) have 601 million configurations. 
That number of configurations would require a major change 
in programming strategy for calculations and storage. The 
lattices shown in Figure 1 are as large as our current tech-
niques and facilities allow.  

Square, triangular and hexagonal cells are shown in Figure 
1. The triangular and hexagonal unit cells are rectangular, 
not primitive. In all three lattice types, one edge is perpen-
dicular to the field direction, y. The field is directed in the y 
direction because having the field perpendicular to a lattice 
edge is essential for the symmetry-breaking transition ob-
served by Monte Carlo simulation on large lattices. If the 
field were instead directed along a bond direction(e.g., in the 
x direction), there would be, under strong field, no freezing 
transition at any temperature[20]. 

Boundary conditions are periodic in the field(y) direction. 
An interesting alternative would be particle reservoirs at the 
top and bottom edges of the lattice. In this work however, the 
field drives particles up the lattice and around to the bottom 
edge. In the x direction, transverse to the field, either peri-
odic or reflecting boundary conditions could be used. The 
choice of boundary conditions affects the number of possible 
symmetry operations on configurations, and so the number 
and make-up of the representations discussed in the Repre-
sentations section, below. This work used the reflecting x 

boundaries indicated in Figure 1 for simplicity and because 
such boundaries, in a larger system, could support symme-
try-breaking perpendicular to the field. 
The lattice-gas energy is 

jU J ii j
σ σ= − ∑

<
                 (1) 

where the sum is over unique pairs of nearest-neighbor 
sites on the lattice, and σi is an occupation number for site i: 
0 if the site is empty, 1 if the site is occupied. The sum in(1) 
is simply the number of nearest-neighbor pair, referred to in 
this work as the number of "bonds." 

The present definition of energy follows one of the two 
lattice-gas conventions. The other convention is to replace J 
with 4J. For the energy function used in this work,(1), the 
zero-field infinite-lattice critical temperatures are kTc/J= 
0.3797, 0.5673 and 0.9102 for the hexagonal, square and 
triangular lattices, respectively[21] 

Transitions between configurations occur by single 
"hops." Configurations that are connected by a transition 
differ by occupancy of two adjacent lattice sites, so the 

transition from one configuration to another is a hop h


of 
one particle along one lattice edge. An external field of 
strength F biases particle hops. The work done by the field 
during one hop is hF




• , which equals F cosθ because the 
lattice edge length is taken as the unit of length. The angle 
between a hop and the field or y axis is θ. Letting <dy/dt>  
be the y displacement rate averaged over hops, the work per 
time done by the field is d(work)/dt=F<dy/dt>. Here, the 
variable work is spelled out rather than abbreviated with the 
customary w to avoid confusion with transition probability 
wj

i that will be defined below. 

3. Methods 
3.1. Representations 

All configurations of particles that fill half of the lattice 
sites were enumerated. Then symmetry operations were 
applied to group the configurations into symme-
try-equivalent representations. The symmetry operations 
used were the identity plus translation in the field direction 
y by multiples of the unit cell. Symmetry reduced the 
2704156 configurations to 676280 representations on the 
square lattice, 901432 representations both on the hexago-
nal and the triangular lattices. What are called representa-
tions in this work were called "relevant configurations" by 
Zhang[22,23] and Kumar[24] and "equivalence classes" by 
Zia, et al[25,26] 

3.2. Transition Matrix 

The master equation for evolution of probabilities is  

PW
dt
Pd 



=                  (2) 

where P


is the vector of probabilities.  The rate matrix, W, 
is the square array of transition probabilities. 
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Explicitly for the ith component of the vector of configu-
ration probabilities, P



,  
( )i

i
jj

j
i

j

i PwPw
dt
dP

−= ∑             (3) 

where wj
i (following the notation of Zia and Schmitt-

mann[27]) is the probability per time of transitions from 
configuration j to configuration i. The summand is also 
known as the probability current, Kj

i. 
i

i
jj

j
i

j
i PwPwK −=                (4) 

as given in Zia and Schmittmann’s notation. (The same 
probability current was denoted Ji,j by Schnakenberg[28] and 
J(η'|η,t) by Tomé and de Oliveira[29]) Although the average 
magnitude of the probability current, |Ki

j| can be a useful 
indication of distance from equilibrium,[27] it is used in this 
work to calculate entropy production. 

Common choices for the rate function wj
i are the Me-

tropolis, Glauber and van Beijeren-Schulman rates[30] For 
this work, the Glauber rate was used.  

( )( , )]/2 1
j j j j

i i i i[E F h f E work (kT)j
iw = / +e − • −




 
(5) 

In (5), Ej
i≡Ei-Ej is ∆E for the transition from j to i, j

ih
 is 

the one-particle hop that converts configuration j into con-
figuration i, and j

i
j

i hFwork




•= is the work done by the 
field during the transition from j to i. The coupling function f 
is discussed in the entropy production section below, where 
it is used to explore violation of local detailed balance.  For 
all other purposes in this work, f=0. In(5), k is Boltzmann’s 
constant, and T is the temperature of a bath that thermostats 
the lattice. The Glauber rate was chosen rather than the Me-
tropolis rate or the van Beijeren-Schulman rate because the 
former is constant for all energetically favorable transitions 
and the latter rate tends to infinity for highly favorable tran-
sitions.  

To reduce memory requirements and save computing time, 
the master equation was solved for probabilities of repre-
sentations rather than configurations. To operate on a vector 
P


 of representation probabilities, the transition matrix W is 
modified by multiplying each transition rate wj

i by a degen-
eracy factor. 

j
iji

j

i
ji wG

g
gW ,, =               (6) 

In(6), gi and gj are the dimensions of the ith and jth rep-
resentations (i.e., the number of configurations in represen-
tations i and j). The factor Gi,j is a path degeneracy. Suppose 
k is a configuration in representation j. Then Gi,j is the 
number of different one-hop transitions that change con-
figuration k into one particular configuration selected from 
representation i. A diagonal entry of W is the negative sum of 
the column: ∑ ≠−= ij i,jWi,iW . 

Limitations of computer memory make storing large 
transition matrices difficult. Sparseness of the transition 
matrix W was essential to allow its storage and its use in 
calculating eigenvectors. The transition matrix for the 6×4 
square lattice, for example, contains only 16194224 nonzero 
matrix elements. About 10−5 of its elements are nonzero. As 

Figure 2 shows, sparseness is similar for the square, trian-
gular and hexagonal cases.  

 
Figure 2.  Number of nonzero transition-matrix elements wji,j≠i, versus 
the number of representations. Symbols: ▢ square lattices; △ triangular 
lattices; ♦ hexagonal lattices. The slope of the regression line equals 
1.14±0.02(±2σ), excluding the smallest two square lattices 

Probabilities are in the null eigenvector, 0P


, which cor-
responds to steady state. Time dependence of probabilities is 
available from the full spectrum of eigenvalues and eigen-
vectors { }iv,i

λ . 

∑
>

+=
0

0
i

tλ
ii

ievC(t)P(t)P 

              (7) 

In (7), 0P


 refers to the steady-state probability vector, 
(i.e., not the 0th component of an arbitrary vector) and for i>0,

)iv),t(P(iC




= .  The inner product is defined as[16,31] 

( ) ∑=
j j

jj

P
vP

vP
,0

, 







                   (8) 

The denominator of the jth term is element j of the null 
eigenvector 0P



, that is, the probability of configuration j at 
steady state. 

3.3. Eigenvectors and Eigenvalues 

Explicit analytical expressions for the eigenvectors and 
eigenvalues of the master equation were obtained for six-site 
square lattices[22,24,26] For a six-site hexagonal lattice and 
an eight-site triangular lattice, Kumar used Mathematica to 
obtain analytical expressions for eigenvalues and eigenvec-
tors[24] Such beautiful analytical results cannot easily be 
extrapolated to larger lattices. 

Large lattices are accessible by Monte Carlo simulation. 
Monte Carlo simulations have used tens of thousands[32] to 
a million sites[33] on square lattices. Even on the 
less-studied triangular and hexagonal lattices, Monte Carlo 
simulations have used thousands of sites[20] Simulation 
results for large systems are highly valuable. Of course, 
Monte Carlo simulations are entirely numerical and can be 
caught in kinetic traps, so that sampling the entire relevant 
configuration space can be difficult, especially at low tem-
perature. 

The approach taken in this work is to use small enough 
matrices so that probabilities of all configurations are cal-
culated. Because symbolic solutions are not sought, lattices 
are larger than those that were accessible to the earlier 
symbolic calculations, although still minute compared to 
those accessible to Monte Carlo simulations. Lattice sizes 
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are limited primarily by memory available to store the tran-
sition matrix. Systems approaching the thermodynamic limit 
are outside the scope of this work. The value of the methods 
used in this work is that results are numerically exact and 
complete, explicitly including all configurations.  

For small enough matrices, through 12870 configurations, 
direct matrix methods of LAPACK and LAPACK++ were 
used. These calculations yielded the full spectrum of eigen-
values and eigenvectors. 

For larger matrices, the implicitly restarted Arnoldi 
method in the packages ARPACK[30] and ARPACK++[31] 
was used. ARPACK is well suited for calculating the several 
eigenvalues having largest real part (i.e., zero and negative 
but near zero) and their eigenvectors. The negative real parts 
of eigenvalues may be interpreted as rate coefficients or 
inverse time constants, as indicated in[7]. Excluding the null 
eigenvalue, each eigenvalue’s real part, after changing its 
sign, corresponds to inverse relaxation time along the cor-
responding eigenvector. It was suggested by van Kampen 
([27] Ch. XIII Sec. 2) in the context of a different problem, 
that the largest(i.e., least negative) nonzero eigenvalue may 
correspond to symmetry breaking. In the present driven 
small-lattice gas, in every case calculated, the first eigen-
vector does have a nonzero first moment of density in the x 
direction, so it may be that relaxation occurs along that ei-
genvector. However, no broken-symmetry solutions were 
observed in the present systems. That is because the master 
equation(2) has but one null vector and the systems are too 
small to support a phase boundary. Nevertheless, properties 
(e.g., energy, internal entropy, current) of the present sys-
tems do suggest the large-system phase transitions. 

3.4. Time Dependence 

Time dependence is in principle available from the full 
spectrum of eigenvalues and eigenvectors. However, be-
cause transition matrices are large the full spectrum was not 
calculated for the systems reported in this work. Rather, the 
master equation was integrated as a set of coupled differen-
tial equations, using Burkardt’s C++ version of RKF45[32]. 
The Runge-Kutta-Felhberg method with local extrapolation 
offers good stability and accuracy and low memory re-
quirements[33] The method requires a relatively large 
number of matrix-vector multiplications. However, that 
operation was easily parallelized using openMP. The same 
matrix-vector multiplication method used for ARPACK ei-
genvector calculation also served for evaluating time de-
rivatives.  

3.5 Internal Entropy 

This work adopts the time-dependent extension of the 
Boltzmann-Gibbs entropy for the internal entropy of the 
system.  

∑−=
i

iiiBsys gPPkS )/ln(              (9) 

In(9), gi is the degeneracy and Pi is the probability of 
representation i. Dividing by gi is equivalent to subtracting 

Si=kBln(gi) from each term in the sum[13, 38] Equivalently, 
dividing by gi makes the sum over representations equal to 
the more fundamental sum over configurations, which have 
equal a priori probability. 

Extension of the Boltzmann-Gibbs or Shannon-Gibbs en-
tropy(9) to the present driven nonequilibrium system is an 
assumption. For small systems there likely is no unique 
satisfactory definition of entropy[14]. There is much prece-
dent for(9). For example, Katz et al[2] used this entropy to 
discuss entropy production in the DLG, and Pesheva et al[39] 
used it to develop a maximum-entropy mean field theory for 
the DLG. Brey and Prados[40] used it to calculate entropy 
production from master equations. The same definition of 
Ssys was used by Zia and Schmittmann[27] and (denoted "S") 
by Schnakenberg and by Tomé and de Oliveira[28,29] 
Seifert, et al., have referred to the same quantity as the sto-
chastic entropy[41,42] This work has adopted the Boltz-
mann-Gibbs formula(9) to define the internal system en-
tropy. 

3.5. Entropy Production 

The rate of internal entropy production is the time deriva-
tive of Ssys,(9), which can be written directly in terms of 
rate-matrix elements or in terms of probability currents, as 
below. 

∑ 









=

ji ij

ijj
isys Pg

gP
KS

,
ln

2
1



             (10) 

A thermodynamic approach to entropy production uses the 
time derivative of the statistical entropy,(9), plus first-law 
heat transferred from the system to its surroundings. Work 
done by the field is simply field strength multiplied by av-
erage displacement parallel to the field, so d(work)/dt is 
proportional to particle current. The rate of heat transfer to 
the surroundings, expressed as entropy increase in the me-
dium, is ,med thermoS .  

dt
workd

kTdT
du

kT
S thermomed

)(11
, +−=

         (11) 

Alternatively, entropy production in the medium may be 
written in terms of probability currents. 

∑ 









=

ji
i
j

j
ij

imed w
wKS

,
ln

2
1



              (12) 

The total entropy production rate is medSsysStotS  += , 
following Zia and Schmittmann’s notation[27] The same 
quantity is denoted P by Schnakenberg[28] and simply dS/dt 
by Tomé and de Oliveira[29] 

Under some conditions on the transition rates and field, 
the thermodynamic and statistical entropy productions are 
equal. In the absence of an external drive, F=0, detailed 
balance ensures thermo,medSmedS  =  and 

0≥−= )kT/(usysStotS 

 , as it must be. 

With a nonzero external drive, F>0, detailed balance need 
not apply. However, a "local detailed balance"[19] may 
apply. Local detailed balance is equivalent to the f=0 case of 
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where the coupling function f was introduced to explore 
violation of local detailed balance.  

Local detailed balance suffices to make the statistical and  
thermodynamic entropy production rates equal. Local 

detailed balance need not apply, however, under an external 
field so long as detailed balance is recovered in the limit of 
zero field. The condition lim f→0 as F→0 suffices to guar-
antee microscopic reversibility at equilibrium. A specific 
coupling function used in this work is 

i
j

j
i

j
i

j
i workE)work,E(f γ=          (14) 

where γ is a constant. This particular coupling function 
represents bond formation that is less favorable when ac-
companied by work. Such coupling might arise as a dynamic 
effect beyond the definition of the driven lattice gas. For 
example, a gas particle accelerated by the field might form 
weaker attractions when striking its destination lattice site. 

 
Figure 3.  Statistical and thermodynamic total entropy production rates on 
a 6×4 square lattice at kT/J=0.75, during relaxation from the F=0 steady 
state under field F=4J, for three values of the energy-work coupling con-
stant γ. Graph (a) is an expanded view of the (0,1) time interval of (b) 

A non-local-detailed-balance function breaks equality of 
the thermodynamic and statistical entropy production, 
causing thermo,totStotS  ≠ .  Figure 3 shows the differ-
ence for the coupling function in(14) with γ=1/2 and γ=1. At 
γ=0 the statistical and thermodynamic entropy production 
rates are the same. When local detailed balance is violated, 
γ>0, the two dissipation rates differ greatly at short time. 
Subject to an additional assumption, Brey and Prados[40] 
showed thermo,totStotS  < . As Figure 3 shows, the present 
system satisfies that inequality at short times (Figure 3a) but 
not at longer times(Figure 3b). The additional condition 
required by Brey and Prados for the inequality is that the 
steady state probability distribution be canonical, a condition 
that does not apply to the DLG. 

Solid line: γ=0, so ,S Stot tot thermo=  . Dash-dot line: 

,Stot thermo
  for γ=1/2. Dotted line: Stot for γ=1/2. 

Dash-dot-dot line: ,Stot thermo
  for γ=1. Dashed line: Stot  

for γ=1.  

4. Entropy Production 

4.1. Square Lattice 

Figure 4 shows the trajectory in (u/J, Ssys/k) from the 
equilibrium state to the F=4J steady state (solid line). 
Throughout the trajectory, the bath temperature was 
kT/J=0.55. The system was initially at equilibrium. Then an 
F=4J field was applied(t=0) and the master equation was 
integrated over time to the F=4J steady state. Along the 
integration path, energy and internal entropy were calculated. 
The return path in which the system was initially at the 
steady state under field F=4J is also shown(dashed line). For 
the return path, the field was reduced from 4J to zero at the 
initial time. 

 
Figure 4.  6×4 square lattice at kT/J=0.55. Solid line: integration from the 
F=0 equilibrium state (•) to the F=4J steady state ♦. Dashed line: integra-
tion from the F=4J steady state back to the F=0 equilibrium state 

The total entropy production rate totS  along the integra-
tion path is shown in Figure 5 for the first unit of time inte-
gration. The total entropy production rate is not monotone 
during relaxation to steady state, both falling and rising. The 
steady state has a lower entropy production rate than states 
from which it formed, so the F=4J steady state is not a state 
of maximum entropy production. 

 
Figure 5.  The total entropy production rate totS , solid line, and effective 
temperature, dashed line, for the initial part of the equilibrium-to-F=4J 
trajectory shown in Figure 4. The dotted line is the bath temperature, 
kT/J=0.55 

The slope of the trajectory in Figure 4 is an effective 
temperature, kTeff/J, because du/dSsys=T at equilibrium. The 
slope begins at kTeff/J=0.55, the bath temperature, at the 
equilibrium point. As the trajectory approaches the F=4J 
steady state kTeff/J reaches 0.50, which is consistent with the 
interpretation that the field cools the square-lattice driven 
gas. 

4.2. Hexagonal and Triangular Lattices 
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Trajectories between steady states on a hexagonal lattice 
are shown in Figure 6, for which the bath temperature 
kT/J=0.33. Each trajectory has two points where the path 
turns. At those points the effective temperature Teff diverges. 
Approaching the F=0 steady state, kTeff/J≈kT/J=0.33, as 
expected. Approaching the F=4J steady state, kTeff/J≈2.4, 
which is consistent with the field heating the lattice gas.  

 
Figure 6.  Relaxation on a 2×3 hexagonal lattice at kT/J=0.33. Solid line 
(a and b): integration from the F=0 equilibrium state (•) to the F=4J steady 
state ♦. Dashed line: integration from the F=4J steady state back to the 
F=0 equilibrium state. Graph b shows the total entropy production rate 
versus distance along the path from F=0 to F=4J 

However, the overall effect of increasing the field is to 
lower the steady-state entropy and raise the steady-state 
energy, so that the overall change cannot be interpreted as 
effective heating, as can be seen in Figure 6a. 

Figure 6b shows that entropy production is not monotone 
along the trajectory. There is a local maximum and there are 
two local minima along the path to the F=4J steady state. 
(The second minimum is not readily apparent in the figure 
because it is shallow and occurs near the end of the path.) 
The rate of entropy production at steady state is greater than 
at the minimum immediately preceding it, and smaller than 
along much of the path preceding it. Entropy production is 
neither maximized nor minimized at steady state. 

 
Figure 7.  4×3 triangular lattice at kT/J=0.35. Steady states (a): ■ F=J,   
• F=0 equilibrium, ♦ F=4J. All trajectories in (a) end at the F=J steady 
state (■). Solid lines: integration from the F=0 equilibrium (•) or the F=4J 
steady state (♦) to the F=J steady state (■). Dashed line: integration from 
one configuration having all particles in two columns, Dotted line: integra-
tion from the uniform distribution, Dash-dot line: from a 20-bond state, 
Dash-dot-dot line: from an 18-bond state 

Several energy-entropy trajectories on a triangular lattice 
appear in Figure 7, integrated with a field strength F=J and a 
bath temperature kT/J=0.35. Figure 7a shows transitions 
from various states to the F=J steady state. The dotted line is 
the path from the uniform distribution, in which all con-
figurations have equal probability, to the F=J steady state. 
The path from F=4J to F=J lies almost along the trajectory 
from the uniform distribution. Driven steady states on the 

triangular lattice, at least at this temperature, are along the 
path to total disorder. The dashed line is the path from a 
single configuration in which all the particles are in the left 
two of the four columns of cells.(That initial state was cho-
sen to resemble the broken-symmetry strip that is observed 
by Monte Carlo simulation on large square lattices.) The 
remaining two paths originate in states in which all con-
figurations have the same energy, or number of bonds. The 
dash-dot-dot line begins from a random selection of con-
figurations in which there are eighteen nearest-neighbors 
(bonds). Its trajectory joins that coming from the 
zero-entropy single-strip initial state, represented by the 
dashed line. The dash-dot line originates in a lower-energy 
twenty-bond group of configurations and follows a distinct 
route to the steady state. 

The rate of total entropy production is in Figure 7b, where 
the abscissa is the distance along the corresponding trajec-
tory in Figure 7a. The horizontal line shows that the 
steady-state entropy production is approached on all trajec-
tories. Some paths show non-monotone variation of entropy 
production, so that the rate of entropy production is neither 
minimized nor maximized at steady states on the triangular 
lattice. 

The driving field tends to break bonds and increase en-
tropy on the triangular lattice, but it forms bonds and de-
creases entropy on the square lattice, as is apparent in Fig-
ures 4 and 7. These results are consistent with Monte Carlo 
calculations for large lattices, where single strips are ob-
served on square lattices but only weak ordering is observed 
on triangular lattices. 

5. Kovacs Effect 
Prados and Brey[16] describe the Kovacs effect as 

non-monotonic change of a system property during relaxa-
tion of the system from a non-equilibrium state to equilib-
rium. Commonly, temperature has been the control variable, 
with relaxation following an abrupt change in temperature. 
[16,43] The effect is observed as the system relaxes from one 
steady state to another. A property of the system(e.g., energy, 
internal entropy) is followed during relaxation. When the 
property reaches the value it would have been in an inter-
mediate steady state, the control variable(e.g., temperature) 
is changed to that intermediate value. If the system were 
internally equilibrated to the intermediate steady state, its 
property would remain at the intermediate steady-state value 
and relaxation would be complete. The Kovacs effect is 
observed when the property continues changing before fi-
nally relaxing back to its intermediate steady-state value. 

Figure 8 shows typical Kovacs humps in Ssys/k during re-
laxation to driven steady states. The control variable is field 
strength rather than temperature. There is also a Kovacs 
effect when temperature is changed abruptly at fixed field 
strength, but because the effects found were small no figure 
showing temperature-induced Kovacs effects is included. 

The entropy-time paths of Figure 8 were prepared as fol-
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lows. The steady state probabilities were calculated at 
kT/J=0.6 and F=4J. That was the initial state for all five lines. 
Under zero field, the state relaxed to the equilibrium state. 
Relaxation in the energy-entropy plane (not shown) followed 
a path similar to that shown as a dashed line in Figure 4, 
which is for a slightly lower temperature. Likewise, integra-
tion under fields of F=J and F=2J produced the entropy arcs 
rising toward steady states in Figure 8. To observe the 
Kovacs effect under F=2J, the F=4J-to-0 trajectory was fol-
lowed toward equilibrium until Ssys/k=2.70, its F=2J 
steady-state value. At that time, t=2.42, the field strength was 
raised from zero to 2J, causing the system to begin relaxing 
to the F=2J steady state. Figure 8 shows that Ssys/k initially 
rose, producing the Kovacs hump, before falling back to its 
steady-state value. To observe the Kovacs effect at F=J, an 
analogous procedure was followed. The field was raised 
from zero to F=J at t=10.89 when Ssys/k=7.81, its F=J 
steady-state value. 

 
Figure 8.  Kovacs-like effect on the 6×4 square lattice at  kT/J=0.6 
beginning from the F=4J  steady state at zero time. Solid line, relaxation 
to the F=0 equilibrium state. Dashed line, relaxation to the F=J steady state. 
Dash-dot line, relaxation from the F=4-to-0 trajectory to the F=J steady 
state. Dotted line, relaxation to the F=2J steady state. Dash-dot-dot line, 
relaxation from the F=4-to-0 trajectory to the F=2J steady state 

Considered from the microscopic perspective of trajecto-
ries through configuration space, the Kovacs effect is not 
surprising. The time dependence of probability in configu-
ration space is described by(7). While the control parameters 
of temperature and field strength are constant, probability 
evolves smoothly over configuration space. An abrupt 
change in the field strength(or the temperature) changes the 
eigenvalues and eigenvectors, which in turn causes a sudden 
change in the direction of evolution. In a two-dimension 
energy-entropy projection of the trajectory, as in Figure 4, 
the direction and speed of the trajectory also change. As the 
system relaxes into the new steady-state target, a continued 
change in the macroscopic property(Ssys/k in Figure 8) pro-
duces a "Kovacs hump." 

6. Summary and Discussion  
The rate of entropy production in the surroundings of the 

lattice gas, medS , was shown to be the same, whether calcu-
lated from probability current in the system or from heat 
transferred to the bath, as long as there was local detailed 
balance. In the absence of local detailed balance, the two 

measures of S  were unequal. The difference between sta-
tistical and thermodynamic S  was illustrated in Figure 3 by 
calculations done with a non-local-detailed-balance rate 
function. 

Energy-entropy relaxation paths between steady states on 
square lattices indicated effective cooling by the external 
field. That cooling may be interpreted as causing the rise of 
critical temperature with increasing field strength. En-
tropy-energy paths for triangular lattices showed a smaller 
cooling effect. On the triangular lattice, the field increased 
both Ssys/k and u/J of steady states(Figure 7a), disordering 
the triangular-lattice gas. Energy-entropy paths on a hex-
agonal lattice were not simply explained. Hexagonal-lattice 
relaxation remains a subject for future research.  

The results showed that entropy production rate does not 
vary monotonically during relaxation of gases on the small 
square, hexagonal and triangular lattices. Maxima and 
minima of entropy production were observed along relaxa-
tion trajectories, so the steady state is not, generally, a state 
of either maximum or minimum entropy production. Ac-
cording to our observations, the principles of maximum or 
minimum entropy production at steady state do not apply to 
the lattice gas when driven upon the small lattices of this 
work.  

An alternative principle for selecting transitions, the 
principle of maximum second entropy,[13] will be explored 
in future work. The second or dynamical entropy is the 
number of configurations connected by a transition between 
macrostates in a specified time[44] For the driven lattice gas, 
a macrostate is a set of configurations that share a macro-
scopic property such as internal entropy. The subject for 
future study is to explore whether second entropy is maxi-
mized along relaxation paths to steady states of the driven 
lattice gas. 
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