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Abstract  We study experimental data fitting to a frequency gradient curve for current and temperature simulated with 

the Hodgkin-Huxley (HH) oscillator undergoing saddle-node on invariant cycle bifurcation. In  this study, one frequency 

gradient curve (referred to as the theoretical curve) are constructed by expanding the HH oscillator using small 

perturbations of the current and temperature while the other gradient curve (referred to as the empirical plot) is obtained 

with frequency-current relations recorded from h ippocampal CA3 pyramidal cells at different environmental tempera tures. 

The empirical p lot is best-fitted to the theoretical curve under a certain temperature parameter range using simulations with 

the HH oscillator. In order to confirm the best-fit, we show that the theoretical curve is overlapped almost of the standard 

errors for the p lot and that a temperature coefficient in the HH oscillator is rescaled to be in a  suitable range of the 

temperature coefficient calculated with the experimental data.  
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1. Introduction 

Sensitivities for environmental temperature and body 

temperature are v ital functions for creature as well as 

human beings. Thermosentive receptors or neurons, which 

seem to be broadly distributed on the skin and in the brain, 

are classified into two categories, those that sense warmth 

and those that sense cold[1],[2]. In part icular, cold  receptors 

are usually excited in the presence of a cold stimulus. Its 

activities paradoxically respond when the temperature is 

relatively high (for example, above 45℃  in the cold 

receptor on slowly conducting fibers[3]). Such activities 

were modelled with a Boltzmann description of 

voltage-gated membrane channels[4]. 

Since the Boltzmann model does not differ functionally  

from standard Hodgkin-Huxley (HH) formulations[5], the 

Boltzman  as well as HH models  can be interp reted as 

models of detection of body temperature in  the brain area. 

In fact, the HH model, which begins repetitive firings with 

zero frequency via a saddle-node bifurcation occurring on 

an  invar ian t  cycle  (ca l led  the S NI C),  s hows  the 

aforementioned spike activities dependent on temperature 

variations[6]. In [7], a frequency increase with a temperature 
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reducti-on was calculated even with the Morris-Lecar (ML) 

model[8],[9], which has a common structure with two 

dimensional excitability models such as the (V, n)-reduced 

HH model[10]. This indicates that such an increase may be 

caused by nonlinearity of the main current dynamics. We 

thus suppose it meaningful to understand mechanisms on 

such temperature-dependent neuronal properties. 

It is also important to examine whether or not neurons 

sensing body temperature variations exist in the nervous 

system, fo r the sake of homeostasis or stabilities in brain 

functions. The brain functions have been well known to be 

affected by small changes in brain  temperature (as little as 

2-3℃)[11-13]. Effects of physiological body temperature 

on neural activities in the hippocampal slice have been 

more intensively studied since 2007, those being, regulation 

of resting membrane potentials[14], increased synchronized 

network activ ity[15] and increased frequency of 

γ-oscillat ion[16]. These experiments give us one of 

indications that cold-receptor-like neuronal act ivities may 

even be observed in the brain. 

The concrete target of this work is to analyze a 

frequency-current (f-I) curve that is V-shaped with a 

temperature (T) increase, recorded from pyramid  cells in the 

hippocampal CA3 slices, ind icating that the pyramidal cells 

may  functionally act as co ld neurons. For this target, the 

HH model exh ibit ing the SNIC bifurcation with an I 

increase is employed with the parameter s ets as referred 

to[17]. We simulate that the HH model behaves like the 
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cold receptor activation as mentioned above, calculat ing f at 

different T and different I values. 

Next, making phase descriptions for small perturbations 

of ΔI and ΔT within  the framework of the phase reduction 

method[18-20], we derive the theoretical formulat ion of 

frequency gradients for I and T. The frequency gradient 

formulat ion gives us an exp lanation of how the theoretical 

curve for the HH model should best-fit to the empirical 

plots. In the most appropriate fittings, a  temperature 

coefficient Q10 in  the HH model is rescaled to the value that 

is in a good agreement with the empirical Q10 calculated by 

the experimental data. Finally, d iscussion and conclusion 

will be given. 

2. Methods and Materials 

2.1. Slice culture preparation 

Entorhinal-hippocampal organotypic slices  were p repared 

from 7-d-old Wistar/ST rats. Rat pups were anesthetized by 

hypothermia and decapitated[21]. The brains were removed 

and placed in aerated ice-cold Gey’s balanced salt solution 

supplemented with 25 mM glucose. Horizontal entorhinal- 

hippocampal slices were cut at a thickness of 300 μm using 

a vibratome. The slices were p laced on Omnipore 

membrane filters and incubated in 5% CO2 at 37℃ . The 

culture medium, which was composed of 50% minimal 

essential medium, 25% Hanks’ balanced salt solution, 25% 

horse serum, and antibiotics, was changed every 3.5 d. The 

slices were cultured for 10-15 days in vitro  and used for 

electrophysiological experiments. 

2.2. Electrophysiology 

An entorhinal-hippocampal slice was placed in a 

recording chamber and perfused at 25, 30, and 35℃  at  a 

rate of 3-4 ml/min  with artificial cerebrospinal fluid  (aCSF) 

consisting of 127 mM NaCl, 26 mM NaHCO3, 3.5 mM KCl, 

1.24 mM KH2PO4, 1.0 mM MgSO4, 1.8-2.0 mM CaCl2, 10 

mM glucose, 10 μM CNQX, and 50 μM AP5[22]. The 

temperature was controlled using an in-line heater (SC-20l, 

Warner instruments). For whole-cell recordings borosilicate 

glass pipettes (4-6 MO) were filled with solution consisting 

of 130 mM K-gluconate, 10 mM KCl, 10 mM HEPES, 10 

mM phosphocreatine, 4 mM MgATP, 0.3 mM NaGTP. 

Data were obtained using a MultiClamp 700B amplifier and 

a Dig idata 1440A digit izer controlled by pCLAMP 10 

software (Molecu lar Devices). Signals were low-pass 

filtered at 2 kHz and dig itized at 20 kHz. 

 

(a) (b) (c) 

Figure 1.  Frequency (f Hz) is temperature-dependent. (a) f-I plots at 25, 30 and 35℃ . (b) The average frequency over all I steps, ⟨f⟩I , is plotted at each 

temperature. P†< 0.01, compared with T = 25℃ sampling data, and P* < 0.001 (n = 6), compared with T = 30℃, ANOVA. (c) log(f)-T line results in the 

temperature coefficient Q10 = 1.22  ± 0.38 
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Figure 2.  Bifurcation diagram for the SNIC HH model when increasing 

temperature from 10, 25 to 41.6℃  for I = 0.161. The broken lines 

represent unstable fixed points (FP). One is the saddle while the other is 

focus. The solid lines represent stable focus and stable limit cycle (LC) 

 

Figure 3.  Frequency f versus temperature T on simulation with the HH 

model. The frequency passed through a minimum at 38℃ and then 

increased at the higher temperature (Red full circles), on which a certain 

piecewise line (green line) is put to fit  experimental data plots to 

theoretical curves for the frequency gradient, which will be derived below 

We used one slice for increased temperature experiments, 

raising the temperature from 25℃ , 30℃  to 35℃  and two 

slices for a decreased temperature from 35℃ , 30℃  to 25℃ . 

Two pyramidal cells picked up in each hippocampal CA3 

slice, are for whole-cell clamped records at each 

temperature. In the whole-cell clamped records, the current 

I increases from 0 pA to 150 pA with a current step of 5 pA. 

Record duration is 2 sec. and the latency before and after 

the recording is 1 sec in total. We have thus found the f-I 

curve at 25, 30 and 35℃  respectively. The curve at each 

temperature is drawn with the onset of the repetitive firing 

of the 0-frequency as the I increases. They can 

straightforwardly be expected to be the class I f-I curves. 

Interestingly enough, we have observed as follows: the 

entire frequency level has decreased at 30℃ , despite the 

highest frequency-curve at 35℃  (Figure 1(a)). We did a 

significant test of the frequency level at each temperature, 

in order to confirm that the frequency level at 30℃  is 

consistently lower than the one at 25℃ . As shown in Figure 

1(b), we examined P
†
 < 0.01 (n = 6), compared with  that of 

T = 25℃ , and P
*
 < 0.001 (n = 6), and compared with that of 

T = 30℃ , ANOVA[23]. The temperature coefficient is also 

calculated as Q10 = 1.22 ± 0.38, obtaining the monotonic 

increased line based on sampling data for the frequency of 

the pyramidal cell (see Figure 1(c)).  

3. Neuron Model and Frequency 
Gradient Curves 

In Figure 1, we indicate that still-unknown nonlinearities 

exist in the neuronal firing property. To understand why a 

firing frequency can be recovered again once it  has 

decreased, and what the mechanis m is, the Hodgkin-Huxley 

(HH) model is employed. The HH model is rewritten with 

small perturbations of temperature and current, ΔT and ΔI, 

in the general forms : 
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where x = (V, y)
t
 ∈ R

4
 and 

t
 denotes the transpose. V is the 

membrane potential variab le and y = (m, n, h)
t
 is the non- 

dimensional gating variable. While G(x ) represents a 

perturbation vector for ΔT and ΔI (whose detailed forms 

will be described below), F (x) is a baseline vector field: 

 




















);,,,(

),,,(
1

)(

0

0

TnhmVP

InhmVI
CxF

c

m
,      (2) 

 

 

3 4

0

( ) ( ) ( ),

( ) ( , ), ( , ), ( , ) ,

1
( ) ,

( )

( )1
( ) , ( ) ,

( ) ( ) ( ) ( )

c Na Na K K L L

t
m h n

y
y

y
y

y y y y

I g m h V E g n V E g V E

P T P V m P V h P V n

P Y V y
V

V
V Y V

V V V V








   





      



 

 
 

 

where Cm (= 1 μF/cm
2
) is the membrane capacity. ENa, EK, 

and EL are the reversal potentials of Na
+
, K

+
 and leak 

currents respectively, while gNa, gK, and gL are the 

conductances. μ(T) = (Q10)
(T-Te)/10

 (Q10 = 3 in this work) 

rescales time courses of the ion-channel activations with 

temperature T (
◦
C) and Te (= 25

◦
C in this work). αm(V) = 

-0.1(V + V1) / (exp(-0.1(V + V1)) -1), βm(V) = 4exp(-(V  + V2) 

/ 18), αh(V) = 0.07exp(-(V  + V3) / 20), βh(V) = 1 / (exp(-0.1(V  

+ V4)) + 1), αn(V) = 0.01(V + V5)/(exp(-0.1(V  + V5)) - 1) and 

βn(V) = 0.125exp(- (V + V6) / 18). We suppose that gNa = 35 

mS/cm
2
, ENa = 55 mV, gK = 9 mS/cm

2
, EK = -90 mV, gL = 

0.1 mS/cm
2
, EL = -65 mV, V1 = 35, V2 = 60, V3 = 58, V4 = 

28, V5 = 34 and V6 = 44 (see[17]) so that the HH model 

represents an oscillatory system exhib iting repetitive firings 

via the SNIC bifurcation mechanis m (sometimes called the 

SNIC HH model). It is noticed that the firing frequency 

gradually decreases and increases again, correspondingly 

the amplitude of the membrane potential becomes smaller at 

higher temperature T = 41.6 ℃ . Figure 2 shows the 

emergence of a small limit cycle (LC) attractor via the 

SNIC bifurcation around I = 0.161. The LC size varies with 

an increase in temperature. The bi-stability of the stable 

equilibrium and the stable LC attractor exists at T = 10℃  

(Analysis on the SNIC bifurcation, referred to in Appendix 
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A). In the frequency-current (f-I) curve fo r T = 10℃ , the 

HH model shows class II excitable, at the same time, class I 

spiking behaviour. Here the class II means the emergence of 

oscillation with a nonzero frequency while the class I is a 

system that begins oscillations with 0-frequency[24],[25]. 

The SNIC also shows a system that is simultaneously class I 

excitable and class I spiking at T = 25℃ . The SNIC at T = 

41.6℃  shows again a system that simultaneously class II 

excitable and class I spiking. As the results of the f-I curve, 

we can depict the frequency-temperature (f-T) curve as 

shown in Figure 3, at I = 0.161. In an increase of T, the 

frequency decreases to the minimum at 38 
◦
C through its 

peak at 13℃ . Immediately afterwards, the frequency slope 

becomes extraordinary sharp. The f-T curve plays a crucial 

role in fitting to the V-shaped f-T plot recorded from the 

hippocampal CA3 pyramid  cells. The detailed best-fitting 

method will be mentioned in the next section. 

In this work, we select the perturbation G(x) as  
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Referring to the phase reduction method[Appendix B], 

we make a phase description with respect to small 

perturbation (ΔI, ΔT)
t
: 
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where f = f(I0, T0) =[1/Tp]. 

Next, the frequency at (I0, T0) can be expanded in (ΔI, 

ΔT). The quadratic Tay lor series is obtained 
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(4) and (5) g ives us the relational expressions 
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The normalization condition described in  Appendix B is 

used. (8) is thus represented as 
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Since[∂f / ∂T] in the H(I, T) does not depend on any 

width of temperature step, (9) is considered to rewritten as: 
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Let  experimental (f, I, T) data be applied into the 

H-function. ΔT is the temperature d ifference between two 

of 25, 30 and 35℃ , namely, ΔT = ± (30 - 25), ± (35 - 30) 

and ± (35 - 25). ΔI is ±50 pA, which represents the 

difference of one sampling current to its nearest neighbours. 

4. Numerical Calculations 

Next, we calcu late the H-function for experimental data 

on (f, I, T) (called the empirical plot). The H-function is also 

given by the simulat ion data of (f, I, T) with the HH neuron 

(called the theoretical curve). We here investigate how such 

theoretical curves can fit to the empirical plots. Under the 

most appropriate condition for the best fitting, the 

temperature coefficient in the physiological experiment  is 

predicted by rescaling the model temperature in the HH 

model to the empirical temperature.  

For the empirical p lot, the H(I) is calculated for ΔT = ± 

(30 - 25), ± (35 - 30) and ± (35 - 25). Figures 4(a) and 4(b) 

represent respectively the H plots for ΔT > 0 and ΔT < 0 as 

the functions of I. In  analogy, we obtain theoretical curves 

on simulations with the HH neuron model (solid lines in 

Figure 4). For this, Ti (i = 0, 1, 2) is sampled on the f-T 

curve at each current. T0 and T2 are relatively high 

temperatures while T1 is close to the min imum (see Figure 

3). We then select the most appropriate value of Ti (T0 = 15, 

T1 = 40 and T2 = 41.7) that the theoretical curve passes 

through the respective plot distribution. 

In order to confirm that the empirical plot best-fits to the 

corresponding theoretical curve, we compute confidence 

that the theoretical curve can be shared with the empirical 

plot distribution, under an assumption to obey the normal 

distribution. This confidence is computed as referred to 

Appendix C. The standard error o f the mean is calcu lated as 

H1 ± 1.96σ /√n where σ is the standard deviation of the 

sampling distribution and n = 6. In Figure 5, almost all 

samplings in plot  dis tribution are of confidence as the 

corresponding theoretical curve. 

Finally, we will g ive additional supporting informat ion to 

the best fitting by rescaling the temperature coefficient Q10 

in the HH neuron. For this, we rescale the temperature 

coefficient Q10 = 3 in the HH neuron to be in the empirical 

range of 1.22 ± 0.38 that is calculated in Figure 1(c). In 

Figures 4 and 5, the temperature ranges  for obtaining 

empirical plots are respectively 5 ℃  and 10 ℃ . The 

temperature ranges for obtaining theoretical curves are 

correspondingly 25 ℃  and 26.7 ℃ . The rescaled 



 Yasuomi D. Sato et al. :  Experimental Data Fitting Analysis on Frequency -Current-Temperature Relation 12 

 

 

temperature coefficient is thus calculated in the range of 

1.24 to 1.51. The range value presumably is satisfied with 

Q10 = 1.22 ± 0.38 in the experiment. 

 
(a) 

 

(b) 

Figure 4.  H-I plots for experimental data and its curves for the HH model. 

(a) ΔT > 0. (b) ΔT < 0 

 

(a) 

 
(b)  

 
(c) 

 
(d)  

Figure 5.  Theoretical curves best -fit the empirical plots. (a) and (b) are 

ΔT > 0. (c) and (d) are ΔT < 0 

5. Discussion and Conclusions 

In this work, we have shown that V-shaped frequency 

-current responses, recorded from the hippocampal CA3 

pyramidal cells, are analytically consistent with the ones 

simulated with the HH model. However, we cannot declare 

that the pyramidal cell of the hippocampal CA3 behaves 

like activations of cold-receptor-like neurons. Rather, in 

order to ascertain this, we have to examine more in vitro 

frequency versus current relationships with fine temperature 

variations of 1 - 2 
◦
C and then observe the frequency 

-temperature  curve as shown in Figure 3. Also, we have to 

give physiological reasons of why the frequency increases 

at 30 - 35 
◦
C. Such a frequency increase may result from 

activations of transient receptor potential (TRP) family of 

channels such as TRPV3[26-28] and TRPV4[14], which 

seem to be widely distributed in a brain, are sensitive to 

body temperature. Both the TRP channels have the 

temperature threshold of 30 - 35 
◦
C for activation, and 

particularly the TRPV4 channels exist even in the neuronal 

circuit in the hippocampus. 

In the theoretical aspects, we have to figure out detailed 

transition mechanisms of low to high frequencies at T = 41 
◦
C. To figure out such transition mechanisms, we analyze 

the difference of the f-I curves at high and low temperatures. 

The two dimensional reduced Hindmarsh-Rose model 
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(2DHR)[29] is suitable for clarifying the detailed transition 

mechanis ms or the difference of the two f-I curve, in terms 

of (9) and (10). The 2DHR model has less complexity than 

the HH model and retains the analytic tractability of the 

FitzHugh- Nagumo model[30]. All b ifurcat ions of the Hopf, 

the SNIC and the SN are computed with appropriate 

parameter sets in the 2DHR model. Drawing the whole 

diagram of these bifurcations, the corresponding[∂f / ∂T]-I 

curve will also be calculated. We thus expect to find 

differences of the two f-I curves with the same class if 

the[∂f / ∂T]-I curves have obvious differences. 

Figure 1(b) showed a decreased frequency with the 

temperature increase in  indiv idual neurons. However in 

Figure 1(c), the statistic property of the frequency was the 

monotonic increase, although it was very slight. This 

indicates the increased activities of the assemblies, in which 

the underlying individual cell paradoxically exh ibits the 

frequency descent with the temperature increase. Such a 

paradoxical mechanis m should be clarified. One of 

considerable solutions may be to confirm whether or not 

pyramidal cells in the hippocampal CA3 are sensitive to 

current fluctuations on the f-I relationships, because it is 

known that f-I responses are significantly influenced by the 

Gaussian distributed current[31]. In  addition, under a 

statistical assumption of empirical plots obeying the 

Gaussian distribution, the linearity of the log(f)-T is 

obtained as shown in  Figure 1(c). This implies that the 

Gaussian distributed current contributes to finding  a 

positive slope of the log(f)-T. 

In order to confirm the statistical assumption, we should 

do simulat ions on the HH models with the current 

fluctuated by Gaussian distribution, analogous  to the work 

of[31] for investigating effects of the variation on f-I 

responses. Also, the H-I curve for the HH model obeying 

the Gaussian distribution will be calcu lated for finding the 

most suitable variance for best-fit to the empirical p lots. 

Doing such studies becomes more valuable, in comparison 

with the other cases such as the Gamma, Po isson and 

exponential interspike interval distributions . This is because 

we have to show which distribution is of significant essence 

for understanding the mechanisms of neural information 

processing[32]. 

We have to discuss if it  is necessary to visualize even 

spike patterns of pyramidal cells in the hippocampal CA3 

slice, because it is shown that the spike patterns of 

neocortical layer 2/3 and 5/6 pyramidal cells change with 

temperature. The change in spike pattern is due to 

temperature-dependent changes in the intrinsic p roperties of 

the pyramidal cells[33],[34]. To  understand such 

physiological mechanisms on the spike pattern generations 

of regular spikes, slow frequency adaptation and bursting, 

we will have to study and model the complex dynamics of 

various types of the ion channels, referring to[25],[35]. This 

gives arise to an additional issue if we understand 

rigorously the detailed dynamics of the ion channels  for the 

sake of the modeling. 

To the additional issue, we may answer as follows : spike 

pattern observed in the record ing duration as well as 

detailed channel structures on the current dynamics  is not so 

important in fitting analysis on the temperature controlled 

frequency-current curve. In our theory, we assume a stable 

periodic solution for unperturbed firing dynamics, to derive 

the phase equation and the frequency gradient equation. The 

stable periodic solution is regard less of any spike pattern 

such as regular spiking and bursting. Moreover, we can 

assume the recording duration of 2 sec in the experiment as 

the one periodic solution. Such assumptions enable us to 

obtain the frequency gradient equation corresponding to the 

experimental data. 

In conclusion, with respect to the temperature sensitive 

activities on neurons, the fact that the frequency increases 

with temperature reduction and paradoxical response when 

the temperature is increased can be regarded to be of 

importance for information processing in the brain. We then 

predict that such temperature sensitive activities are 

potentially observed even in the hippocampal CA3 

pyramidal cells. To support this prediction, we propose an 

experimental data fitting method of a frequency gradient 

curve for current and temperature simulated with the SNIC 

HH oscillator. In  this method, the theoretical curves were 

established by expanding the HH oscillator with small 

perturbations of I and T while the empirical p lot was also 

obtained with f-I responses recorded from the hippocampal 

CA3 pyramidal cells at d ifferent temperatures. The 

empirical plot was best fitted to the theoretical curve under 

a certain temperature range on simulations with the HH 

oscillator.  

The next task in  the future is  to confirm that the 

experimental data analysis proposed in this work is a useful 

and powerful method. For this, we will have to study more 

the experimental data fitting method by using the ML 

model, the 2DHR model and the bursting model, which 

undergo the SNIC b ifurcat ion mechanism with or without 

slow spike frequency adaptation. In addition, we suppose it 

very interesting to simulate the HH model with Gaussian 

noise for getting the higher reproducibility of the empirical 

plot. This is because we can easily expect that theoretical 

curves computed with  the Gaussian distributions cover the 

empirical data plot when the noise intensity is larger.  
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Appendix A. Analysis on Stabilities of 
Stationary Solutions 
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The stability analysis of the differential equations was 

briefly reviewed. The detailed analysis is referred 

to[36],[37]. We analyzed  the character of the equilibrium 

points x0 of[dx/dτ] = 0. This was done by linearizing the 

HH model without the perturbation term, close to x0 and by 

solving the characteristic equation 

  0det  IFDx  ,              (A.1) 

where I denotes the identity matrix, and 
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All elements, which are functions of the equilibrium 

solutions, contain the T- and I-parameters. λ is the 

eigenvalue of the Jacobian matrix and is of principal  

relevance for determining the stability of the equilibrium 

points. It is given as a fourth order equation: 

001

2

2

3

3

4  aaaa  .     (A.3) 

a0 is the determinant. a1 is a sum of products of the three 

elements from d ifferent rows and columns. a2 is a sum of 

products of the two elements. a3 is a sum of the diagonal 

elements. We investigated the cases of node and saddle 

points[Table A.1]. 

Table A.1.  Stability of equilibrium points and the relation to the 
eigenvalues of the Jacobian matrix DxF 

character λ0 λ1 λ2 λ3 

Stable node Re < 0 Re < 0 Re < 0 Re < 0 

Unstable node 
Re > 0 Re > 0 Re > 0 Re > 0 

Saddle point Re > 0 Re < 0 Re < 0 Re < 0 

Appendix B. Phase Reduction Method 

The detailed derivation is referring to[18],[19]. 

Supposing a small perturbation in the HH oscillator, the 

phase reduction method should be applied to: 

)()( xGxF
d

dx



.             (B.1) 

Let xp(τ) denote a stable Tp-periodic solution for the 

unperturbed dynamics, 

( )
p

p

dx
F x

d
 ,           (B.2) 

where xp(τ + Tp) = xp(τ). Then a stable solution for (B.1) 

is approximated as 

( ) ( ( )) ( ( ))px x u          ,      (B.3) 

where η(τ) means a small perturbation in the phase 

direction on the periodic  orbit. u(τ + η(τ)) denotes the 

orbital deviation to the periodic orbit xp(τ). Substituting 

(B.3) into (B.1) and expanding the both-hand sides into a 

Taylor series 
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Dx =[∂/∂x] and DxF is the Jacobian matrix. In the 

perturbed oscillator, the orbital deviation vector u(τ) = x(τ ) - 

xp(τ) evolves as 

( ) ( ( )) ( )pxu D F x u   .            (B.5) 

The vector Z(τ) tangent to the periodic orbit xp(τ), which is 

the unique solution to 

( )
t

x p
d

Z D F x Z
d

    
,              (B.6) 

where the normalization condition 

1
pt dx

Z
d

                     (B.7) 

is satisfied for every τ. (B.1) is reduced to the evolution 

equation for η: 
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Introducing phase variables defined by θ = (τ+η) / Tp (∈[0, 

1)), and then averaging to obtain the closed form of the 

evolution equation for θ(τ), (B.8) is rewritten as 
1

0

1 1
( ') ( ( ')) '.t

p
p p

d
Z G x d

d T T
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Appendix C. Averaged Frequency 
gradient equations 

Let the sampling index be i (= 0, ..., n - 1), that is, the 

number of pyramid cells employed for record ing in the 

experiment, referring  to[23]. The ith neuron’s equation for 

frequency gradient is  
( ) ( ) ( )

( ) ( ) ( ) ( )
0( )

i i i
i i i ic
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m

I f f
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The sampling average of the above equation is  
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where  
1 ( )

0
1/

n i

i
z n z




  . Then, both the sides are 

divided over averaged frequency: 
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(C.2) gives us the variance 

 
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where σ is the standard deviation. The standard error of 

(C.3) is rewritten as σ / (f √n). 
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