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Abstract  In this paper, a qualitative study is first given to show the influence of the laws of contact, imposed on the 
constituents interfaces(inclusions-matrix), as well as of type of composites and type of defects or decohesions, on the 
effective behavior of the “debonded” composite materials. A quantitative analysis is then discussed: we present an energy 
analysis of some model states of decohesion than may have a composite structure. This energetic study, based on the theory of 
Francfort and Marigo, consists primarily to reject, for a loading level and a given surface energy (in order of magnitude of ε 
with ε=1/n and where n denotes the number of fibers contained in the structure), the decohesions leading to highest energies 
of medium. The obtained results of this study are interesting, interesting insofar as they can be used in high tech industry to 
ensure that of this or that debonding can not appear in such composite pieces, subjected to loading of their use services. 
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1. Introduction 
For several years, many damage models have been 

proposed to describe the debonding in the composite 
structures (see [18] [21] [25] [26] [28]). Among these models, 
there exist an approach based on fracture mechanics, which 
deals the decohesion of the constituents interfaces as a 
cracking problem. It postulates that the debonding, 
supposedly pre-existing, will spread when the elastic energy 
restitution rate exactly offsets the surface energy needed for 
the creation of new debonding areas. These areas are 
supposed unit, i.e. of the same order of magnitude of ε=1/n 
where ε being the parameter characteristic of the 
microstructure defined by the number of fibers n contained 
in the composite structure. It comes to the Griffith's approach 
[17]. Unfortunately it can not treat the initiation problem of 
debonding or cracking in general. In starting from its 
philosophy, but not from its criterion, Francfort and Marigo 
[9] [14] [15] have developed a new prediction formulation of 
the initiation and propagation of cracks in sound structures or 
pre-cracked.  By assigning a surface energy thereto, the 
formulation consist, roughly speaking, to searching, for a 
given loading level, the cracking leading to the smallest 
energy of the medium. The energy of the medium being 
defined as the sum of its elastic energy and its surface energy 
(EM=EE+ES)  [10] [11] [22] [23].  For  the  problem  of  
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debonding in composite materials, it is necessary to 
introduce the characteristic functions χ∗ε characterizing 
decohesion states of a composite structure [7], which is 
worth 0 on the bonded part of the interface, noted Icε and 
which is worth 1 on the debonded complementary part, noted 
Idε. Iε=Icε ∪ Idε being the set of all interfaces, bonded and 
debonded. We also note by Ωc and Ωd the composite 
structures whose components are bonded respectively 
debonded. Ω=Ωc ∪ Ωd is the domain occupied by the 
composite structure considered. We also talk of states of 
cracking or debonding to designate any state of decohesion 
of the composite structure. The decohesion problem of 
Francfort and Marigo consist then at finding the fields couple 
(uε,χε), displacement field and state function, minimizing 
energy of the medium, 

EM(u∗ε,χ∗ε) = EE(u∗ε,χ∗ε) + ES(u∗ε,χ∗ε) 

=
Ω
∫ W(x, ε(u∗ε)(x))dx +

ε

∫
I

T(x)χ∗ε(x)dΓ(x),  (1) 

among all couples of "admissible" fields (u∗ε,χ∗ε) 
(admissible displacement field and admissible characteristic 
function). ε(u∗ε) and W(x,ε(u∗ε)) designate respectively, 
the strain tensor of the displacement field u∗ε and the elastic 
deformation potential associated with this field, at point x. 
T(x) denotes the tenacity of interfaces [7] [27]. Thereafter, it 
will be assumed that there is continuity of the normal 
displacement field of uε on the debonded interfaces. The 
tenacity is therefore assumed to be constant on all interfaces, 
bonded and debonded (T(x)=T sur Iε= Icε ∪ Idε). 
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2. Elastic Potential and Surface Energy 
of a Composite with Debonded 
Constituents 

We have shown in [2] and [3] that the potential or the 
elastic energy (1) takes different forms depending on 
whether the constituents of the medium are bonded or 
debonded. In the bonded case the energy of the medium is 
equal to its elastic energy, in other words, its surface energy 
is zero (see for example [20]). This is because the states 
functions χ∗ε are zero on all interfaces, since they are all 
bonded(i.e. Icε=Iε ). We have then, 

EM(u∗ε,χ∗ε) = EE(u∗ε) =
Ω
∫

e

W( x, ε(u∗ε)(x) )dx 

=

Ω
∫

e

Ac(x)ε(u∗ε)(x).ε(u∗ε)(x)dx.     (2) 

Ac is the homogenized elasticity tensor of a composite 
whose constituents are perfectly bonded. The last equality 
can be explained by the fact that the displacement field uε, 
unique solution of the energy minimization problem 
EM(uε) =

εu
Min(

∗
(EM(u∗ε)) among all kinematically 

"admissible" fields, is the solution field of the real problem 
(see [2]). Therefore it is continuous over the entire composite 
structure Ωc. And since the basic cell associated, denoted V, 
is a connected part of IR2, it is approached in first order, by: 

uε(x) ≡ u0(x,x/ε) + o(1) in Ωc, 

= u(x) + o(1) in Ωc,                 (3) 

where x is the macroscopic variable describing the 
composite structure in Ωc ⊂ IR3 and u the classical 
displacement field encountered in theory of periodic 
homogenization (see eg [3]). In the debonded case Ωd (but 
with contact and perfect relative sliding between 
constituents), the energy of medium (1) takes an other form. 
It was shown in [2] that the field in question uε is approached 
by uu00, given by: 

uε(x) ≡ uu00((xx,,xx//εε))  + o(1) in Ωd 

= u(x)+δ(x)e3+ω(x)e3 ∧ x/ε + o(1) iinn  ΩΩdd..  (4) 

u is the classical macroscopic field in theory of periodic 
homogenization. It is defined on the matrix but extended by 
continuity on the complementary part (fibers or folds). δ(x) 
and ω(x) are new scalar fields interpreted as the internal slip 
and internal rotation of the debonded composite structure. In 
fact they represent real sliding and rotations of fibers in the 
microstructure, indexed by the macroscopic variable x. They 
are extended in the matrix by the value 0 and therefore are 
discontinuous in general on the interfaces. The energy of 
medium to minimize is then written, in the case of a fibered 
composite, 

EM(u∗ε,χ∗ε) = EE(u∗ε,χ∗ε)+ES(χ∗ε)  

= 

dΩ
∫ Ad(x/ε)ε(u∗ε)(x)•ε(u∗ε)(x)dx 

+

dΩ
∫ Rω∗ε,3(x)ω∗ε,3(x)dx +

dΩ
∫ Kδ∗ε,3(x) δ∗ε,3(x)dx 

+ 

dΩ
∫ Σ(ε(u∗ε)(x) δ∗ε,3(x) + δ∗ε,3(x)ε(u∗ε)(x))dx 

+ T 

d
ε
∫

I

χ∗ε (x)dΓ(x)                         (5) 

where Ad, Σ, K and R are quantities that are defined and 
interpreted in [2]. They are given by solving 12 elementary 
problems, on the basis cell V\I associated with the debonded 
part, instead of 6 problems in the bonded case. T is the 
tenacity of the debonded interfaces assumed constant as was 
stated in the introduction. 
Remark 1. 

In theory, one speaks of rotation of a solid (deformable or 
no) but not of a material point. Therefore, there is no loading 
working in rotation at each point of the structure. We 
conclude then that the internal rotation is zero, i.e. ω=0 on 
Ωd. The translation by cons remains possible, as we have 
noticed in [2] [3] [4] [5]. 

Taking into account this remark, the energy of the medium 
(5) is simplified and it is writing so, 

EM(u∗ε,χ∗ε) = EE(u∗ε,χ∗ε) +  ES(χ∗ε) 

= 

dΩ
∫ Ad(x/ε)ε(u∗ε)(x)•ε(u∗ε)(x)dx 

+

dΩ
∫ Σ(ε(u∗ε)(x) δ∗ε,3(x) + δ∗ε,3(x)ε(u∗ε)(x))dx 

+

dΩ
∫ Kδ∗ε,3(x) δ∗ε,3(x)dx + T

ε

∫
I

χ∗ε (x)dΓ(x). (6) 

Remark 2. 
The first term of energy (6) is similar to elastic energy of a 

homogeneous medium whose tensor elasticity is Ad, 
different of Ac from the fact that the basic problems depend 
on the basic cell V or V\I (see [2]). It can be interpreted also 
as the homogenized tensor elasticity of a fibered “bonded” 
composite structure with well chosen rigidities of the 
constituents fibers-matrix. 

3. Energy Study of the Medium of a 
Composite Structure 

The reader is aware of the difficulty of the problem, the 
debonding can pre-exist before application of a loading and 
the energy of medium can intervene more displacement 
fields. In adopting always the couple notation, and taking 
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into account (2) and (6), the problem consist to find the 
couple of fields (Uε=(uε,δε),χε) minimizing the energy of 
medium, 

EM(U∗ε,χ∗ε) =  EE(U∗ε,χ∗ε) + ES(χ∗ε) 

= 
cΩ
∫ Ac(x/ε)ε(U∗ε

1)(x)•ε(U∗ε
1)(x)dx +

dΩ
∫

Ad(x/ε)ε(U∗ε
1)(x)•ε (U∗ε

1)(x)dx 

+ 

dΩ
∫ Σ(ε(U∗ε

1)(x)U∗ε
2,3(x) + U∗ε

2,3(x)ε (U∗ε
1)(x))dx 

+

dΩ
∫ KU∗ε

2,3(x)U∗ε
2,3(x)dx + T

ε

∫
I

χ∗ε (x)dΓ(x),   (7) 

among all couples of "admissible" fields 
(U∗ε=(u∗ε,δ∗ε),χ∗ε). 

We see that the problem is well complex: even if we 
manage to construct a minimizing sequence, it can do not 
converge in the right "space", since a sequence of 
characteristic functions do not necessarily converge towards 
a characteristic function (representative of a state of 
debonding). Therefore, the couple of solution field, if it 
exists can do not be "admissible". So we do not try to solve 
the problem in all its generality but at given surface energy 
(fixed). We calculate the elastic energy of the composite 
structure for different possible cases of decohesions [1] [2] 
[3] [13], for reject the figure cases, least envigeables, within 
the meaning of the adopted criterion. To do this, we "class" 
first, the states of decohesion of the composite structure 
according to geometrical criteria (volume defects, surface 
defects, lineal defects or punctual defects). As the surface 
energy varies only according to the "surface" of total 
debonding (or "total length" in the case of a fibred 
composite), we will define, for each type of debonding, the 
subclasses differentiated by their order greatness, in ε, of 
their elements. We present then first below, some states 
models of decohesion that may have a composite structure. 

3.1. Composites with Long Fibers 

In the following schemes, to saving space, we will note 
"ND" to designate "The Number of Decohesion", Likewise 
"LDOF" to designate "The Length of Decohesion in One 
Fiber" and finally "TDL" to designate "The Total 
Decohesion Length". 

3.1.1. Volume Defects 

1) 

Longitudinal section     cross-section 
 
 
 

Micro-decohesions in the fibred composite 

“ND” O(1/ε3) 

“LDOF” O(ε) 

“TDL” O(1/ε2) 

 

2) 

longitudinal section         cross-section 
 
 

 
Micro-decohesions in the fibred composite 

“ND” O(1/ε2) 

“LDOF” O(1) 

“TDL” O(1/ε2) 

3.1.2. Surface Defects 

3) 

Longitudinal section         cross-section 
 
 

 
Micro-decohesions in the fibred composite 

“ND” O(1/ε2) 

“LDOF” O(ε) 

“TDL” O(1/ε) 

4) 

Longitudinal section      cross-section 
 

 
 

Micro-decohesions in the fibred composite 

“ND” O(1/ε2) 

“LDOF” O(ε) 

“TDL” O(1/ε) 

3.1.3. Linear Defects 

5) 

Longitudinal section         cross-section 
 
 
 

Micro-decohesions in the fibred composite 

“ND” O(1) 

“LDOF” O(1) 

“TDL” O(1) 

6) 

longitudinal section       cross-section 
 
 

 
Micro-decohesions in the fibred composite 

“ND” O(1/ε) 

“LDOF” O(ε) 

“TDL” O(1) 

3.1.4. Punctual Defects 

7) 

longitudinal section         cross-section 
 
 

 
Micro-decohesions in the fibred composite 

“ND” O(1) 

“LDOF” O(ε) 

“TDL” O(ε) 
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3.2. Laminate Composites 

3.2.1. Volume Defects 

8) 

 
 

 
Micro-decohesions in the laminated composite 

“ND” O(1/ε2) 

“LDOF” O(ε) 

“TDL” O(1/ε) 

9) 

 
 

 
Micro-decohesions in the laminated composite 

“ND” O(1/ε) 

“LDOF” O(1) 

“TDL” O(1/ε) 

3.2.2. Surface Defects 

10) 

 
 
 

Micro-decohesions in the laminated composite 

“ND” O(1) 

“LDOF” O(1) 

“TDL” O(1) 

11) 

 
 

 
Micro-decohesions in the laminated composite 

“ND” O(1/ε) 

“LDOF” O(ε) 

“TDL” O(1) 

3.2.3. Linear Defects 

12) 

 
 
 

Micro-decohesions in the laminated composite 

“ND” O(1) 

“LDOF” O(ε) 

“TDL” O(ε) 

13) 

 
 
 

Micro-decohesions in the laminated composite 

“ND” O(1/ε) 

“LDOF” O(ε) 

“TDL” O(1) 

3.2.4. Punctual Defects 

14) 

 
 
 

Micro-decohesions in the laminated composite 

“ND” O(1) 

“LDOF” O(ε) 

“TDL” O(ε) 

4. Quantitative Analysis of the Obtained 
Results 

If the purpose of this paper is to give, in summary, a few 
orders of magnitude of the elastic energy corresponding at 
some states of decohesion presented above, to deduce which 
states of decohesion should be rejected, in sense of the 
Francfort and Marigo minimization criterion, we endeavor 
nevertheless not to lose sight of the generic character of the 
methods used (Homogenization and matched asymptotic 
expansions), in computing of macroscopic behavior, that 
allows analyzing complex situations, in particular taking 
account, at the macroscopic level, of the presence of 
micro-defects in the homogenized composite structures. In 
the few studies conducted i.e., cases of figure numbers 1, 2, 3 
and the states of decohesion numbers 9, 10 and 11 (see [2] [3] 
[6]), we deduce the following points: 

4.1. Influence of Composites Type 

The effective behavior of a composite structure having 
periodic decohesions differs according to whether it is a 
laminate composite or a fibered composite. Indeed, the 
kinematics of the medium is described by two macroscopic 
displacement fields u and δ (one field only in the existing 
literature, see [20]). For a fibered composite, the translation 
is given by δ(x) = δ3(x)e3(see [2]). For a laminated 
composite, it is given by, δ(x) = δ1(x)e1+δ2(x)e2(see [3]). 
The scalar field δ3, defined on Ωd, is interpreted as the 
longitudinal relative sliding of the fibers compared to the 
matrix, the fields δ1 and δ2, when at them, are the two 
components of a planar field representing the slip of steep 
layers (inclusions) compared to soft layers (matrix). 

4.2. Influence of Defects Type 

The methods used to modeling the damaged composite 
structures differ according to the type of the latter. For 
example, to study the cases of figure 1, 2 and 9, we use the 
periodic homogenization method. Another method, called 
matched asymptotic expansions [1] [24], was illustrated for 
the states of debonding numbers 3, 10, and 11. In addition, 
the effectif behavior of a such composite (with debonded 
constituents) differs from one case to another. Indeed, for the 
illustrative case number 1, the effective behavior is similar to 
a continuous medium whose kinematics is described by a 
single displacement field, and whose equilibrium is 
governed by classical three-dimensional equilibrium 
equations [19]. By cons, for the states of decohesion 
numbers 2 and 9, the kinematics is described by several 
displacement fields, and the equilibrium is governed by 
coupled equations, i.e., three-dimensional equilibrium 
equations and equations of beam type [2] (in the case of 
figure number 2, "fibered composite") or plate type[3] (in the 
case of figure number 9, "laminate composite"). For the 
cases of figure numbers 5, 11 and 12 (see [1] [6] [24]), 
although there have micro-defects, they have not influence, 
in first approximation, on the macroscopic behavior of the 
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structure. It is not the same for the cases of decohesion 
numbers 2, 9 and 10, where the influence of the macroscopic 
debonding is felt from the first order. 

4.3. Influence of Contact Laws 

The effective behavior of composite materials at debonded 
constituents depends on the contact law to imposing on the 
interfaces. For example, for a laminate, the kinematics of the 
equivalent structure is described by two displacement fields, 
a displacement field of the matrix u and a inner slip field δ. If 
one authorizes the debonded interfaces to sliding without 
rubbing, while staying in contact, the internal sliding field is 
written as follow, δ(x)=δ1(x)e1+δ2(x)e2. But in the case 
without contact, it is written, δ(x)=δ1(x)e1+δ2(x)e2 + 
δ3(x)e3. It is seen well that the macroscopic behavior of such 
a composite is not the same if one changes the contact law to 
impose on the debonded interfaces and it was noticed, in the 
expression (4), for fibred composites. 

5. Qualitative Analysis of the Effective 
Behavior of Composite Materials 

Let us retake the notations to fix ideas, and let us consider 
a unitary three-dimensional composite structure comprising 
n fibers. Let ε=1/n the parameter characterizing the 
microstructure, it also represents the dimensions of 
micro-defects (or micro-decohesions) that are of the order of 
o(ε)(2πε2 in surface for a "fibered composite" and 2ε2 for a 
"laminate composite") [16]. It is assumed that, when they are 
present in the microstructure, they are "distributed" 
periodically, as indicated in the figures above. For the 
calculate of the orders of magnitude of the surface energies 
ES, we use the following two general rules: 
* For a fibered composite (fibers-matrix): 

ES = (Number of damaged fibers)× (2πε2)× (Number of 
defects per fiber) 
* For a laminate composite (folds stiffer/soft): 

ES = (Number of debonded stiff folds)× (2ε2 )× (Number 
of defects per fold) 

We present then, in the two tables below, the cases of 
figure studied, i.e., the states of debonding numbers 1, 2 and 
3 for a fibered composite and the states of debonding 
numbers 9, 10 and 11 for a laminate composite. We give then 
the orders of magnitude, in ε, of surface energies and energy 
restitution elastic (difference between the energy of the 
"healthy" composite structure and the elastic energy of the 
"debonded" composite structure) for each figure case studied. 
These energy restitutions are calculated in [2], [3], [6] and 
[24]. 

Table 1.  Orders of magnitude for fibred composites 

Case of Figure Number: N°1 N°2 N°3 

Surface Energy: O(1/ε2) O(1/ε2) O(1/ε) 

Energy Restitution Elastic: O(1) O(1) O(1) 

Table 2.  Orders of magnitude laminated composites 

Case of Figure Number: N°9 N°10 N°11 

Surface Energy: O(1/ε) O(1) O(1) 

Energy Restitution Elastic: O(1) O(1) O(ε) 

6. Discussion 
When a structure is subjected to an increasing loading, the 

structure is damaged (a crack appears). For a composite 
structure there is appearance of a debonding of its 
constituents. This debonding defines a decohesion state, 
solution of the energy minimization problem of Francfort 
and Marigo (Em=Es+Ee) among all possible fictitious 
decohesion states. We can say then that all other debonding 
states are rejected and cannot appear in this composite 
structure for this loading level. We see that the problem is 
well complex: we cannot compare all energies of all possible 
debonding states to find the state of debonding, solution of 
Francfort and Marigo problem. But we can conclude that a 
particular state of debonding cannot be a solution (i.e. it 
cannot appear in the structure) if we find a new state whose 
energy of medium is smaller. For the states whose energies 
of surface Es are the same (same order of magnitude) we 
compare their elastic energy Ee. This is the case for example 
of the states 1 and 2 and then 10 and 11 of above Tables 1 and 
2. The state 10 is rejected in front of the state 11 because the 
order of magnitude of its elastic energy (so of its energy of 
medium) is more great. By cons we cannot reject any of the 
states 1 and 2 because the orders of magnitude of their elastic 
energy are the same. We must calculate numerically their 
energy to conclude. 

It is therefore very interesting to know the solution of the 
energy minimization problem of Francfort and Marigo, 
posed on a composite structure, but it is also interesting to 
know whether such or such debonding cannot appear in this 
structure for a given loading level. 

For the initiation problem of debonding in healthy 
composite structures, it is possible to find numerically the 
solution of this problem, as well as study the propagation of 
this initiated debonding. Indeed, we first must make an 
unstructured mesh whose nodes will be "duplicated" so that 
we can open it to the needs (for calculation of the energy 
restitution elastic). Then, in the calculations, locate the state 
of decohesion "initiated" by the criterion of maximum 
stresses. Considering then all possible local decohesion 
states, we deduce the initiated decohesion state [8] [12]. We 
can then repeat the process for studying the propagation of 
decohesion as well initiated [22] [25]. 

7. Conclusions 
The energetic study of the composite structures make in 

this paper, based on the theory of Francfort and Marigo [9], 
consist primarily to reject, for a loading level and a given 
surface energy (in order of magnitude of ε with ε=1/n and 
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where n denotes the number of fibers contained in the 
structure), the decohesions leading to a highest energies of 
medium. We can then reject a state of debonding, in doing so, 
but we can not "keep" some state; keep one state in the sense 
that it should be compared to another state of decohesion, to 
finally find the state of decohesion, solution of the 
minimization problem of Francfort and Marigo [9], because 
the states of decohesion are very numerous and we can not 
compare practically all these states. But the obtained results 
of this study are very interesting because it can be exploited 
in high tech industry to ensure that of this or that debonding 
can not appear in such composite pieces, subjected to loading 
of their use services. 

 

REFERENCES  
[1] T. Bach, T. Dang, L. Halern, Jean-Jacques Marigo, 

"Asymptotic analysis of small defects near a singular point in 
antiplane elasticity, with an application to the nucleation of a 
crack at a notch", Mathematics and Mechanics of Complex 
Systems, 2 (2), pp. 141-179, 2014. 

[2] Y. Berrehili, J.-J. Marigo, "The homogenized behavior of 
unidirectional fiber-reinforced composite materials in the 
case of debonded fibers", Mathematics and Mechanics of 
Complex Systems, vol 2(2), pp 181-207, 2014. 

[3] Y. Berrehili, "The effective behavior of laminated composite 
materials in the case of debonded folds", International Journal 
of Composite Materials, vol. 4, No. 2, 2014. 

[4] Y. Berrehili, "Longitudinal Traction of a Fiber-Reinforced 
Composite Beam with Debonded Fibers", International 
Journal of Composite Materials, 4(2), pp. 53-57, 2014. 

[5] Y. Berrehili, "Bending of a Fiber-Reinforced Composite 
Beam with Debonded Fibers", International Journal of 
Composite Materials, vol. 4, No. 2, 2014. 

[6] Y. Berrehili, "Etude du comportement effectif des matériaux 
composites à constituants décollés", Doctorat de l’université 
Paris-Nord, 1997. 

[7] F. Bilteryst and J.-J. Marigo, "An energy based analysis of the 
pull-out problem", Eur. J. Mech. A Solids 22:1, 55–69, 2003. 

[8] B. Bourdin, G. Francfort & J.-J. Marigo, "Numerical 
experiments in revisited brittle fracture", J. Mech. Phys. 
Solids 48, no. 1, p. 797-826, 2000. 

[9] G. Bourdin, B. Francfort & J. Marigo, "The variational 
approach to fracture", Springer, p. 165, 2008. 

[10] A. Chambolle, G. A. Francfort, and J.-J. Marigo, "When and 
how do cracks propagate?", J. Mech. Phys. Solids 57:9, 
1614–1622, 2009. 

[11] M. Charlotte, J. Laverne, and J.-J. Marigo, "Initiation of 
cracks with cohesive force models: a variational approach", 

Eur. J. Mech. A Solids 25:4, 649–669, 2006. 

[12] G. Del Piero, G. Lancioni & R. Mach, "A variational model 
for fracture mechanics: numerical experiments", J. Mech. 
Phys. Solids 55, p. 2513-2537, 2007. 

[13] M. David, J.-J. Marigo, and C. Pideri, "Homogenized 
interface model describing inhomogeneities located on a 
surface", J. Elasticity 109:2, 153–187, 2012. 

[14] G. Francfort & J.-J. Marigo, "Revisiting brittle fracture as an 
energy minimization problem", J. Mech. Phys. Solids 46, no. 
8, p. 1319-1342, 1998. 

[15] G. Francfort & J. Marigo, "Vers une théorie énergétique de la 
rupture fragile", Comptes rendus. Mécanique, 330, no. 4, p. 
225-233, 2002. 

[16] A. Giacomini, "Size effects on quasi-static growth of cracks", 
SIAM J. Math. Anal.36:6, 1887–1928, 2005. 

[17] A. Griffith, "The phenomena of rupture and fow in solids", 
Philosophical Transactions of the Royal Society of London. 
Series A, Containing Papers of a Mathematical or Physical 
Character, 221, p. 163-198, 1921. 

[18] J. Leblond, "Mécanique de la rupture fragile et ductile", 
Hermès science publications, 2003. 

[19] D. Leguillon, "Calcul du taux de restitution de l’énergie au 
voisinage d’une singularité", C. R. Acad. Sci., Paris, Sér. II 
309:10, 945–950, 1989. 

[20] F. Léné, "Contribution à l’étude des matériaux composites et 
de leur endommagement", thèse de doctorat d’état, Université 
Pierre et Marie Curie, Paris, 1984. 

[21] J.-J. Marigo, "Formulation d'une loi d'endommagement d'un 
matériau élastique", Compte rendu Acad. Sc. 292, p. 
1309-1312, 1981. 

[22] J.-J. Marigo, "L'endommagement et la rupture : hier, 
aujourd'hui et demain", Rapport tech-nique, IPSI, no. 8, p. 
1319-1342. 2000. 

[23] J.-J. Marigo, "Initiation of cracks in Griffith’s theory: An 
argument of continuity in favor of global minimization", J. 
Nonlinear Sci. 20:6, 831–868, 2010. 

[24] J.-J. Marigo and C. Pideri, "The effective behavior of elastic 
bodies containing microcracks or microholes localized on a 
surface", Int. J. Damage Mech. 20:8, 1151–1177, 2011. 

[25] J.-J. Marigo and L. Truskinovsky, "Initiation and propagation 
of fracture in the models of Griffith and Barenblatt", Contin. 
Mech. Thermodyn. 16:4, 391–409, 2004. 

[26] M. Negri, A comparative analysis on variational models for 
quasi-static brittle crack propagation, Adv. Calc. Var. 3:2, 
149–212, 2010. 

[27] M. Negri and C. Ortner, "Quasi-static crack propagation by 
Griffith’s criterion", Math. Models Methods Appl. Sci. 18 :11, 
1895–1925, 2008. 

[28] P. Suquet, "Rupture et plasticité", École polytechnique, 
France, 2006.  

 

 


	1. Introduction
	2. Elastic Potential and Surface Energy of a Composite with Debonded Constituents
	3. Energy Study of the Medium of a Composite Structure
	4. Quantitative Analysis of the Obtained Results
	5. Qualitative Analysis of the Effective Behavior of Composite Materials
	6. Discussion
	7. Conclusions

