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Abstract  The definition of “sphere multiplier” or “sensitivity factor” of an integrating sphere is revisited by comparing 
the radiance of the integrating sphere with the radiance of the planar diffuser obtained by unfolding the integrating sphere 
surface. We get to two new definitions of “sphere multiplier”, derived by a different choice of “input flux” to the 
integrating sphere: a collimated flux impinging on a small region of the sphere wall in the first case; a diffused flux 
impinging on the total surface of the sphere in the second one. The two definitions of “sphere multiplier” differ by a factor 
equal to the reflectivity of the first impact region of the collimated beam. 
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1. Introduction 
The integrating sphere has a relevant role in optics as it 

can be used as a light source with constant radiance or as a 
linear device for radiation measurements[1]. The integrating 
sphere has been widely used by us for the optical 
characterization of photovoltaic materials and devices and 
for radiation measurements on concentrated solar beams 
[2-17].  

The theory of radiation emitted by an illuminated 
integrating sphere brings to the definition of the so called 
“sphere multiplier” M, a parameter which accounts for the 
increase of radiance, due to the internal multiple reflections, 
with respect to a planar diffuser with the same surface area. 
In what follows, we refer to the theory of integrating sphere 
as reported in refs.[18-21]. In this theory, the radiance LD of 
a planar diffuser of total area AD, without openings, and 
reflectivity ρ: 
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is compared to the radiance LS of an integrating sphere of 
total area AS = AD , provided with openings for the input and 
output of radiation: 
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where f is the fraction area of openings. In the same theory, 
the first factor of second member of Eq. (2) is declared  
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“approximately equal” to Eq. (1): 
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from which it is derived that the second factor of second 
member of Eq. (2) can be referred to the “sphere multiplier”: 
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We think that the equality (3) is incorrect and that it is 
possible to make a more precise treatment to define the 
“sphere multiplier”. 

2. Alternative Definitions of “Sphere 
Multiplier” 

To make a correct comparison between the integrating 
sphere and the corresponding planar diffuser, we fix the 
same area in both cases and imagine that the integrating 
sphere surface be unfolded to realize the planar surface of the 
diffuser. Let us consider at first the simple case of a sphere of 
total area AS, composed of an optically uniform wall surface 
and some ports with zero reflectivity for the input and output 
of radiation. The unfolded sphere gives rise to a planar 
diffuser (d) of total area AD = AS and some openings of area  
AF = f · AS (see Figure 1) where f is the fraction of openings 
area. If the surface has ideal diffusing properties, that is has a 
Lambertian behaviour, then the radiance LD (W m-2 sr-1) of 
the planar diffuser is constant with viewing direction and can 
be expressed as follows: 
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where MD (W m-2) is the exitance of the diffuser, Φ in (W) is 
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the flux impinging on the diffuser with reflectivity ρ  and 
)1( f−= ρρ  is the average reflectivity of the diffuser. 

To calculate the radiance LS of the integrating sphere (is), 
we refer to Figure 2. The (is) is irradiated by a collimated 
beam with the same flux Φ in as before, entering the sphere 
through the input aperture (IA) and impinging on a small 
region (first impact region) of the internal wall. The radiance 
LS is that measured from the radiation emitted by the output 
aperture (oa) of the sphere, and is obtained by the irradiance 
EW produced on the internal wall at the stationary state, 
following the relation: 

ππ
WS

S
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where MS is the exitance of the integrating sphere. 

 
Figure 1.  A planar diffuser (D), with total area AD and wall surface with 
reflectivity ρ  and fraction area  f , is irradiated by the flux Φ in and 
produces by reflection a flux with radiance LD at output 

 

 
Figure 2.  The integrating sphere (IS) is irradiated by the flux Φ in at input 
port (IA) and produces a flux with constant radiance LS at output port (OA) 

To calculate EW, let us consider the successive irradiance 
contributions produced on the wall by the multiple 
reflections. The first flux Φ1 diffused into the sphere after 
reflection on the first impact region is: 

inΦρΦ  1 =                  (7) 
This flux produces an irradiance E1 on the sphere surface 

given by: 
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A new flux Φ2 is produced into the sphere due to the 
second reflection: 
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Again we have an added irradiance component E2 on the 

sphere surface: 
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and so on. 
After the n-th reflection we have for the En component of 

irradiance: 
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At the stationary state we have for the total irradiance Ew: 
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By eqs. (6) and (12) we obtain for the radiance of the 
sphere: 
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The radiance of the sphere can be expressed as the product 
of the radiance LD of the diffuser and the sphere multiplier 
M I : 
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From eqs. (13) and (14) we obtain for the sphere multiplier 
M I : 
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As it can be seen, our definition of sphere multiplier 
differs from that of Eq. (4), reported in refs.[18-20], being 
higher of the factor:[(1- f ) · ρ ]-1. 

Eq. (15) applies to a sphere realized with a wall with 
uniform reflectivity ρ and openings with fraction area f and 
zero reflectivity. In the general case, the sphere will be 
composed of, besides the wall, other different parts, like 
ports, detectors and other reflective surfaces, each of them 
characterized by a fraction area fj and a reflectivity ρj (see 
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Figure 3). 
The unfolded sphere gives rise to a diffuser with radiance: 
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where ∑ =
j

jj f ρρ  is the average reflectance of the 

diffuser and of the sphere. 
As regards the integrating sphere, we distinguish the first 

impact region, of fraction area fI and reflectivity ρI, from the 
other portions of the sphere surface. Equation (8) becomes: 
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and Eq. (13) is modified as follows: 

 
Figure 3.  In the general case, the integrating sphere (IS) is not optically 
homogeneous. The generic part has reflectivity ρ j and fraction area  f j . In 
particular, the first impact region is characterized by ρ I  and fI  parameters 
and the wall surface by ρ w and  f w parameters 
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By expressing the sphere radiance as the product of the 
diffuser radiance and the sphere multiplier, we have: 
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From Eq.s (18) and (19) we finally obtain for the general 
expression of the sphere multiplier: 
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It is easy to verify that the general Eq. (20) becomes the 
simplified Eq. (15) when putting ρρ =I  and 

)1( ff
j

jj −==∑ ρρρ , being  ρ  the reflectivity of the 

sphere wall. Eq.s (16), (18) and (20) are strictly valid in the 
hypothesis that all the portions of the sphere have a 
Lambertian behavior. In practice, this is well satisfied by the 
high reflectivity wall surface, less well by the surface of the 
accessories faced to the sphere interior.  

In this paper we want to introduce a new definition of 
sphere multiplier, indicated as MII. Considering the way 
how the planar diffuser and the integrating sphere are 
illuminated in the so far discussed approach, in fact, we note 
that the surface is uniformly illuminated by the input beam in 
the first device, whereas the input beam illuminates only the 
first impact region in the second one. To make a more 
congruent comparison between the radiance of the two 
devices, therefore, we should compare the diffused flux 
incident on the planar diffuser with the diffused flux 
produced into the integrating sphere after the first reflection. 
In this new point of view, instead of putting equal the flux 

inΦ  at input in the two devices, we put equal the diffused 
flux incident on the diffuser with the diffused flux incident 
on the integrating sphere wall surface soon after the 
reflection on the first impact region. We change, therefore, 
the flux at input of the sphere in'Φ  in order to have inΦ  

as the first diffused flux on the total area SA : 
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Now we can write for E1: 
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and Eq. (18) is modified as follows: 
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By expressing the sphere radiance as the product of the 
diffuser radiance and the new sphere multiplier MII : 
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we obtain for the new sphere multiplier: 
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For a simple sphere with only opening ports with fraction 
area f, Eq. (25) becomes: 
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Eq.s (25) and (26) represent, in our opinion, another valid 
definition of the sphere multiplier, as it comes from a 
comparison between a planar diffuser and an integrating 
sphere for which: 

i) the area of the diffuser and of the sphere are exactly the 
same; 

ii) the diffused flux at input incident on the diffuser 
surface and on the integrating sphere surface are equal.  

3. Optical Simulations 
To highlight the difference between the new definitions of 

sphere multiplier, expressed by Eq.s (15), (20), (25) and (26), 
and the old definition expressed by Eq. (4), some optical 
simulations have been carried out taking into account 
realistic values for the optical parameters of the sphere. We 
consider a simple sphere composed of a homogeneous inner 
wall with reflectivity ρ and some windows for the input and 
output of the light, covering altogether a fraction area equal 
to f . These two parameters are sufficient to apply Eq.s (4), 
(15) and (26) for calculating the three sphere multipliers. 

Figure 4 shows the sphere multipliers M, MI and MII 
calculated as a function of the reflectivity ρ , varying in the 
0.9-1.0 interval, for three different values of the fraction area  
f : 0.01, 0.025 and 0.04. The value f = 0.04 is the maximum 
tolerated for assuring an optimal integration of light inside 
the sphere[19]. The reflectivity scale was extended to 1.00, 
but this is just a theoretical limit, not reachable in practice, as 
the best values of ρ  for lambertian mirrors are around 
0.99[19-21]. Figure 4 shows that for f = 0.01 the multipliers 
reach values as high as 50, and well higher values can be 
reached further reducing f. It is interesting to note the strong 

effect that the parameter f produces on the multipliers at high 
values of ρ . From Eq.s (4), (15) and (26), in fact, we can 
note that, in the limit ρ  = 1, the multipliers depend only on f; 
in particular, M converges to 1/f, while MI and MII 
converge to 1/[f(1-f)], which are very close each other for 
very small values of f. A minor effect is instead produced by 
the different definitions of M. This effect is best appreciated 
by exploring lower values of ρ , as reported in Figure 5, 
where the three multipliers are shown for f = 0.01 and 0.04 as 
function of reflectivity ρ varying in the 0.8-0.95 interval. 
From Figure 5 we see that all the three multipliers tend to be 
less dependent on f at decreasing ρ in the examined, realistic 
range for the wall reflectivity of an integrating sphere.  

We see also that the old multiplier M shows the lowest 
values, the new multiplier MII shows the highest ones, and 
finally the new multiplier MI shows intermediate values 
between them. Both the new definitions of sphere multiplier, 
therefore, determine improved values over the old definition. 
The multiplier MII is 1/ρ times MI , as established by Eq.s 
(15) and (26); this is due to the fact that the definition of MI 
requires one more reflection on the wall, that one of the 
collimated beam at input, to produce the same diffused flux 
which is considered as input flux for the definition of MII . 
This explains why the two quantities converge to the same 
value when ρ approaches the unity. Contrary to what may 
seem from Figure 5, the three multipliers tend to very 
different limits when ρ tends to zero. This is shown in Figure 
6. For low values of ρ , M, MI and MII , go as ρ , (1+f) and 
1/ρ , respectively. The examination of the range of low 
values of ρ  is only speculative, since in practice the values 
of wall reflectivity in an integrating sphere vary in the range 
0.8-0.99, depending on the fabrication process of the coating.  
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Figure 4.  Sphere multipliers M, MI and MII calculated as a function of reflectivity ρ in the 0.9-1.0 interval, for three different values of fraction area:  f 
= 0.01, 0.025 and 0.04. The values obtained for ρ >0.99 are purely theoretical 



 International Journal of Optics and Applications 2013, 3(6): 119-124 123 
 

 

0,80 0,85 0,90 0,95
0

5

10

15

20

Reflectivity, ρ

Sp
he

re
 M

ul
tip

lie
r, 

M

 

 

 M (f=0.01)
 MI (f=0.01)
 MII (f=0.01)
 M (f=0.04)
 MI (f=0.04)
 MII (f=0.04)

 
Figure 5.  Sphere multipliers M, MI  and MII  calculated as function of reflectivity ρ  in the 0.8-0.95 interval, for fraction areas f = 0.01 and 0.04 
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Figure 6.  Sphere multipliers M, MI and MII calculated for wall reflectivity in the 0.0-0.8 interval, for fraction areas f = 0.01 and 0.04 

4. Conclusions 
In conclusion, we have revisited the common definition of 

sphere multiplier distinguishing between two types of sphere 
multipliers, which differ only for the factor ρ Ι (reflectivity of 
the first impact region). The two multipliers have been 
defined considering the following different points of view: 

i) MI is obtained considering the same flux Φin at input of 
the planar diffuser and of the integrating sphere; 

ii) MII is obtained considering a different flux at input, but 
the same diffused flux at input on the total surface area of the 
two devices. 

Differently from the actual theory, moreover, in our theory 
we have compared an integrating sphere, provided with the 

different openings for input and output of radiation and for 
radiation measurements, with a planar diffuser equal to the 
sphere in that it has been obtained by simply unfolding on a 
plane the sphere surface.  

We have finally performed some optical simulations to 
compare the different definitions of multipliers for a simple 
geometry of the sphere, in order to highlight the influence of 
wall reflectivity and fraction area of the windows. 
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