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Abstract  The present paper examines the thermal effect on axially compressed buckling of a multiwalled carbon 
nanotube based on the gradient elasticity theories. The small-size effect, which plays an essential role in the buckling 
behavior with large aspect ratios under axial compression coupling with temperature change, is captured by applying 
different gradient elasticity theories including stress and strain. In this model, each of the nested concentric tubes is regarded 
as an individual column and the deflection of all the columns is coupled together through the van der Waals interactions 
between adjacent tubes. 
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1. Introduction 
Carbon nanotubes (CNTs) possess many unique electrical, 

optical, thermal, and mechanical properties (see Dresselhaus 
et al [1] and references therein). They have low weight, high 
aspect ratio, extremely high stiffness, and sustain large 
elastic strain and failure strain. Such special features of 
CNTs make them promising candidates with excellent 
structural performance as novel nanometer scale electronic 
and mechanical devices. In particular, experimental evidence 
and theoretical results (Ajayan et al [2]; Chopra et al [3]; 
Iijima [4]; Iijima et al. [5]; Molina et al [6]; Treacy et al [7]; 
Yakobson et al [8]) show that carbon nanotubes hold great 
promise as a possible reinforcing phase in polymer 
composite materials. Such composite materials, reinforced 
with strong, high Young’s modulus CNTs (fibres), are very 
useful due to their excellent specific mechanical properties. 
High aspect ratio fibres added to a polymer matrix increase 
Young’s modulus and the strength of the composite. 
However, long CNTs (fibres) often easily buckle and 
collapse during composite manufacturing (Lourie et al [9]; 
Wang et al [10]). It is not possible to directly measure the 
mechanical properties of single nanotubes (Barber et al [11]; 
Yu et al [12]). Therefore, by studying the deformation and 
buckling modes resulting from the embedding of CNTs 
(fibres) in a polymer matrix, it is possible to estimate the 
strength of carbon nanotubes under compressive stresses. 
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Multi-walled carbon nanotubes are composed of 
concentric layers of single-walled carbon nanotubes. When 
subjected to a compressive force, multi-walled carbon 
nanotubes bend at large angles and may start to elastically 
ripple, buckle, and form kinks. Recently, large strain 
deformation of single- or multi-walled carbon nanotubes 
involving compression, bending or/and torsion has been the 
subject of numerous experiments and molecular dynamic 
simulations [13–17]. Basically, there were two theoretical 
approaches to understanding the behavior of carbon 
nanobutes: atomistic molecular-dynamics simulations and 
continuum mechanics. Molecular-dynamics simulations 
have provided abundant results for the understanding of 
buckling behaviors of carbon nanotubes. However, 
moleculardynamics simulations are currently limited to very 
small length and time scales and cannot deal with the 
large-sized atomic system, due to the limitations of current 
computing power. Moreover, at the nanoscale, experiments 
are extremely difficult and expensive to conduct. As a result, 
the continuum mechanics models are expected for the 
theoretical analysis of buckling behavior of carbon 
nanotubes. Yakobson et al. [13] introduced an atomistic 
model for axially compressed buckling of single-walled 
nanotubes and also compared it with a simple continuum 
shell model. They found that the continuum shell model 
could predict all changes of buckling patterns in the 
atomistic molecular-dynamics simulations. However, the 
existing continuum shell model cannot directly be applied to 
investigate mechanical behavior of multi-walled nanotubes 
due to the presence of the van der Waals forces in 
multi-walled nanotubes [18–21]. 

The present paper examines the thermal effect on axially 
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compressed buckling of a multi-walled carbon nanotube. 
The effects of temperature, surrounding van der Waals 
forces between the inner and outer nanotubes are taken into 
account. Using different gradient elasticity theories, the 
effect of temperature change on the properties of axially 
column buckling is examined. 

2. Nonlocal Constitutive Equations  
According to Hooke’s law within continuum elasticity 

theory, the stress components at any point in an elastic 
medium depend only on the strain components at the same 
position. Instead, for the nonlocal theory of elasticity, the 
stress components at a reference point x depend not only on 
the strain components at the same position but also on all 
other points of the body [22, 23]. This theory can 
satisfactorily explain some phenomena related to atomic and 
molecular scale such as high frequency vibrations and wave 
dispersion [24, 25]. Mathematically, the basic constitutive 
equations for anisotropic, homogeneous, nonlocal elastic 
body can be written as: 

( ) ( ) ( ) ( )ij ijvx x x t x dV xσ α ′ ′ ′= −∫        (1) 

( ) ( ) 2 ( )ij kk ij ijt x x xλε δ µε′ ′ ′=        (2) 

where λ  and µ  are Lame’s constants, ijε  strain 

components, and ijt  and ijσ  classical and nonlocal stress 
components, respectively. V is the volume occupied by the 
elastic body. 

Here α(x) is defined as the attenuation modulus of 
dimension length-3 and depends on the characteristic length 
ratio a/l, where a an is internal characteristic length (e.g. 
lattice parameter, granular distance of C–C bond length in 
carbon nanotubes) and l is an external characteristic length 
(e.g. crack length and wavelength). Alternatively, taking into 
account a typical characteristic of )(xα , the constitutive 
equations can be written in stress gradient form [22, 23], 
namely, 

ijijkkijij l µεδλεσσ 222 +=∇−      (3) 

where l is a small scale parameter with length units 
describing the effects of the micro- and nano-scale on elastic 
behavior, and 2222222 zyx ∂∂+∂∂+∂∂=∇  is 

the Laplacian operator. Here ael 0=  in which 0e is a 
nondimensional material constant that can be determined by 
experiments or numerical simulations from lattice dynamics. 

In the case of stress gradient (nonlocal) theory the axial 
equivalent of Eq. (3) is expressed as 
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The differential equations for stresses shown in Eq. (4) can 

be solved to determine stresses as a function of 
displacements. Assuming L <<l , higher powers of Ll /  
can be neglected and the solutions can be simplified to, 
giving [26] 
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Because CNTs have high thermal conductivity, it may be 
considered that the temperature change T is uniformly 
distributed in the CNTs. With the help of Eq.(5), the 
constitutive equations in the thermal environment are 
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where ε  is the axial strain, σ  is the axial stress, a is the 
coefficient of thermal expansion in the x direction, E is 
Young’s modulus, and u is the Poisson’s ratio. For the axial 
force we have 
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where A is the cross-sectional area of the beam, and 
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To derive the nonlocal deflection curve of an elastic 
column that will model the buckling of carbon nanotubes, we 
make use of the following relations [27]: 
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where V(x) is the resultant shear force and M(x) is the 
resultant bending moment. Using the fact that  

∫=
A

dAxyxM )()( σ  and noting that the relationship 

between strain and curvature for small deflections is 
Ry /=ε  and that ( )22 //1 dxwdR −= , where R is the 

radius of curvature and y is the coordinate measured positive 
in the direction of deflection [27], Eq. (6) can be rewritten as 
follows: 
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Differentiating Eq. (8) twice and substituting Eq. (7) into 
the resulting expression the following expression can be 
derived for the nonlocal deflection curve of an elastic 
column under constant axial load and distributed lateral 
pressure: 
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Note that when parameter e0 in Eq. (9) is set to zero, the 
classical Euler–Bernoulli expression with thermal effect is 
recovered. Here, let us assume that the lateral pressure p(x) is 
a continuous function of the axial coordinate x. 

As CNTs have high thermal conductivity, it may be 
regarded that the change of temperature is uniformly 
distributed in the CNT. Treacy et al. [28] reported a linear 
relationship between the mean-square vibration amplitude of 
the tube’s free tip displacement and the tube temperature, 
which implies that the tube’s elastic modulus is temperature 
independent. Hsieh et al. [29] studied the variation of 
Young’s modulus of SWNTs with temperature, and it was 

indicated that the Young’s modulus of an SWNT is 
insensitive to temperature change in the tube at temperatures 
of less than approximately 1100 K, but decreases at higher 
temperatures. Thus, for the cases of low temperatures and 
high temperatures (but not very high), the Young’s modulus 
is herein assumed to be temperature independent. In what 
follows, all nested tubes are supposed to have the same 
thickness and effective material constants. By using the same 
steps of Sun and Liu [30, 31], applying Eq. (9) to each layer 
of a MWNT under buckling, n coupled equations can be 
obtained as 
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where the subscripts 1; 2; . . . ; n denote the quantities of the innermost tube, its adjacent tube, and the outermost tube, 
respectively, and van der Waals pressure per unit axial length on tube k due to tube k + 1 can be expressed as [32] 

( ) ( )1,.....,2,1,1)1()1( −=−= +++ niwwcp iiiiii  
where ck(k+1) denotes the intertube interaction coefficient, which can be estimated by [33] 
where R (measured in cm) is the inner radius of each pair of nanotubes. 

Substitution of Eq. (11) into Eq. (10) gives 
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It is seen that these equations are coupled to each other due to the van der Waals interaction terms. In addition, it can be 
observed that with the small scale effect ignored Eqs. (13) reduce to the result presented in [34]. 

3. Analytical Solution for DWNT Using Stress Gradient Approach 
For simplification and without loss of generality, the nonlocal axial column buckling of a DWNT with a large aspect ratio 

is considered. In this case, Eqs. (13) become 
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Let us consider the hinged boundary conditions. For this case, we have 

( ) ( )xDwxCw λλ sin,sin 21 ==                              (16) 

where  

L
mπλ =  

where C and D are real constants, and m is a positive integer which is related to buckling modes. Introduction of Eqs. (16) into 
Eqs. (15a) and (15b) yields 
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Nontrivial solutions for the constants C and D exist only when the determinant of the coefficients in Eqs. (17a) and (17b) 
vanishes. In this manner, we have 
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In consequence, the critical axial buckling strain can be obtained by 
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When the effect of temperature change is ignored, the nonlocal result for the critical axial buckling strain [33] is recovered. 
 

4. Results and Discussion 
For the case of room or low temperature, we suppose α = 

-1.6x10-6 K-1 [35]. With the aspect ratio L/d1 = 60, the scale 
parameter e0a =0.5nm and the temperature change θ = 60 K, 

based on the relationship among the ratio stress/ classical and 
strain/ classical gradient elasticity theories, the m is indicated 
in Fig. 1. With m = 2 and θ = 60 K, the relationship among 
the ratio stress/ classical and strain/ classical gradient 
elasticity theories, the nonlocal parameter. With the 
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e0a=1.5nm the aspect ratio L/d1 is shown in Fig. 2. It is 
clearly seen from Figs. 1 and 2 that the ratios stress/ classical 
and strain/ classical is less than unity. This means that the 
application of the local Euler–Bernoulli beam model for 
CNT analysis would lead to an overprediction of the critical 
axial buckling strain if the small length scale effect between 
the individual carbon atoms in CNTs is neglected. As the 
scale parameter m increases, the ratio strain / classical lower 
than value the ratio stress/ classical. 

For the case of high temperature, we suppose α = 1.1x 
10-6 K-1 [35]. With the aspect ratio L/d1 = 60 and the 
temperature change θ = 60 K, the variation of the ratio stress/ 
classical and strain/ classical gradient elasticity theories, 
with the scale parameter e0a=0.5nm for various m is shown in 

Fig. 3. With m = 2 and θ = 60 K, the variation of the ratio 
stress/ classical and strain/ classical with the nonlocal 
parameter e0a=1.5nm for various aspect ratio L/d1 is shown 
in Fig. 3. It is seen from Figs. 3 and 4 that the column 
buckling strain for the DWNT is related to the nonlocal 
parameter e0a. It can be seen from Figs. 3 and 4 that the ratio 
stress/ classical and strain/ classical is less than unity, which 
is similar to the case of room or low temperature. Hence the 
critical axial buckling strain of the nanotubes based on the 
classical beam theory is over estimated aspect ratio L/d1 
(length-to-diameter ratios) for m = 2 with different small 
scale parameter e0a. Therefore, it is clear that the small scale 
effect is significant for short CNTs. The comparison of 
small-scale effect in fig.2 and fig.4 are nearly identical. 

 
Figure 1.  Small scale effect on the critical axial buckling strain ratio of DWNT with the aspect ratio L/d1 = 60 in the case of low or room temperature    
(θ = 60 K) 

 
Figure 2.  Small scale effect on the critical axial buckling strain ratio of DWNT in the case of low or room temperature (θ = 60 K) 
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Figure 3.  Small scale effect on the critical axial buckling strain ratio of DWNT with the aspect ratio L/d1 = 60 in the case of high temperature (θ = 60 K) 

 
Figure 4.  Small scale effect on the critical axial buckling strain ratio of DWNT in the case of high temperature (θ = 60 K) 

5. Conclusions 
On the basis of theory of thermal different gradient 

elasticity theories including stress and strain, the theoretical 
formulations are established, based upon both the 
Euler–Bernoulli beam theory, is developed for column 
buckling of MWNTs with large aspect ratios under axial 
compression coupling with temperature change, which takes 
into account the effect of temperature change in the 
formulation incorporation of small length scale effects. In 
particular, an explicit expression is obtained for the critical 
buckling strain for a double-walled carbon nanotube. It is 
found that the thermal effect on the buckling strain is 
dependent on the temperature changes, the aspect ratios, and 

the buckling modes of carbon nanotubes. It is hoped that the 
analytical buckling solutions presented herein will be useful 
for research work on nanostructures. 
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