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Abstract  This work concerns the study of stresses distribution in a photoelastic specimen by using bi-dimensional 

Photoelasticimetry and optical phase evaluation methods. In Photoelasticimetry technique, isochromatic fringe patterns are 

generated experimentally by a circular polariscope and the phase distribution is extracted from the monogenic signal. The 

monogenic signal that is an extension of the analytic signal is obtained by Riesz transform. Finally, the principal stress 

distributions are determined from the optical phase distribution. In this work, the experimental results are compared to 

numerical finite element study. 
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1. Introduction 

Bidimensional Photoelasticimetry is an experimental 

technique based on an optomechanical property called 

birefringence, which directly provides the whole-field 

information of principal stress difference and principal stress 

direction in a specimen. It has a wide range of industrial and 

research applications [1]. Recent advances of digital 

Photoelasticimetry have made the analysis of two- 

dimensional problems faster, accurate and reliable [2, 3].  

Recently several methods of analyzing 

Photoelasticimetric fringe patterns by means of phase 

evaluation techniques have been presented [4, 5]. There are 

many methods to extract optical phase’s distribution from 

fringe patterns such as Fourier-transform method [6] 

Wavelets methods [7, 8], and monogenic signal [9]. 

Photoelasticimetry has been used as a useful tool for 

validating finite element analysis for many problems     

[10, 11]. Researchers have used stress separation method to 

determine the individual stress components from 

Photoelasticimetric analysis and then compared them with 

those obtained from a finite element (FE) analysis. Since FE 

analysis can provide the stress components easily, methods 

to post process the FE results to plot Photoelasticimetric 

contours to compare with  experimental results have been  
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reported on a two-dimensional model and stress-frozen slice 

[12]. 

In this paper, phase evaluation method based on 

monogenic signal is developed to extract principal stress 

distribution. The result from Photoelasticimetric experiment 

was compared to show the usefulness of the finite element 

simulation (FE plotting scheme). Detailed finite element 

procedure will be presented and discussed. 

This work is presented in four sections; the first present 

the photoelasticimetry technique and the experimental setup 

used in this technique as well as we detailed the Jones 

formalism. The second section is a presentation of the Riesz 

transform and monogenic signal, the third present a detailed 

finite element procedure and we finish by presenting our 

results. 

2. Photoelasticimetry technique 

2.1. Circular Polariscope 

The polariscope is an optical system [13, 14] that utilizes 

the properties of polarized light in its operation, as shown in 

figure 1, it consists of a light source, an analyzer  A , 

polarizer P, two-quarter-wave plates Q and stressed 

transparent model (specimen) R. In the same figure, Pθ where 

θ=90° indicates the polarizer whose transmission axis is 

perpendicular to the chosen x-axis. Qβ where β=45° indicates 

the first quarter-wave plate with fast axis at 45°. Rα,φ stands 

for the stressed photoelastic specimen taken as a retardation 

φ and whose fast axis is at an angle φ with the x-axis. Qφ 
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indicates the second quarter-wave plate with fast axis at ∅. 

Aγ indicates the analyzer whose transmission axis is γ to the 

chosen x-axis. 

In Jones representation [15], each optical element is 

represented by a Jones matrix and the polarized light is 

represented by Jones’s vector. We denote M1, M2, M3, M4 

and M5 respectively the Jones’s matrix of a polarizer, first 

quarter wave-plate, stressed transparent model, second 

quarter wave-plate, and analyzer.  

M1 = [cos2θ  sinθcosθ, sinθcosθ  sin2θ]T  

M2 = [icos2β + sin2β   i − 1 sinβcosβ;  i
− 1 sinβcosβ  isin2β + icos2β]T  

M3 = [eiφcos2α + sin2α      eiφ − 1 sinαcosα;  eiφ

− 1 sinαcosα    eiφsin2α + cos2α]T  

M4 = [icos2Φ + sin2Φ   i − 1 sinΦcosΦ;  i
− 1 sinΦcosΦ  isin2Φ + icos2Φ]T  

M5 = [cos2γ  sinγcosγ; sinγcosγ  sin2γ]T  

With the Jones calculus, the electric field components are 

given as:  

 Ex , Ey 
T

= M5. M4. M3. M2. M1. Keiwt       (1) 

Where ω is the angular frequency of light and K is a 

proportional constant. When the polarized light passed 

through the stressed transparent model, an interference 

pattern on fringes is formed. The pattern provides qualitative 

information about the general distribution of stress, position 

of stress concentrations and areas of load stress. 

From the two components, we obtain the intensity 

distribution of these fringe patterns formed as: 

I = Ex
∗Ex + Ey

∗Ey                 (2) 

Where  Ex
∗  and  Ey

∗   are the complex conjugates of 

electric field components. For the arrangement of 

 P90Q45  Rα,φ  Q∅Aγ  , the matrix M1 and M2 become: 

 

   

T

T

M1 0 0; 0 1

M2 i 1 / 2. 1 i;i 1

   

   

 

And the output light intensity is given as: 

I = K(1 − sin2 γ − Φ . cosφ − sin2 Φ − α . cos2 γ −
Φ.sinφ            (3) 

It’s the intensity distribution of isoclinic fringes encoded 

in angle α and isochromatic fringes encoded in angle φ, these 

fringe patterns provide respectively the principal stress 

directions and the principal stress differences [16]. Isoclinic 

fringes depend on the orientation of crossed filter set 

whereas the isochromatic fringes depend on the stress-optic 

effect.  

2.2. Isochromatic Fringes  

The main problem of photoelasticimetry technique is that 

isoclinic and isochromatic fringes pattern are completely 

mixed, so we can’t analyze them simultaneously, for this 

reason, the compressed specimen is placed in a circular 

polariscope. The Circular Polariscope configuration is used 

for determining the magnitude of principal stress difference. 

We choose the circular configuration P90Q45  Rα,φ  Q45A0 

in which the polarizer/analyzer pairs are then rotated as a 

unit until their axes are aligned with the birefringent indicial 

axes, and the quarter- wave plates are then reinserted with 

their axes oriented at the usual 45° angle with respect to the 

new polarizer axes. The system is now in the standard 

circular dark-field polariscope condition. Up to this point the 

polarizer/analyzer axes have been kept orthogonal to each 

other, but now the analyzer is rotated separately until one of 

the fringes moves over the selected point. In rotating the 

analyzer up to 90°, the polariscope is changing from a 

dark-field. According to the Jones calculus, the intensity 

distribution in this case (the circular configuration) 

becomes: 

I = K(1 + cosφ)              (4) 

 

Figure 1.  Optical arrangement of a circular polariscope 
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The optical phase distribution is related to the path 

difference or retardationδ by: 

φ = 2π. δ λ = 2π. (e. Δn)/λ          (5) 

The physical origin of the retardation δ  is the 

stress-induced optical anisotropy of the specimen. As well as 

the birefringence is related to principal stress difference by: 

Δn = C. Δσ                (6) 

From (5) and (6), the phase is expressed as:  

φ = 2π. (C. e. Δσ) λ              (7) 

Where λ is the wavelength of light; δ is the optical path 

difference; e is the thickness of the specimen, ∆n is the 

refractive index, ∆σ the principal stress difference and C is 

the photoelastic constant which characterizes specimen. 

Owing to the linear relationship between  φ  and ∆σ 

according to equation (7), the principal stress difference may 

be made automatically from the fringe pattern phase 

distribution using the monogenic signal that is the aim of 

next section. 

3. Riesz Transform  

3.1. Presentation 

In signal processing application, the analytic 

representation of a real value function defined as the linear 

combination of the original function and its Hilbert 

transform [17, 18] is a useful tool from which the phase, 

energy, and instantaneous frequency of a one-dimensional 

signal may be estimated. The principal challenge is how to 

generalize this theory for two-dimensional signals. There are 

several approaches to generalize Hilbert transform to higher 

dimensions [19, 20], Riesz transform is among these 

approaches, and it is the natural multidimensional extension 

of Hilbert transform [21]. For fringe pattern f 

(two-dimensional signals), the Riesz transform in spatial 

representation is expressed as: 

fr = (t1, t2)T = (rx ∗ f, ry ∗ f)T         (8) 

With * stand for the convolution, rx   and ry  are the 

kernels of Riesz defined in spatial representation as: 

rx = −x/2π(x2 + y2)3/2  , ry = −y/2π(x2 + y2)3/2 (9) 

3.2. Phase Distribution of Monogenic Signal 

The monogenic signal introduced by Sommer and 

Felsberg is a multi-dimensional isotropic generalization of 

the 1D analytic signal. It is defined as the combination of 

two-dimensional signal and its Riesz components. 

fm = f + i.  rx ∗ f + j. (ry ∗ f)       (10) 

fm = f + i. t1 + j. t2           (11) 

Where i and j are two distinct orthogonal hypercomplex 

imaginary units. The functions t1 and t2 are the two Riesz 

components of fringe. In other words, as shown in figure 2, 

the monogenic is three-dimensional vectors in Cartesian 

coordinate system 𝑥, 𝑦, 𝑧 → (𝑡1, 𝑡2, 𝑓). We can present fm  

in the spherical coordinate system illustrated in the same 

figure, from this representation, several features can be 

extracted (amplitude, local orientation, and local phase), this 

tree features are orthogonal, that means that represent an 

independent information.  

 

Figure 2.  Geometric illustration of the monogenic signal in a spherical 

coordinate system 

The local amplitude that represents the local intensity or 

dynamics is defined by: 

am = (f 2 + t1
2 + t2

2)          (12) 

The Local phase represents the structural information; it 

denotes the angle between amplitude and the plane spanned 

by the two complex vectors. 

φm = atan2( t1
2 + t2

2 
1

2/f)      (13) 

The local orientation represents the geometrical 

information meaning the direction of phase information. 

θm = atan2(t2/t1)            (14) 

A fourth feature can be defined phase vector, it is a local 

phase oriented in the vector e r  such as: 

φm = er . φm = t2/ t1
2 + t2

2 
1

2 . atan2( t1
2 + t2

2 
1

2/f)  (15) 

Several applications of monogenic signal analysis have 

realized, we cite some paper like temperature measure [22], 

wavelet filtering [23], and medical imaging [24].  

4. Results of Principal Stress Difference 

4.1. Photoelasticimetric Study 

The experimental data were acquired by a digital camera 

using a circular polariscope. In this experience, we used a 

transparent photoelastic polymer. The material of the test 

specimen is a transparent polymer we have defined as an 

elastic material whose mechanical properties are Young’s 

modulus of E=2.7N/mm2 and Poisson ratio of ν=0.48. From 

one isochromatic fringe pattern (size 636*1332 pixels) and 

after a post-treatment step of acquired, we obtain 

isochromatic fringes in grayscale (figure 3.a), from there, we 

extract the phase distribution presented in figure (3.b) by 
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using monogenic signal. The extracted phase is wrapped or 

discontinuous because of use of tangent, the unwrapping step 

is necessary in order to eliminate this discontinuity and get 

the continuous phase distribution consequently the 

continuous information as shown in figure (3.c), we used 

PUMA algorithm [25] for phase unwrapping. The black 

circular area that we notice in figure (3.a) and figure (3.b) 

corresponds to the hole in the photoelastic specimen. 

 

(a) 

 

(b) 

 

(c) 

Figure 3.  (a) Isochromatic fringe pattern (gray scale), (b) wrapped phase 

distribution obtained using the monogenic signal, (c) continuous phase 

distribution 

From the two-dimensional phase distribution presented, 

we plot the gray scale values or intensity variation in terms of 

distance in pixels as presented in figure 4. We notice that the 

gray value variation is symmetric in the vicinity of hole. 

4.2. Finite Elements Study 

Considering the mechanical structure applied to a tensile 

loading, to be model numerically in order to determine the 

stress distribution. In figure 5, we present the model study in 

the form of the specimen used in experience. 

 

Figure 4.  Intensity distribution along the path in continuous phase 

distribution 

 

Figure 5.  Model study 

The numerical simulation was made by a numerical 

computation code. Figure 6 illustrates the specimen that has 

meshed with quadratic elements of type C3D20R with a total 

number of elements equal to 2272. A mesh refinement is also 

established in the vicinity of the defect (hole) to determine 

the concentration of local stresses and give more precision 

about the results obtained.  

 

Figure 6.  Meshed specimen 

The material of the test specimen is a transparent polymer 

we have defined as an elastic material whose mechanical 

properties are Young’s modulus of E=2.7N/mm2 and 

Poisson ratio of ν=0.48. 

The results shown in figure 7 show the distribution of 

stresses in the specimen breakthrough and urged to tensile 

loading. It is clear that the load applied to the structure has 

generated maximum stresses in the vicinity of the hole. 

Figure (7.c) illustrates the stress distribution along 

predefined yellow path. 
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(a) 

 

(b) 

 

(c) 

Figure 7.  (a, b) Stresses distribution at the structure along the yellow path 

(c) stress distribution along the predefined path 

Note that the distribution of the equivalent stress in the 

specimen mark a maximum stresses concentration in the 

vicinity of the defect (hole), while away from defect there are 

low-stress values. Far from the discontinuity specimen is 

relaxed. 

5. Conclusions 

We have presented a study based on Photoelasticimetry 

and optical phase evaluation techniques in order to obtain the 

stresses distribution in a photoelastic specimen. Especially, 

we exploited the phase distribution of the isochromatic 

fringes extracted by monogenic signal to obtain principal 

stresses distribution. Also, we presented a numerical finite 

element model and extract the stresses distribution variation 

along the path indicated in fig (7.a). As it shows results, the 

two schema plots (fig 6 and fig (7.a) has the same appearance, 

considering stresses encoded in gray values. It is, therefore, 

possible to calculate rapidly and accurately stresses and 

Photoelasticimetry can be successfully used to validate the 

numerical approach. 
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