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Abstract  This paper presents a Hilbert Huang Transform method for phase extraction in digital speckle pattern 
interferometry. We present here a new technique that provides, with a good accuracy, the phase distribution from a single 
correlogram with closed fringes and this by a new exploitation of the analytic signal, resulted from two-dimensional 
empirical mode decomposition associated to Hilbert and wavelet transforms. Thereafter, a simulation was carried out to 
validate the proposed algorithm, giving good results. The main advantage of this technique is its ability to offer a metrological 
solution adapted to the dynamic analysis needs in disruptive environments. 
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1. Introduction 
Digital speckle pattern interferometry (DSPI) is a whole 

field optical method for non-contact surface analysis. It’s 
now considered as a powerful tool for industrial 
measurements by light intensity variation acquisition. 
Generally, a wide range of parameters such as surface 
deformation, temperature,…etc. are relying to a spatial phase 
coding the fringe pattern. So getting access to these 
parameters needs to calculate the phase map from the 
intensity images [1, 2].  

The phase retrieval from a single fringe pattern requires 
the acquisition of an image with modulated fringes by a high 
frequency spatial carrier. This modulation is carried out 
experimentally by inclining one of the setup mirrors which is 
a difficult task or even impossible in the case of a fast 
transient phenomenon analysis. So, the aim of this paper is 
performing this modulation numerically after acquiring an 
uncarrier fringe pattern with or without closed fringes. 

In our work, we attempt to retrieve the phase map from a 
single acquired image, where our fringe analysis technique 
consists of decomposing the fringe pattern into BIMF 
(Bidimensional Intrinsic Mode Function), applying the 
Hilbert Transform to each BIMF, then, a numerical spatial 
carrier has been superimposed and by using the continuous 
wavelet transform, we can then calculate the phase map. This  
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method leads directly to a phase distribution in very good 
agreement with the estimated one from a direct carrier fringe 
patterns. 

2. Digital Speckle Pattern 
Interferometry 

Speckle interferometry or DSPI (Digital Speckle Pattern 
Interferometry) is a non destructive technique (Fig.1), used 
for measurements with high accuracy of static and dynamic 
micro-strain of scattering surfaces [3]. 

This technique is based on the phenomenon of speckle [4], 
and the use of information contained in the speckle grains. 
Practically this amounts to encode the phase of the speckle 
grains at the image plane (CCD camera), by interfering wave 
with a speckle reference wave, and thus we obtain 
interferograms.  

 

Figure 1.  DSPI setup 
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The fringe pattern (correlogram) is obtained by 
numerically correlating the speckle interferograms of surface 
before and after deformation. 

Fig. 1 depicts a schematic setup of DSPI measurement 
system. In brief, the laser beam is split into different 
directions (several laser illumination beams and a reference 
beam). 

By combining different pairs of laser beams, the 
measuring the plane and out of plane deformation of the 
components is generated. 

The DSPI technique returns to extract information about 
the object from speckle interferograms by exploiting the 
coding phase introduced. 

The correlogram of intensity that will be used to determine 
the value of deformation is obtained by subtracting, pixel by 
pixel, the primary and secondary interferograms digitally. 

 

   

(a)                                     (b) 

 

(c) 

Figure 2.  (a) The primary interfergram, (b) the secondary interferogram, 
(c) the correlogram  

The intensity distribution in the primary interferogram 
(Fig.2.a) is given by: 

𝐼𝐼1(𝑥𝑥, 𝑦𝑦) = 𝐴𝐴(𝑥𝑥, 𝑦𝑦) + 𝐵𝐵(𝑥𝑥, 𝑦𝑦)cos𝜑𝜑𝑠𝑠′ (𝑥𝑥, 𝑦𝑦)      (1) 
With 𝐴𝐴(𝑥𝑥, 𝑦𝑦) and 𝐵𝐵(𝑥𝑥, 𝑦𝑦) being the average intensity and 

the amplitude of the fringes respectively and 𝜑𝜑𝑠𝑠′ (𝑥𝑥, 𝑦𝑦) is the 
speckle phase given by: 

𝜑𝜑𝑠𝑠′ (𝑥𝑥, 𝑦𝑦) = 𝜑𝜑𝑠𝑠(𝑥𝑥, 𝑦𝑦) − 𝜑𝜑𝑟𝑟(𝑥𝑥, 𝑦𝑦)        (2) 

Such as 𝜑𝜑𝑠𝑠(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑𝑟𝑟(𝑥𝑥, 𝑦𝑦) are the speckle phase and 
the reference speckle phase respectively. 

The intensity distribution in the secondary interferogram 
(Fig.2.b) is: 
𝐼𝐼2(𝑥𝑥, 𝑦𝑦) = 𝐴𝐴(𝑥𝑥, 𝑦𝑦) + 𝐵𝐵(𝑥𝑥, 𝑦𝑦)cos(𝜑𝜑𝑠𝑠′ (𝑥𝑥, 𝑦𝑦) + 𝜙𝜙(𝑥𝑥, 𝑦𝑦)) (3) 
𝜙𝜙(𝑥𝑥, 𝑦𝑦)  being the variation phase introduced by 

deformation. 
The intensity distribution in the correlogram (Fig.2.c) is: 

𝐶𝐶(𝑥𝑥, 𝑦𝑦) = 𝐼𝐼2 − 𝐼𝐼1 

= 2𝐵𝐵(𝑥𝑥, 𝑦𝑦)sin(𝜙𝜙(𝑥𝑥,𝑦𝑦)
2

)sin(𝜑𝜑𝑠𝑠′ (𝑥𝑥, 𝑦𝑦) + 𝜙𝜙(𝑥𝑥,𝑦𝑦)
2

)   (4) 

In this equation the phase of the deformation appears in 
the first term as an envelope modulating the speckle in the 
second term that varies spatially faster and can be removed 
by an appropriate filter. 

3. Hilbert Huang Transform 
3.1. The Empirical Mode Decomposition 

The Hilbert-Huang transform (HHT) is based on the 
combination of the EMD method and the Hilbert transform 
(HT). 

The starting point of the Empirical Mode Decomposition 
(EMD) [5] is to consider oscillations in signals at a very local 
level. In fact, if we look at the evolution of a signal 𝑥𝑥(𝑡𝑡) 
between two consecutive extrema (say, two minima 
occurring at times 𝑡𝑡− and 𝑡𝑡+), we can heuristically define a 
(local) high frequency part {𝑑𝑑(𝑡𝑡), 𝑡𝑡− ≤ 𝑡𝑡 ≤ 𝑡𝑡+} , or local 
detail, which corresponds to the oscillation terminating at the 
two minima and passing through the maximum which 
necessarily exists between them. For the picture to be 
complete, one still has to identify the corresponding (local) 
low-frequency part 𝑚𝑚(𝑡𝑡), or local trend, so that we have 
𝑥𝑥(𝑡𝑡) = 𝑚𝑚(𝑡𝑡) + 𝑑𝑑(𝑡𝑡) for 𝑡𝑡− ≤ 𝑡𝑡 ≤ 𝑡𝑡+. 

Assuming that this is done in some proper way for all the 
oscillations composing the entire signal, the procedure can 
then be applied on the residual consisting of all local trends, 
and constitutive components of a signal can therefore be 
iteratively extracted. 
Given a signal 𝑥𝑥(𝑡𝑡), the effective algorithm of EMD can be 
summarized as follows [5]: 

1. identify all extrema of 𝑥𝑥(𝑡𝑡) 
2. interpolate between minima (resp. maxima), ending 

up with some envelope 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 (𝑡𝑡) (resp. 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 (𝑡𝑡)) 

3. compute the mean 𝑚𝑚(𝑡𝑡) = �𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 (𝑡𝑡)+𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 (𝑡𝑡)�
2

  
4. extract the detail 𝑑𝑑(𝑡𝑡) = 𝑥𝑥(𝑡𝑡) + 𝑚𝑚(𝑡𝑡) 
5. iterate on the residual 𝑚𝑚(𝑡𝑡) 

In practice, the above procedure has to be refined by a 
sifting process [5] which amounts to first iterating steps 1 to 
4 upon the detail signal d(t), until this latter can be 
considered as zero-mean according to some stopping 
criterion. 
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Figure 3.  The BIMFs resulting from BEMD decomposition of the filtred correlogram

Once this is achieved, the detail is referred to as an 
Intrinsic Mode Function (IMF), the corresponding residual is 
computed and step 5 applies. By construction, the number of 
extrema is decreased when going from one residual to the 
next, and the whole decomposition is guaranteed to be 
completed with a finite number of modes. 

3.2. The Bidimensional Empirical Mode Decomposition 

The BEMD permits to analyze a 2D non-linear and 
non-stationary data. Its principle is to decompose adaptively 
a given signal into frequency components, called 
Bidimensional Intrinsic Mode Functions (BIMF). These 
components are obtained from the signal by means of an 
algorithm called sifting process [6]. This algorithm extracts 
locally for each mode the highest frequency oscillations out 

of original signal. 
To extract the BIMF during the sifting process, we have 

used morphological reconstruction to detect the image 
extrema and RBF (Radial Basis function) to compute the 
surface interpolation.  
The bidimensional sifting process is defined as follow: 

* Identify the extrema (both maxima and minima) of 
the image I by morphological reconstruction based on 
geodesic operators; 

* Generate the 2D ‘envelope’ by connecting maxima 
points (respectively, minima points) with a RBF; 

* Determine the local mean m1; by averaging the two 
envelopes; 

*Since BIMF should have zero local mean, subtract out 
the mean from the image: 𝐼𝐼 − 𝑚𝑚1 = ℎ1 
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* Repeat as h1 is a BIMF. 
Adding all the BIMFs together with the residue 

reconstructs the original signal without information loss or 
distortion [7]. 

𝐼𝐼(𝑥𝑥, 𝑦𝑦) = ∑ 𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘(𝑥𝑥, 𝑦𝑦) + 𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥, 𝑦𝑦)𝑛𝑛−1
𝑘𝑘=1        (5) 

The Fig.3 bellow represents the BIMF(i) of the filtred 
correlogram (Fig.6) to x=128 and i=1,4,7,10,13,16. 

3.3. Hilbert Transform 
In the real space, the Hilbert transform (HT) of the signal 

f(x) is a convolution between it and 1
𝜋𝜋𝜋𝜋

 [8]. It is defined by 

𝐻𝐻�𝑓𝑓(𝑥𝑥)� = 1
𝜋𝜋 ∫

𝑓𝑓(𝑥𝑥 ′ )
(𝑥𝑥−𝑥𝑥′ )

𝑑𝑑𝑑𝑑′+∞
−∞          (6) 

In the frequency domain, the Hilbert Transform results 
from a simple multiplication with the sign function: 

𝐹𝐹𝐹𝐹�𝐻𝐻(𝑓𝑓)�(𝑘𝑘) = −𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑘𝑘)𝐹𝐹𝐹𝐹(𝑓𝑓)(𝑘𝑘)      (7) 

Where FT denotes the Fourier Transform, k is the angular 
frequency and 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘) = �
−1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 < 0
0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 = 0
1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 > 0

�            (8) 

The Hilbert transform does not change the amplitude F (k), 
it only changes the phase. 

Hence the Hilbert transform is equivalent to a filter 
altering the phases of the frequency components by 90° 
positively or negatively according to the sign of frequency. 

However, the direct application of this transform to a 
correlogram to carry out the phase shift sometimes 
introduces a sign ambiguity problem can be corrected by a 
guided method of fringe orientation correlogram [9]. 

4. Spatial Carrier Superposition 
Owing to the difficulties encountered while 

experimentally adding the spatial carrier, we propose to add 
the spatial carrier to a fringe pattern numerically using the 
cosine fringe pattern and its π

2
 phase shifted version or sine 

fringe pattern [10]. 
The fringe pattern of Eq. (4), leads after processing to a 

modulated fringe pattern which can be represented as 
follows 

𝐶𝐶(𝑥𝑥, 𝑦𝑦) = 𝑎𝑎(𝑥𝑥, 𝑦𝑦) + 𝑀𝑀(𝑥𝑥, 𝑦𝑦) cos�𝜙𝜙(𝑥𝑥, 𝑦𝑦)�   (9) 

After removing the background 𝐶𝐶0(𝑥𝑥, 𝑦𝑦) by a high pass 
filter and applying the Hilbert Huang Transform, the 
resultant fringe patterns are: 

𝐶𝐶𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 𝑀𝑀(𝑥𝑥, 𝑦𝑦)cos(𝜙𝜙(𝑥𝑥, 𝑦𝑦))         (10) 

𝐶𝐶𝑑𝑑(𝑥𝑥, 𝑦𝑦) = 𝑀𝑀(𝑥𝑥, 𝑦𝑦)sin(𝜙𝜙(𝑥𝑥, 𝑦𝑦))         (11) 
Using a modulation ratio m, we numerically combine 

𝐼𝐼𝑓𝑓(𝑥𝑥, 𝑦𝑦)  and 𝐼𝐼𝑑𝑑(𝑥𝑥, 𝑦𝑦)  with cos(𝑚𝑚𝑚𝑚)  and sin(𝑚𝑚𝑚𝑚)  giving 
the modulated fringe pattern: 

𝐶𝐶′(𝑥𝑥, 𝑦𝑦) = cos(𝑚𝑚𝑚𝑚) 𝐶𝐶𝑓𝑓(𝑥𝑥, 𝑦𝑦) − sin(𝑚𝑚𝑚𝑚) 𝐶𝐶𝑑𝑑(𝑥𝑥, 𝑦𝑦) (12) 

𝐶𝐶′(𝑥𝑥, 𝑦𝑦) = 𝑀𝑀(𝑥𝑥, 𝑦𝑦)𝑐𝑐𝑐𝑐𝑐𝑐[𝑚𝑚𝑚𝑚 + 𝜙𝜙(𝑥𝑥, 𝑦𝑦) ]    (13) 
A phase-modulated carrier my is then added to the phase 

of interest in order to enable the wavelet phase extraction 
lately.  

5. Fringe Pattern Demodulation 
Problem 

5.1. Principe 

Fringe patterns analysis methods have been widely used to 
measure a wide range of physical quantities, modulated by a 
spatial phase, including surface profile and deformation, 
strain and temperature gradient. Consequently, phase 
retrieval becomes a key technique in the fringe pattern 
analysis field. The phase can be obtained from this fringe 
pattern by several methods including the Fourier and CWT 
(continuous Wavelet Transform) ones. 

5.2. The Fourier Method 

The Eq.9 can be written as: 
𝑔𝑔(𝑥𝑥, 𝑦𝑦) = 𝑎𝑎(𝑥𝑥, 𝑦𝑦) + 𝑐𝑐(𝑥𝑥, 𝑦𝑦) + 𝑐𝑐∗(𝑥𝑥, 𝑦𝑦)  (14) 

with 

𝑐𝑐(𝑥𝑥, 𝑦𝑦) = 𝑀𝑀(𝑥𝑥,𝑦𝑦)
2

𝑒𝑒𝑖𝑖𝑖𝑖(𝑥𝑥,𝑦𝑦)        (15) 

Where 𝑐𝑐∗(𝑥𝑥, 𝑦𝑦) is the conjugate complex of 𝑐𝑐(𝑥𝑥, 𝑦𝑦). 
It is possible to isolate the term 𝑐𝑐(𝑥𝑥, 𝑦𝑦), containing the 

phase information, in the frequency domain. 
The one-dimensional Fourier Transform, of Eq.14 has the 

following form: 
𝐺𝐺(𝑥𝑥, 𝑓𝑓) = 𝐴𝐴(𝑥𝑥, 𝑓𝑓) + 𝐶𝐶(𝑥𝑥, 𝑓𝑓) + 𝐶𝐶∗(𝑥𝑥, 𝑓𝑓)      (16) 

As the terms C and C* are symmetric, a filter containing 
only the positives frequencies has to be used to keep only the 
term 𝐶𝐶(𝑥𝑥, 𝑓𝑓). Using the inverse FFT is needed to obtain 
𝑐𝑐(𝑥𝑥, 𝑦𝑦) that the 2𝜋𝜋 modulus phase will be extracted from it 
as follow: 

𝜙𝜙(𝑥𝑥, 𝑦𝑦) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐼𝐼𝐼𝐼(𝑐𝑐(𝑥𝑥,𝑦𝑦))
𝑅𝑅𝑅𝑅(𝑐𝑐(𝑥𝑥,𝑦𝑦))

       (17) 

Notice that the phase needs to be appropriately 
unwrapped. 

5.3. Wavelet Method 

5.3.1. Continuous Wavelet Transform 
The continuous wavelet transform (CWT) is a powerful 

tool to obtain a space–frequency description of a signal. 
Unlike the Fourier transform that uses an infinitely 
oscillating terms 𝑒𝑒𝜔𝜔 = 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑖𝑖𝜔𝜔𝜔𝜔) , the wavelet analysis 
technique use a set of a specially designed pulse functions, 
called "wavelets", to analyze the local information of the 
signal [11]. A wavelet is an oscillating function 𝜓𝜓(𝑥𝑥) , 
centered at x=0 and decay to zero such  

∫ 𝜓𝜓(𝑥𝑥)𝑑𝑑𝑑𝑑 = 0+∞
−∞              (18) 

If 𝜓𝜓�(𝜔𝜔)  is the Fourier Transform of 𝜓𝜓(𝑥𝑥) , then 
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condition (18) is equivalent to the requirement that  
𝜓𝜓�(0) = 0                 (19) 

A family of the analyzing wavelets is generated from this 
“mother wavelet” 𝜓𝜓(𝑥𝑥) by translations and dilatations and 
it can be expressed as  

𝜓𝜓𝑠𝑠,𝜉𝜉 (𝑥𝑥) = 1
√𝑠𝑠
𝜓𝜓(𝑥𝑥−𝜉𝜉

𝑠𝑠
)        (20) 

Where 𝑠𝑠 ≠ 0  is the scale parameter related to the 
frequency concept, and 𝜉𝜉 ∈ 𝑅𝑅 is the shift parameter related 
to position. 

We note that the wavelets with small values of s have 
narrow spatial support and consequently rapid oscillations, 
making them well adapted to selecting high-frequency 
components of a signal. The converse is true for wavelets 
with large values of s. 

Many different types of mother wavelets are available for 
the phase evaluation applications, but in our case the study 
reveals that the Complex Morlet wavelet gives the best 
results. It is defined as: 

𝜓𝜓(𝑥𝑥) = 1
√𝜋𝜋

exp(2𝑖𝑖𝑖𝑖𝑓𝑓𝑐𝑐𝑥𝑥) exp(−𝑥𝑥2)     (21) 

Where 𝑓𝑓𝑐𝑐  is the wavelet center frequency. 
Fig.4 shows the real and the imaginary part of the 

complex Paul wavelet. 

 
Figure 4.  Complex Morlet wavelet 

The 1D continuous wavelet transform (CWT) of a 
function 𝑓𝑓(𝑥𝑥) is giving by 

𝑊𝑊𝑓𝑓(𝑠𝑠, 𝜉𝜉) =< 𝑓𝑓,𝜓𝜓𝑠𝑠,𝜉𝜉 >= ∫ 𝑓𝑓(𝑥𝑥)𝜓𝜓𝑠𝑠,𝜉𝜉
∗+∞

−∞ (𝑥𝑥)𝑑𝑑𝑑𝑑 (22) 

Where * denotes the complex conjugation. 
The continuous wavelet transform can be expressed, 

using the Parseval identity, as  

𝑊𝑊𝑓𝑓(𝑠𝑠, 𝜉𝜉) =
1

2𝜋𝜋
< 𝑓𝑓,𝜓𝜓�𝑠𝑠,𝜉𝜉 > 

= √𝑠𝑠
2𝜋𝜋 ∫ 𝑓𝑓(𝑘𝑘)�𝜓𝜓�(𝑠𝑠𝑠𝑠)�

∗+∞
−∞ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑        (23) 

Where 𝑓𝑓 , 𝜓𝜓�  and 𝑘𝑘  are the Fourier transform of the 
signal, the Fourier transform of the mother wavelet and the 
angular frequency, respectively.   

If the inverse wavelet transform exist, the original signal 
can be reconstructed by 

𝑓𝑓(𝑥𝑥) = 1
𝐶𝐶𝛹𝛹
∫ ∫ 𝑊𝑊𝑓𝑓(𝑠𝑠, 𝜉𝜉)𝛹𝛹𝑠𝑠,𝜉𝜉 (𝑥𝑥) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑠𝑠2
+∞
−∞

+∞
0 (24) 

Where 

𝐶𝐶𝛹𝛹 = ∫ |𝛹𝛹� (𝑘𝑘)|2

𝑘𝑘
+∞
−∞           (25) 

This reconstruction of the signal is possible when CΨ has 
a finite value.      

The extension of the wavelet concept to the 
two-dimensional space is immediate by varying the 
integration variables and the location parameter in 𝑅𝑅2 and 
neither in 𝑅𝑅 [12]. The 2D CWT of a two-dimensional signal 
f is given by  

𝑊𝑊�𝑠𝑠, 𝜉𝜉, 𝛼𝛼� = ∬ 𝐶𝐶′(𝑥⃗𝑥) 1
𝑠𝑠
𝜓𝜓∗(𝑅𝑅−𝛼𝛼 𝑥𝑥−𝜉𝜉�⃗

𝑠𝑠𝑅𝑅2 )𝑑𝑑𝑥⃗𝑥 (26) 

where  

𝜉𝜉 ∈ 𝑅𝑅2, 𝑠𝑠 > 0 𝛼𝛼 ∈ [0,2𝜋𝜋]. 

5.3.2. The 2D Wavelet-based Phase Retrieval Algorithm 

To retrieve the phase information using the 2D wavelet 
method, the 2D CWT of the fringe pattern is computed by: 

𝑊𝑊�𝑠𝑠, 𝜉𝜉, 𝛼𝛼� = ∬𝐶𝐶′(𝑥⃗𝑥) 1
𝑠𝑠
𝜓𝜓∗(𝑅𝑅−𝛼𝛼 𝑥𝑥−𝜉𝜉�⃗

𝑠𝑠
)𝑑𝑑𝑥⃗𝑥    (27) 

Where  

𝜉𝜉 ∈ 𝑅𝑅2, 𝑠𝑠 > 0 𝛼𝛼 ∈ [0,2𝜋𝜋]. 
𝑅𝑅𝛼𝛼  designates the orientation matrix by the angle 𝛼𝛼: 

𝑅𝑅𝛼𝛼 = �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �           (28) 

Thus the analyzing wavelets are resulted from the mother 
wavelet by dilatation, translation and also orientation 
processes [13]. 

The wavelet coefficients array 𝑊𝑊�𝑠𝑠, 𝜉𝜉, 𝛼𝛼�  is a 4D 
complex matrix that quantifies the local resemblance degree 
between the fringe pattern and the two-dimensional wavelet 
for different values of scale, location and orientation [14]. 
For each pixel, 2D wavelet coefficients matrix represents the 
directional structure of the fringe pattern. These coefficients 
capture the spatial dependence between the analyzing 
wavelet and the fringe pattern in different directions and for 
the specified frequencies. Thus, 2D wavelet transform 
proves to be very effective for retrieving the phase 
distribution in optical metrology. 

The wavelet coefficients, for the same location parameter 
values 𝜉𝜉, form a 2D complex array 𝑊𝑊(𝑠𝑠, 𝛼𝛼) that will be 
used to compute the phase of the fringe pattern pixel with 
coordinates 𝜉𝜉. 

First, the ridge of the wavelet coefficients array 𝑊𝑊(𝑠𝑠, 𝛼𝛼) 
is detected and the phase value will be its corresponding 
angle. 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �𝜉𝜉� = |𝑊𝑊(𝑠𝑠𝑚𝑚 , 𝛼𝛼𝑚𝑚)| = max(|𝑊𝑊(𝑠𝑠, 𝛼𝛼)|)  (29) 
Where 𝑠𝑠𝑚𝑚  and 𝛼𝛼𝑚𝑚  are the scale and orientation values 

for maxima. 
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∅�𝜉𝜉� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝐼𝐼𝐼𝐼(𝑊𝑊(𝑠𝑠𝑚𝑚 ,𝛼𝛼𝑚𝑚 ))
𝑅𝑅𝑅𝑅(𝑊𝑊(𝑠𝑠𝑚𝑚 ,𝛼𝛼𝑚𝑚 ))

�      (30) 

By repeating this process to all pixels of the fringe pattern, 
the phase map is then estimated. Notice that the resulted 
phase needs to be unwrapped via an appropriate algorithm to 
avoid spatial discontinuities. 

6. Results and Discussion 
The numerical simulation consists in generating digitally 

fringe patterns to verify the ability of the method to 
determine the phase distribution.  

The test phase function (Fig.5) that we used is expressed 
as: 

𝜙𝜙(𝑥𝑥, 𝑦𝑦) = 0.001 ∗ [(𝑥𝑥 − 128)2 + (𝑦𝑦 − 128)2]   (31) 
Where (x,y) are the pixel coordinates. 

 
Figure 5.  Simulated phase distribution. 

The fringe pattern shown in fig.2.c is the speckle 
correlogram coded by the known phase 𝜙𝜙(𝑥𝑥, 𝑦𝑦). 

After filtering it by SWT filter [15], we obtained the 
resultant fringe pattern of Fig.6. 

 

Figure 6.  The filtered correlation fringes 

Using the BEMD decomposition, the first eight BIMFs of 
the fringe pattern are illustrated in Fig.7. 

After that, the Hilbert Transform is applied to each BIMF 
followed by a sign correction. Fig.8 shows the sum of all 
corrected BIMFs. It’s a 𝜋𝜋

2
 phase shifted correlogram. 

   

  

  

  
Figure 7.  The eight BIMFs components 

 

Figure 8.  The 
𝜋𝜋
2

 phase shifted correlogram 

After combining the two phase shifted fringe patterns 
numerically with sin (my) and cos (my), we have obtained 
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the modulated fringe pattern shown in Fig. 9 with 
modulation rate value 0.8 radian/pixel. 

 
Figure 9.  The carrier fringe pattern 

The wavelet method was applied to the new carrier fringe 
pattern to retrieve the phase map of Fig. 10. 

 
Figure 10.  The wrapped phase map 

Fig.11 illustrates the retrieved continuous phase map after 
the unwrapping process. 

 
Figure 11.  The retrieved phase map 

Considering the structural Similarity index (measuring the 
similarity of the theoretical and retrieved phases) to evaluate 
the accuracy of the resultant phase, we obtained SSIM=0.87.  

The comparison of our algorithm is carried out with the 
Fourier phase retrieval method that was applied to an 
originally carrier fringe pattern coded by the same phase  

The intensity of the carrier correlogram has the following 

expression: 
𝐶𝐶(𝑥𝑥, 𝑦𝑦) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙(𝑥𝑥, 𝑦𝑦) + 0.8 ∗ 𝑦𝑦)       (32) 

After applying the Fourier method on the new correlogram, 
the obtained phase distribution is displayed in Fig.12. 

    
Figure 12.  The retrieved phase map by Fourier Transform 

The new Structural Similarity index that is obtained for 
Fourier method is 0.86. 

7. Conclusions 
In this paper, we have presented a new algorithm of phase 

retrieval from a single uncarrier corellogram with closed 
fringes. This was achieved by numerical superposition of the 
spatial carrier by Hilbert Huang Transform, followed by 
fringes demodulation using 2D Continuous Wavelet 
Transform. 

The use of the Bidimensional Empirical Mode 
Decomposition, before the 𝜋𝜋

2
 phase shifting by Hilbert 

Transform, helps to overcome the problem of the signal 
stationarity and frequency stability and helps to get a 
consistent and stable quadrature. 

The comparison of our algorithm to the well know Fourier 
method using an original carrier correlogram has shown that 
the results are in very close agreement with the advantage 
that our method is more suitable to the fast dynamic tests. 
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