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Abstract  In this paper, we have reported two-layer coated fiber with tightly jacketed layer of segmented Young’s 
modulus (YM) material. In our proposed model, we have considered six layers out of which first two layers are assumed of 
soft material and the next four layers consist of hard materials. In our analysis we have dealt with the effects of hydrostatic 
pressure and thermal loading on microbending loss and refractive index changes of the fiber in radial, tangential, and axial 
directions. The microbending loss due to lateral pressure was calculated by taking layer thicknesses, Young’s modulus, 
Poisson’s ratio, hydrostatic pressure, and thermal loading as parameters of different cases of calculations. The results have 
shown that increase in soft layers’ thickness reduces the fiber losses. The inclusion of successive hard-material layers causes 
an increase in the fiber loss. Increase of soft material layers’ thickness has caused increase in loss and reaches a minimum 
value at a particular thickness of the corresponding layer. 
As a result, it is shown that increase of the YM of soft layers increases the fiber microbending loss while the increase in case 
of hard layers would decrease the fiber bending loss. In addition, higher Poisson’s ratio of soft layers would increase the loss 
but its higher values for hard layers would decrease the loss values. 
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1. Introduction 
Due to rapid growth of bandwidth and demands of 

transmission distance at world wide level, a strong desire is 
developed in research workers and giant optical fiber pro-
ducers to improve the fiber properties to meet the challenge 
of the bandwidth-distance product so as to meet the under-
going next generation networks requirements[1]. 

To meet the demand of such needs in different applica-
tions of fiber communication system, wavelength division 
multiplexing (WDM) and dense wavelength division multi-
plexing (DWDM) systems have been designed and imple-
mented. These systems are designed in such a way to em-
ploy newly designed optical fiber such as large effective 
area fiber for better performance and reliabilities[1]. To 
increase the channel bite rate in a long haul transmission, in 
recent years, optical fiber such as large effective area fiber 
and non-zero dispersion shifted fibers have been designed 
to be employed in high-capacity WDM/DWDM transmis-
sion system, operating in longer wavelength from 1530 to 

 
* Corresponding author: 
feseraji@itrc.ac.ir (Faramarz E. Seraji) 
Published online at http://journal.sapub.org/optics 
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved 

1565 nm[2-8]. 
Mechanical pressures and thermal stresses are two main 

factors that can leave undesired effects on optical fibers 
resulting in increase of loss in transmission systems. To 
avoid such adverse conditions, communication fibers in the 
time of production, are usually coated by polymeric materi-
als with two to three layers of which the inner layer is a soft 
material to prevent the microbending of the fiber structure, 
and the outer one that is hard enough to protect the fiber 
against severe environmental factors[9]. Both the layers in 
turns have common role of minimizing transmission losses 
of fibers which mostly comprises of macro- and micro-
bending losses[10-12]. Another major role of the fiber outer 
layer is to increase the mechanical strength of the produced 
fiber for which extensive work have been reported (see 
e.g.,[13-17]). 

In recent publications, the microbending loss and the ra-
dial, axial, and tangential stresses due to hydrostatic pres-
sure and thermal loading have been dealt with and deter-
mined for single[18,19] and two-layers polymer coated op-
tical fibers[19-23]. Recently, a Patent on multi-layered 
coating system is reported where by using three-coating and 
fou-coating system afforded improvement in microbend 
performance[24]. Similar reports have been published for 
calculating microbending loss by considering a third tight 
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layer jacketed over two-layer coated fibers[25, 26]. In the 
report[25] it is concluded that for minimizing the micro-
bending loss due to lateral pressure, the Poisson’s ratio of 
primary and secondary coating, and the Young’s modulus 
of the jacket material should be increased and that of the 
primary coating should be decreased. A similar conclusion 
is drawn in case of two-layer coated optical fibers[20]. Re-
cently, we reported an analysis of microbending loss, re-
fractive index change, and stress components of a dou-
ble-coated optical fiber by considering the effect of tem-
perature rise and hydrostatic pressure on coating parameters 
such as Young’s modulus and the Poisson ratio[27]. In a 
more recent report, the transient microbending loss and re-
fractive index changes in a single-coated[28] and tightly 
jacketed double-coated[29] optical fibers subjected to ther-
mal loading are investigated.  

In all aforesaid reports, for improving fiber performance, 
the increase or decrease in the parameters’ values is consid-
ered to be step-wise. In this paper, we have extended the 
analysis of our recent report[30] where a two-layer coated 
fiber tightly jacketed with a layer of segmented Young’s 
modulus material was proposed. In our model, within the 
tight jacket, we considered six layers out of which first two 
layers are of soft materials and the next four layers consist 
of hard materials. To comply with the segmented change of 
the Young’s modulus in the scale of GPa, the successive 
layers differ slightly in terms of hardness. 

For our model, we determine the pressure exerted in each 
layers and then calculate the effects of hydrostatic pressure 
and thermal variations on microbending losses in fiber. Fi-
nally, we determine the tangential, radial, and axial stresses 
and refractive index changes of different layers. 

2. Lateral Pressure and Displacement of 
Layers 

 
Figure 1.  The proposed two-layer coated fiber jacketed with segmented 
Young’s modulus materials 

Let us consider a fiber of radius 0r  having three coating 
layers of thickness 1r , 2r , and 3R , respectively, where in 
layer 3R , we assume further six sub-layers with respective 
thicknesses of 3r , 4r , 5r , 6r , 7r , and 8r , as shown in Fig. 
1. Each of these sub-layers is made of different polymeric 
materials. Let us show the mechanical parameters of these 
layers with usual notations E , υ , and α  as Young’s 

modulus, Poisson’s ratio, and thermal expansion coefficient, 
respectively. The indices i  in ir  indicate the corresponding 
fiber or the layer sequences. 

In our calculations, we assume that first two coating layers 
are soft and hard coating used usually in communication 
optical fibers and the next third and fourth layers are of soft 
materials, and the Young’s modulus of the fourth layer is 
higher than that of third layer. It is also assumed that the 
materials of fifth to eighth layers as outer coating are of hard 
type, which is assumed for better mechanical protection of 
the fiber. 

Now we consider the effects of two factors, i.e., hydro-
static pressure  and the thermal loading  (thermal 
drop greater than zero), affecting the refractive index and 
creating losses in the fiber. First, if we consider only the 
presence of thermal loading on the fiber and assume , 
it results in development of pressure starting from outermost 
to innermost layers, which is due to mechanical properties 
such as Young’s modulus and thermal expansion coefficient 
of the layers[20]. It is further assumed that the fiber and the 
coating layers are cylindrically symmetric. Irrespective of 
visco-elastic theory and by considering the theory of elas-
ticity, the strain-stress relationship can be expressed as[Ref. 
31: p. 408, eq. 239b]: 

2

r
(1 )(1 )

1
u T
r Eθ θ

− υ υ ε = = −α∆ + υ + σ − σ − υ 

      (1) 

where u  is the layer displacement at radius r  from the 
fiber axis. In one particular layer, the displacements are 
different at different radii. The ratio /u rθε =  denotes the 
tangential strain, and rσ  and θσ  indicate the radial and 
tangential stresses, respectively. In our analyses, in each 
layer, we have taken the values of E  and α  constant to 
comply with the step change as it is proposed. To determine 
the layers’ displacements, we are to define the values of rσ  
and θσ . 

 
Figure 2.  Cylindrical structure with internal and external diameters of a  
and ,b  respectively, under a thermal variation of T∆ and internal and 
external pressure of intP  and extP  

If a cylindrical tube with internal radius of a  and exter-
nal radius of b , as shown in Fig 2, is exposed to internal and 
external pressures of intP  and extP , according to Lamé 
formula we can write[Ref .31: p. 59, eq. 45]: 

2 2 2 2
int ext ext int

r 2 2 2 2 2
( )

( )
P a P b a b P P

b a b a r
− −

σ = +
− −

        (2) 

2 2 2 2
int ext ext int

2 2 2 2 2
( )

( )
P a P b a b P P

b a b a rθ
− −

σ = −
− −

       (3) 

Therefore, the relation between u  and the temperature 
variation ( )T∆  and pressure can be expressed as: 

P T∆

0P =
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int ext ext int2

(1 )
1 [(1 2 )( ) ( ) /
(1 )

u T r

P P r a P P r
E

= −α∆ + υ
+ υ

+ − υ ξ − − −
− ξ

  (4) 

where /a bξ =  is the ratio of radii of the coating layers. 
The radial displacements of the layers at their interfaces are 
thus given by: 

i,i+1 i i i

2 2i i
i i i i+1 i i 1 i2

i i

(1 )

(1 )
[(1 2 )( ) ( )]

(1 )
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   (5) 

i+1,i i+1 i+1 i
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i+1 i+1
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(1 2 )( ) ( )

(1 )
i

u T r

r P P P P
E

= −α ∆ + υ
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Where i,i+1u  is the (i+1)th layer displacement at ith in-

terface position and i 1,iu +  is the ith displacement at (i+1)th 

layer interface, where i  is taken from zero to maxi , where 

maxi  is the maximum value of i  equal to total number of 
layers minus one. 

In (5) and (6), iα , iE , and iυ  are thermal expansion 
coefficient, Young’s modulus, and Poisson ratio of the ith 
layer and, i+1E , and i+1υ are the corresponding parameters 
at (i+1)th layer. The lateral pressure iP  is exerting between 
(i-1)th and ith for calculating i+1P  and i+2P , between ith 
and (i+1)th, and between (i+1)th and (i+2)th, respectively. It 
should be noted that for the case of i+2P , when i  takes the 
value of maxi , the resulting lateral pressure would be the 
hydrostatic pressure exerted externally on the fiber and 

i+1 i i+1/r rξ = . As an example, at interface of the fiber with 
first layer 0( )r r= , since internal pressure does not exit and 
core and cladding are assumed to have the same Young’s 
modulus and nearly equal to thermal expansion coefficients, 
thus 0 0P =  and 0 0ξ =  and the radial displacement of the 
first layer 01( )u  is then given as: 

1 0
01 0 0 0 0 0

0
(1 ) (1 )(1 2 )

Pru T r
E

= −α ∆ + υ − + υ − υ      (7) 
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r P P P P

E
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+ υ  + − υ ξ − − − − ξ

     (8) 

In (7) and (8), 0α , 0E , and 0υ  denote the fiber pa-
rameters and 1α , 1E , and 1υ are the corresponding pa-
rameters for the first layer. The lateral pressure 1P  is exerted 
between the fiber surface and the first layer, 2P  is between 
first layer and second one, and 1 0 1/r rξ = . In a general form, 

i 1,iu + and i,i+1u continue till the desired layer, when we set 

maxi i= . 
At all the layers interfaces, the displacements are equal as 

cylindrical symmetry is assumed for the fiber and the layers, 
i.e., by equating i 1,iu + and i,i+1u  at each layer interface. The 
lateral pressure exerted on the fiber and different layers due 
to thermal change and hydrostatic pressure can be deter-
mined by[30] 

max max
max

1 i i
i

1 ( )P P M T
N

= λ − ∆          (9) 

i 2 i i 1 max
i

1 ( ),  i 0, 1, 2,  , i -1 P M T N P+ = ∆ + =
λ

    (10) 

In general, by considering, 2 1 0M M− −= = , iM  and iN  
are defined as: 

i i
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And iA , iB , iC , and iλ  are expressed as:  
i i i i i+1 i 1 i(1 ) (1 ) ,  i 0,1,2,...  A r r+= α + υ −α + υ =  (15) 
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By using (9) in (10), the relation between lateral pressure 
with hydrostatic pressure and thermal change is obtained as 

max max

max max

i i i i
i 2 i

i i i

max

1 ,

i 0,1,2,..., i -1

M N N
P M T P

N N+

   λ
 = − ∆ +  λ    

=

   (20) 

3. Microbending Loss 
Basically microbendings are created in optical fibers 

during fabrication and installation processes or could be due 
to hydrostatic pressure and temperature gradient between 
fiber and the coating materials which have different thermal 
expansion coefficients that result in shrinkage of the coating 
on fiber itself and causing microbends along the fiber 
length[20]. To minimize these external effects, during ca-
bling process, fibers are wrapped with different jackets in 
several layers[32]. 

The experimental results show that the microbending loss 
is directly proportional to lateral pressure and is expressed 
as[18]: 

1kPΓ =                  (21) 

where k  is a constant equal to 0.0029 (dB/km)/MPa and 
1P  is the exerting pressure between layer 0r  and the fiber 

itself. The fiber and coating parameters’ values used in our 
calculation are given in Table 1. 
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Table 1.  Parameters’ values used in our calculations 

Layers r  (µm) E  (GPa) α  (J/oC) Layernature 
0r  125 72.50  5.6×10-7 Silica 
1r  200 0.001  2.5×10-4

 Soft 
2r  250 1.20 1.7×10-4

 Hard 
3r  350 0.002 2.2×10-4

 Soft 
4r  450 0.010  2.0×10-4

 Soft 
5r  550 3.20 1.0×10-4

 Hard 
6r  650 3.30  0.8×10-4

 Hard 
7r  750 3.40  0.7×10-4

 Hard 
8r  900 3.50  0.6×10-4 Hard 

T∆ = 1 oC, P = 2 MPa, υ = 0.35 

4. Effect of Coating Layer Thickness 
The fiber loss curves due to the effects of different coating 

layers thickness (from 1r  to 8r ) on fiber loss are illustrated 
in Fig. 3. An increase of thickness in layers 1st to 3rd and 8th 
layer causes a reduction in the fiber loss but on the contrary, 
in layers from 4th to 7th, an increase in loss is observed. It 
indicates that the presence of few successive hard layers 
without soft layers in between them causes an increase in 
fiber loss. It is specifically noted that increase in soft third 
layer results in loss reduction. 

 
Figure 3.  The effect of coating layers thickness on the loss of fiber with 
segmented Young’s modulus multilayer-coating 

In soft layers, if the thickness increases beyond a specific 
value, causes an increase in loss, e.g., if the first layer 
thickness increases from 200 µm to say 250 µm, there we 
observe a loss increase either, as shown in Fig. 4(a). By 
considering successive hard layers would ensure the flex-
ibility of the fiber against pressure and thermal changes, but 
in fourth layer, which is of soft material, we observe an 
increase in loss. Young’s modulus of this layer is five times 
higher than that of third soft layer. Therefore, we could say 
that the fourth layer with respect to the third one acts as a 
hard material layer and hence the increase in loss. If the 
difference between the Young’s moduli of the third and the 

fourth layers is nearly unity, after a particular thickness, 
every radial increase results in a higher fiber loss. With 
change of the thickness of first layer or change of the 
Young’s modulus of the fourth layer, the fiber loss changes, 
as illustrated in Fig. 4(b). 

 
Figure 4.  The effect of first and fourth soft material layers on the loss of 
fiber with a segmented Young’s modulus coatings. (a) First layer thickness 
is made nearly equal to that of 2nd layer and (b) Young’s modulus of the 
coating layer is lowered 

 
Figure 5.  Variation of loss in terms of 4th layer thickness with Young’s 
modulus as a parameter 

It is observed that by increasing the Young’s modulus of 
the 4th layer beyond 3 MPa, the minimum loss point, which 
is observed in Fig. 4(b), would disappear and further increase 
in its value, causes a slight increase in the fiber loss in every 
step change of 1 MPa, as shown in Fig. 5. The loss curves 
due to Young’s modulus changes from 4 to 9 MPa are drawn. 

We mentioned earlier, if the thickness of soft material 
layers exceeds a limit, due to the shrinkage of the layers by 
pressure and thermal loading, the loss of fiber would in-
crease. This limitation depends on the thickness and 
Young’s moduli of the layers. 
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5. Effect of Young’s Modulus and Pois-
son’s Ratio 

The effect of Young’s modulus of the multilayer coating 
materials on fiber loss are shown in Fig. 6, where in each 
curve two successive layers are considered. It is shown that 
higher values of Young’s moduli in the first, third and the 
fourth layers have increasing effects on fiber loss whereas 
for higher values in layers from fifth to eighth, the loss re-
duces. We also note that increase of Young’s modulus of 2nd 
layer would have no effect on fiber loss. On other words, 
harder the outer layers more will be the fiber resistance to 
hydrostatic pressures and thermal changes. 

 
Figure 6.  The effect of Young’s modulus on loss of the fiber 

 
Figure 7.  The effect of Poisson’s ratio on loss of the fiber 

To investigate the effect of Poisson’s ratio on fiber loss, 
with a similar graphical fashion as that of Fig. 6, we illus-
trated Fig. 7 for different values of Poisson’s ratio. Increas-
ing the Poisson’s ratio of the layers from the first to the fifth, 
would cause an increase in loss while its increase in layers 
from sixth to eighth, would reduce the loss. 

Based on expression (20), the pressure between layers 
depends directly on thermal changes ( )T∆  and hydrostatic 
pressure ( )P , as depicted in Fig. 8. It is shown that changes 
in temperature gradient and in hydrostatic pressure would 
cause a change in the lateral pressure, which results in cor-
responding linear increase in fiber loss. 

 
Figure 8.  Effect of hydrostatic pressure and thermal loading on the fiber 
loss 

 
Figure 9.  Radial, tangential, and axial stresses in multilayer-coated fiber 
with segmented Young’s modulus materials 

6. Radial, Tangential, and Axial Stresses 
on Coating Layers 

The lateral pressures, which are exerted on multilayers 
interfaces, develop some stresses within the corresponding 
layers. Radial and tangential stresses are defined by (2) and 
(3) and the axial stress is expressed as[31]: 

z r( )E T θσ = α∆ + υ σ + σ          (22) 

where the axial stress for plain strain is taken as zero. With 
reference to vertical stress definitions, we determine the 
stress in each layer as follows. 

r 1 0,P r rθσ = σ = − ≤           (23) 

z 0 0 0 1 02 ,E T P r rσ = α ∆ − υ ≤        (24) 
The radial stress rσ  and the tangential stress θσ  at ith 

layer on the fiber are obtained by using int i+1P P= , 

ext i+2P P= , ia r= , and i+1b r=  in (1) and (2), as follows: 
2 22 2

i+1 i i+2 i+1 i i+1 i+2 i+1
r 2 2 2 2 2

i+1 i i+1 i

i i+1 max

( ) ,
( )

, i 0,1,..., i

P r P r r r P P
r r r r r

r r r

− −
σ = +

− −
≤ < =

      (25) 
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2 2 2 2
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2 2 2 2 2
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i i 1 max
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P r P r r r P P
r r r r r

r r r

θ

+
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      (26) 

2 2
i+1 i+1 i i+2 i 1

z i+1 i 1 2 2
i+1 i

i i 1 max

2 ( ) ,

,    i 0,1,...,i

P r P rE T
r r

r r r

+
+

+

υ −
σ = α ∆ +

−
≤ < =

     (27)

 

 
By using parameter values of the designed fiber given in 

Table 1, we have solved eqs. (25)–(27) and plotted the col-
lection of curves in Fig. 9 for the radial, tangential, and axial 
stresses versus different radii of the layers. The radial, tan-
gential, and axial stresses at interfaces of 5th and 6th, 6th and 
7th, 7th and 8th hard layers are continuous whereas in 3rd and 
4th layers, this continuity is not observed, which is due to 
discrepancy between Young’s moduli of these layers. 

 
7. Refractive Index Variations in Radial, 

Tangential, and Axial Directions 
The lateral pressure exerted to fiber by exerted external 

hydrostatic pressure, would reduce due to presence of dif-
ferent coating layers, but still there would be some effects on 
the fiber. The exertion of lateral pressure at interface of 1st 
layer and the fiber itself causes geometrical distortion of 
fiber structure, resulting fiber thickness changes along radial, 
axial, and tangential directions and hence change in sym-
metry of fiber cross-section[33]. The change in refractive 
index of the fiber would affect mostly on the transmission 
characteristics of the fiber. 

The relationship between the refractive index variations 
along direction with different radial, tangential, and axial 
stresses are expressed by[34]: 

r r 2 r 1 Zθ( )n n n B B∆ = − = − σ − σ + σ       (28) 

2 1 r Zθ θ θ ( )n n n B B∆ = − = − σ − σ + σ       (29) 

z z 2 z 1 r θ( )n n n B B∆ = − = − σ − σ + σ       (30) 
where n  denotes the refractive index of the fiber before 
exertion of pressure and thermal change and rn , nθ , and 

zn  are the indices along three directions. 1B  and 2B  are 
stress-optical constants for ordinary and extraordinary rays 
equal to 4.2×10-6/MPa and 6.5×10-7/MPa, respectively[35]. 
The parameter values of the designed fiber have been given 
in Table 1. 

In Fig.10, the effects of coating layers thickness on fiber 
refractive index along radial, tangential, and axial directions 
are plotted. The parameters variations in first and second 
layers are high for 1r <1.4×10-4 m and 2r <2.1×10-4 m as 
compared with other layers. This difference could be due to 
closeness of the the first two layers to the fiber itself. 

Figs.11 and 12 show the effects of Young’s moduli and 
Poisson’s ratios of coating layers on refractive index change 
along radial, tangential, and axial directions, respectively. 
The effects of hydrostatic pressure and temperature on re-
fractive indices along the radial, tangential, and axial direc-

tions are illustrated in Fig.13. Increase of hydrostatic pres-
sure causes refractive index variations increase linearly 
along the three directions almost with the same slopes. The 
variation of temperature would cause refractive index 
changes in all directions. In both the cases, the radial and 
tangential refractive index changes coincide on each other. 
All the obtained results of the analyses are summarized in 
Tables 2 to 4, respectively. 

 
Figure 10.  Effects of different layers thicknesses on radial, tangential, and 
axial refractive indices of the fiber under hydrostatic pressure and thermal 
loading 

 
Figure 11.  The effects of Young’s moduli of different layers on radial, 
tangential, and axial refractive indices of the fiber under hydrostatic pres-
sure and thermal loading 
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8. Discussion and Conclusions 
We have presented an alternate version of two-layer 

coated fiber with tightly jacketed layer of segmented 
Young’s modulus material. We have considered six layers 
out of which first two layers are of soft material and the next 
four layers consist of hard materials. The effects of hydro-
static pressure and thermal loading on microbending loss are 
analyzed. The lateral pressure and displacement of layers 
under environmental conditions were determined and have 
shown that the lateral pressure exerted in different layers is 
directly proportional to hydrostatic pressure and thermal 
loading. On the other hand, it is shown that the lateral pres-
sure is related effectively to layers thickness, Young’s 
modulus, Poisson’s ratio, and thermal expansion coefficients 
of the polymeric layers. 

By taking the lateral pressure exerted on fiber into account, 
the microbending loss developed in the fiber was calculated 
by considering layer thicknesses, Young’s modulus, Pois-
son’s ratio, hydrostatic pressure, and thermal loading as 
parameters of different cases of calculations. The results in 
different cases have shown that increase in thickness of soft 
layers 1st, 2nd, 3rd, and 8th reduces the fiber losses. The in-
clusion of successive layers of soft material (4th layer) and 
hard materials (5th, 6th, and 7th layers) causes an increase in 
the fiber loss. Increase of soft material layers’ thickness has 
caused increase in loss and reaches a minimum value at a 
particular thickness of the corresponding layer. If two soft 
layers with nearly same Young’s modulus get adjacent to 
each other, the minimum loss would transfer to next higher 
soft layer. But if the next soft layer’s Young’s modulus is a 
few order of magnitude higher than the previous soft layer, 
comparatively acts as a hard layer and causes loss increase in 
the fiber with an increase in its thickness. Increase of 
Young’s moduli of 1st, 3rd and 4th soft layers would increase 
the fiber loss but in hard layers from 5th to 8th the loss would 
decrease. It is shown that higher Poisson’s ratio of soft layers 
would worsen the loss but in hard layers, its higher value acts 
oppositely and lowers the loss value. 

By calculations of orthogonal stresses, it is shown that the 
axial stress in all the layers remains almost constant. The 
radial stress in 1st and 3rd soft layers increases with an in-
crease of layer thickness and increase of hard layers and 4th 

layer thicknesses causes a decrease in radial stress. The 
tangential stress in soft layers decreases with an increase of 
layer thickness and increases with increase of hard layer and 
4th layer thicknesses. It is shown that, the radial, tangential 
and axial stresses at interfaces of 5th and 6th, 6th and 7th, 7th 
and 8th layers are continuous. 

It is shown that increase of 1st, 2nd, 3rd, and 8th layer 
thickness would result in reduction of refractive index 
change. Increase of thickness of 4th layer is accompanied 
with increase of refractive index change, but the 5th, 6th, and 
7th layer thicknesses would cause a slight increase in the 
refractive index change of the fiber. 

It is further shown that the refractive index of the fiber 
increases in three orthogonal directions, when the Young’s 

moduli of 1st to 4th layer increase, but in case of 5th to 8th 
layers, the refractive index changes would decrease. Similar 
condition holds good for the case of Poisson’s ratio, except 
in layer 5th, instead of reduction there will be an increase in 
refractive index changes in three dimensions. 

The presented results, besides in communication fibers, 
could also be utilized in design of fiber sensors. 

 
Figure 12.  The effects of Poisson’s ratios of different layers on radial, 
tangential, and axial refractive indices of the fiber under hydrostatic pres-
sure and thermal loading 

 
Figure 13.  Effects of hydrostatic pressure and thermal loading on radial, 
tangential, and axial refractive indices of the fiber 

Table 2.  Summary of the resulting stress components changes due to 
thickness of layers 

Stress Layer number Layer thickness Stress change 

rσ  1,3 increase increase 

2,4,5,6,7,8 increase Decrease 

θσ  1,3 increase Decrease 

2,4,5,6,7,8 increase Increase 

zσ  All the layers increase Constant 
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Table 3.  Status of the refractive index changes in different layers 

Ref. index change Layer 
number 

Layer thick-
ness 

Index status 

rn∆ , θn∆ ,  
zn∆  

1st, 2nd, 3r 8th increase Decrease 
4th  increase Increase 

5th, 6th, 7th increase slight in-
crease 

Table 4.  Summary of the resulting refractive index changes due to 
Young’s modulus and Poisson’s ratio 

Ref. Index Change Layer number rn∆ , θn∆ , zn∆  

Young’s modulus 1st, 2nd 3rd, 4th Increase 
5th, 6th, 7th, and 8th Decrease 

Poisson’s ratio 1st, 2nd, 3rd, 4th, and 5th Increase 
6th ,7th ,8th Decrease 
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