
International Journal of Mechanics and Applications 2014, 4(2): 29-49 
DOI: 10.5923/j.mechanics.20140402.02 

The Solution of Torsion Problem for the Bars with 
Irregular Cross Sections by Boundary Element Method 

Hakan Türken*, Fatma Necla Kadıoğlu, Şenol Ataoğlu 

Civil Engineering Department, Istanbul Technical University, Istanbul, Turkey 

 

Abstract  The objective of the present study is to determine the stress distribution in bars with irregular cross sections 
under torsion by boundary element method. For this purpose an integral equation is built via reciprocal theorem. This integral 
equation involves two elastostatic states for the same body. First one represents the problem to be solved while the second 
does a singular elastostatic state which arises due to a singular, line body force in an infinite medium. It is accepted that Saint 
Venant’s principle is valid. The unknown of the integral equation mentioned above is the boundary value of the torsion 
function. In boundary element method, boundary is divided to linear elements whose end points are named as nodal points 
and this equation is reduced to a system of linear algebraic equations. The unknowns of this system are nodal values of torsion 
function. All singularities are eliminated. After evaluation torsion function, stresses can be determined inside the region. But 
a different formulation is necessary for determination of the unknown stress component on the boundary. By the way the 
torsional rigidity of the cross-section is also determined. Three sample problems are solved. In the first case cross-section is 
selected to be a rectangular to check the formulation. In the second sample problem a rectangular cross-section involving a 
notch is considered. The third sample problem is a rectangular reinforced concrete column with four rebars. For the first 
problem results are coincided with analytical solution. Interesting point is that the relative error has millionth order for both 
displacements and stresses while for torsional rigidity has .09 percent. The last problem is a mix-boundary value problem in 
a multiple connected region with two different materials. 
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1. Introduction 
Nonuniform torsion is one of the most interested 

problems for scientists and engineers. Many problems are 
solved by different authors using different methods. 

Starting point is the Saint-Venant’s formulation for 
homogeneous bars with constant cross-sections under 
torsion moments acting at the ends. Formulation and 
analytical solutions related to simple shapes of 
cross-sections can be found in Muskhelishvili's book [1]. 
By the way, many problems are also solved by numerical 
methods. Finite element method is used by Ely and 
Zienkiewich [2] for composite bars. Jaswon and Ponter [3] 
applied the boundary integral method to torsion problems 
for different cross-sections. 

Katsikadelis and Sapountzakis [4] formulated the 
numerical solutions of Saint-Venant’s torsion problem for 
composite cylindrical bars of arbitrary cross-sections via 
boundary element method. Here, the torsion problem is  
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reduced to a stress problem for simply connected regions. 
And the reciprocal identity is used for to obtain a singular 
integral equation whose unknown is displacement vector on 
the boundary of the cross-section. After this Saint-Venant’s 
formulation is used and the boundary values of torsion 
function are calculated reducing the integral equation 
mentioned above to a system of linear algebraic equations. 
All singularities are eliminated. After these stress 
components are calculated performing the necessary 
derivatives of this integral equation at any point inside the 
boundary. This equation does not involve any singularity. 
But if one wants to calculate the unknown stress component 
on the boundary this formulation is not correct. For this 
purpose another formulation is obtained to eliminate the 
strong singularities arising during this process. In boundary 
element method linear elements are used. In the new 
formulation, the tangential stress component can be 
calculated on the nodal points with a single tangent. For this 
kind of points singularities arising in adjacent elements 
eliminates each other and some derivatives vanishes. Whole 
formulations are extended two multiple-connected regions 
and having two different materials. Last problem is an 
application two this kind of problems.  
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2. Formulation 
2.1. Basic Equations 

Two vector-valued functions u(x), f(x) and a tensor valued 
function τ(x) define together an elastostatic state for a body 
with volume V and surface S. u(x), τ(x) and f(x) represent 
the displacement vector, stress tensor and body force per unit 
volume, respectively. x is the position vector of any point of 
this region. These quantities satisfy the following equations 
in Cartesian coordinates.  
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Here xi denotes one of the Cartesian coordinates (i=1,2,3) 
and summation convention is valid. δij is the Kronecker's 
delta, λ, μ are Lame's constants. 

Let u(x), τ(x), f(x) and u*(x), τ*(x), f*(x) be two 
elastostatic states. The reciprocal theorem or reciprocal 
identitiy which is written between these two states is, 

∫∫ ∗∗ +
SV

dSdV (x)t(x).u(x).uf(x)
 

V S
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Here S is boundary of volume V, t and t* are the surface 
traction vectors defined as 

τ.n=t     ∗∗ =t τ .n                (5) 

where n is the outward normal of the surface S. 

2.2. A Singular Elastostatic State 

An infinite domain having the same material with the 
problem to be solved is considered. Let y be a fixed point of 
this region. If a body force exists as follows: 
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e3 is the base vector in the x3 direction in Cartesian 
coordinates. The displacement field u3 and stress field τ3 
related to this body force are 
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This formulation can be found in Banarjee and 
Butterfield's book [5]. Here δ(x-y) denotes Dirac delta 
function.   

2.3. Nonuniform Torsion 

A prismatical bar with a constant cross-section and a 
linear axis, under torsion is considered. x3 axis is the axis of 
the bar and cross-section plane is (x1, x2) plane. It is a 
common assumption to define the components of the 
displacement vector due to Saint-Venant in this bar as 

231 xωxu −=  132 xωxu =  )x,(xωu 213 ϕ=  (11) 

Here ω is the relative twist and φ denotes the torsion 
function. φ is also an harmonic function of the variables x1 
and x2 in the region.  

Using these and constitutive equations given in (2), stress 
components are calculated as 









−

∂
∂

= 2
1

13 x
x

μωτ ϕ
               (12) 









+

∂
∂

= 1
2

23 x
x

μωτ ϕ
               (13) 

0ττττ 3
12

3
33

3
22

3
11 ====             (14) 

Now it will be considered that the triple u, τ and f 
represent a torsion problem to be solved. 

It is also an elastostatic state. Moreover it is accepted that 
the body force 

0f =                       (15) 

If reciprocal identity is written between these two 
elastostatic state defined above 

∫∫∫∫ +=+
VsVs

dVdSdVdS .u f.utf.uut. 3333
 (16) 

is obtained. Here it must be emphasized that V, S are the 
volume and the surface of the bar. 2c is the length of the bar 
and origin is selected as the centroid of the bar respectively. 
(e.g. Figure 1) 

 
Figure 1.  Prismatical bar under torsion 

The surfaces S2, S3 have the same geometry. There is no 
surface tension on the side surface S1. τ13 and τ23 shear 
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stresses exist on S2 and S3. This shear stresses are the same 
for whole cross-sections for the same x1, x2 values. Now, it 
will be accepted that the following line body force will be 
applied to any y(y1,y2) point as 
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Because of (15) the second integral in (16) is vanish. The 
last integral in (16) can be calculated as follow: 
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Substituting (18) in (16) 
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is found. Here S is the total surface of the bar and it can be 
partitioned as follow: 
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meanwhile (19) can be written as 
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The first integral in (21) is vanish since S1 is stress-free. 
The second and third integrals are also vanish since t has 
only components in x1 and x2 directions and u3 has only third 
component on S2 and S3 surfaces. Again considering the 
stresses and the normals the fourth integral is: 
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Here C is the closed contour of S1. If (11) is considered the 
last two equations of (21) become 
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Substitution (10) in (23) and inverting surface integral to a 
contour integral gives 
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The first three integrals in (21) have been eliminated and 
fourth integral has been calculated in (22). Remaining two 
integrals are also given in (24). Substituting (24) and (22) in 
(21), inverting u3 to ωφ and using (10) leads (21) to the 
following integral equation. 
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The unknown of this integral equation is φ function and 
this formula is valid for simply-connected regions. 

2.4. BEM Formulation 

It is clear that if the boundary values of φ are known any 
value of φ inside the region can be calculated using the 
expression (25) given above. Then the problem is reduced 
to the determination of boundary values of φ function. To 
solve this problem boundary of the cross-section is 
considered as a collection of linear segments which are 
named as boundary elements. Besides, end points of these 
linear elements are named as nodal points.  

 
Figure 2.  Artificial boundary 

Linear elements are named as the same with starting 
points of the elements. Here on any J'th linear element the 
variation of φ function has been accepted as follow: 
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Here l(J) is the length of the element and s is the distance 
to starting point of the (J)’th element. Substitution of (26) in 
(25) reduces unknowns of the problem to the nodal values 
of the φ function. To determine the boundary or nodal 
values of φ a new artificial boundary is defined for any x(I) 
nodal point which is given by Kadioglu N, Ataoglu S. [6] 
(e.g Figure 2) Here a circular arc Sε centred at x(I) with 
radius ε is added to the boundary so that, x(I) point is 
outside the region. Suppose the number of the nodal point is 
N. Then the number of the unknowns is also N and N 
equation is necessary. The loading point y is selected as any 
nodal point x(I) and calculating necessary integrals an 
equation is obtained. Repeating the same process for whole 
nodal points N equation is obtained. If the artificial 
boundary is used, x(I) point is outside of the region. Then 
the left side of (25) is equal to zero. Some integrals related 
to elements (I-1)'th and I'th, involve singularities. It is also 
accepted that displacement component u3 or φ is constant 
on the circular arc Sε and necessary integrals are also 
calculated on this circular arc. After these ε will be taken as 
zero. Before this limit new form of (25) is below 

N 2

l(J)
J 2

(J 1) (J)0 (J)
l(J)

φ φφ
+

=

 + −
= + 

 ∑ ∫   

ds
ρ

(J)n(I))x(x(J)n(I))x(x
2

222111







 −−−
  

( )∑ ∫
+

=

−−
1N

2J
l(J) 2112 ds(J)nx(J)nxlnρ

π2
1

  

1 1 1 2 2 2
2

Sε

(x x (I)) n (x x (I)) n1 (I)dSε
2 π ρ

φ
 − − −

+  
  
∫  

( )dSεnxnxlnρ
π2

1

Sε
2112∫ −−                     (27) 

Numbering starts from 2 and the last nodal point is 
(N+1)'th. The nodal point having number 1 coincides with 
(N+1)'th and 2 coincides with (N+2)'th. (27) can be 
simplified as follows by calculating necessary integrals. 
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Abbreviations W1(I,J), W2(I,J), E1(I,J), E2(I,J), T(I,J) in 
(28) are given as follows: 
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This integrals have been calculated analytically and have 
been given in Appendix I except E1(I) and E2(I) which are 
given below: 
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The angles ϴ(I) and ϴ(I-1) are given in Figure 2. And 
some special cases for J=I and J=I-1 related to other integrals 
are 
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(28) defines a system of linear algebraic equations as 
follows: 

KAX =                    (42) 
Here A is a matrix of order N × N, X and K are matrices of 

order N × 1, any element of these can be defined as 
For (I,J)=1,…,N 
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Here δIJ is Kronecker’s delta. 
Solution of this system of linear equations gives the nodal 

values of φ function. After finding these values using (25) 
φ(y) value for any y inside the region can be calculated and 
this calculation does not involve any singularity and the 
exact solutions of the integrals given in Appendix can be 
used neglecting E1. For any y inside the region this equation 
is  
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One must remember that in the expressions in (46) the 
coordinates of y point are used as the coordinates of loading 
point.  

After these stress components can be easily calculated by 
taking necessary derivatives of (46) and using (12), (13) as 
follows. But it must be emphasized that y is not a boundary 
point.  
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The expressions of W1(y,J), T(y,J) and W2(y,J) can be 
found in Appendix setting x1(I)=y1 and x2(I)=y2. And the 
necessary derivatives can be calculated analytically using 

these expressions. After these the torsional rigidity of the 
cross-section will be calculated. For this purpose at first the 
torsion moment acting on the cross-section must be 
calculated. It is known that torsion moment MZ is the 
resultant of shear stresses acting on the cross-section. If this 
is written as follow: 

1

Z 13 2 23 1 1
S

M ωμ ( τ x τ x )dS= − +∫        (49) 

is found. If the expressions of the shear stresses given in (12) 
and (13) are used in (49). 
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is found. Expression (50) can be transformed to a contour 
integral as below: 

1

Z 2 1
1 2S

M μω ( x ) ( x )
x x

φ φ
 ∂ ∂

= − +∂ ∂∫  

1

3
2

2

3
1

1

dS
3

x
x3

x
x 












∂
∂

+







∂
∂

+     (51) 

[∫ +−=
C

2112Z )nxnx(μωM ϕϕ  

dC
3
nx

3
nx 2

3
21

3
1 












++              (52) 

If the decomposition of the C contour to line elements and 
the variation of φ(s) function on these elements are 
considered (52) transform to the following form. 
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Considering the definition of torsional rigidity D as: 
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is obtained. Integrals given in equation above have been 
calculated analytically. 

If one wants to calculate the stress components on a nodal 
point (47) and (48) cannot be used since they involve strong 
singularities. If y is a nodal point x(I) these singularities 
cannot be eliminated in these equations. To overcome this 
problem, at first one must remember that the stress 
component on the boundary is zero. The nonzero component 
on the boundary is 

(I)τ(I)n(I)τ(I)nτ 231132s +−=          (56) 

There are some restrictions to calculate τs(I)  stress 
component. At first the boundary which is the sum of the line 
elements, will be considered as the boundary. Besides the 
formulation allows to calculate the stress component at a 
point with a single tangent, only. This means any calculation 
cannot be performed at the corners in the formulation given 
here. In addition to these the necessary derivatives which 
will be used in the expressions of τ13 (x(I)) and τ23(x(I)) 
cannot be performed using (46). Now a new artificial 
boundary will be defined (e.g. Figure 3) 

 

Figure 3.  New artificial boundary 

In this new boundary y=x(I) point is an inner point but (46) 
takes the following form calculating some integrals over the 
elements having  y as an end point: 
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The abreviations in (57) are given as follows: 
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Substituting (58), (59) and (60) in (57) the expression of 
φ(y) is obtained as follows: 
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This equation is proper for calculating necessary 
derivatives which arising in the expressions of τ13(y) and 
τ23(y) 

The expressions of W1(I,J), W2(I,J) and T(I,J) have been 
given in Appendix. Then performing derivatives 
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is obtained. In these integrals, the derivatives of KAT4(I) 
involve singularities but substitution of (63) and (64) in (56) 
eliminates these singular terms. Then unknown stress 
component τs(y) is calculated for any y=x(I) nodal point. 
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3. Sample Problem 
For numerical results first selected problem is a 

rectangular cross-section with width b=60cm and length 
h=100cm (e.g. Figure 4). 

Second sample problem is the same rectangular but having 
a triangular notch. (e.g. Figure 5). 

For the first problem variation of φ function versus x2 on 
BC line is given in Figure 6. The variation of φ versus x1 on 
EC given in Figure 7. The results given by Muskhelishvili 
for the same problem are also given in this figures. A table is 
also added to this figure since differences are very small. 
Practically relative error is zero for φ function.  

 

Figure 4.  Rectangular cross-section 

 

Figure 5.  Rectangular cross-section with a triangular notch  

 

Figure 6.  Variation of φ versus x2 on BC line in rectangular 
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Figure 7.  Variation of φ versus x1 on EC line in rectangular 

 
Figure 8.  Variation of τ13/ωμ versus x1 on D1C1 line in rectangular 

The variation of τ13 versus x1 on D1C1 line is given in Figure 8. The variation of τ23 versus x1 on the same line is given in 
Figure 9. The variation of τ13 versus x2 on A1B1 line is given in Figure 10. The variation of τ23 versus x2 on the same line is 
given in Figure 11. Relative error practically is also zero for shear stresses. Division of torsional rigidity to μ1 equal R is 
calculated for the selected rectangular cross-section, numerical result and Muskhelishvili's result are given as follows: 

4cm4505976shvili)R(Muskheli =  
4cm1014245)R( =BEM  
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Relative error is 0.00092 for R. For the same problem variation of τs versus x2 is given in Figure 12 on BC boundary and 
variation of τs versus x1 on EC boundary is given in Figure 13. The relative error has millionth order which is practically zero.  

 

Figure 9.  Variation of τ23/ωμ versus x1 on D1C1 line in rectangular 

 

Figure 10.  Variation of τ13/ωμ versus x2 on A1B1 line in rectangular 
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Figure 11.  Variation of τ23/ωμ versus x2 on A1B1 line in rectangular 

 

Figure 12.  Variation of τS/ωμ versus x2 on BC line in rectangular 
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Figure 13.  Variation of τS/ωμ versus x1 on EC line in rectangular 

In the first problem there were two symmetry axes but in the second there is only one as x2. For the second problem 
variation of φ function on ABCDEF boundary are given in Figure 14, Figure 15 and Figure 16. The variation of τ23 versus x1 
on GA given in Figure 17. The variations of τ13 and τ23 versus x2 on DK line are given in Figure 18 and Figure 19 respectively. 
For this cross-section R has been found as 4497964,92554 cm4. Variation relative to full rectangular is very small for this 
quantity. Variations of τs/(μω) on ABCDEF boundary are given in Figure 20, Figure 21 and Figure 22. 

 
Figure 14.  Variation of φ versus x2 on AB line in rectangular with a notch 
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Figure 15.  Variation of φ versus x1 on BE line in rectangular with a notch 

 

Figure 16.  Variation of φ versus x2 on EF line in rectangular with a notch 
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Figure 17.  Variation of τ23/ωμ versus x1 on GA line in rectangular with a notch 

 

Figure 18.  Variation of τ13/ωμ versus x2 on DK line in rectangular with a notch 
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Figure 19.  Variation of τ23/ωμ versus x2 on DK line in rectangular with a notch 

 

Figure 20.  Variation of τS/ωμ versus x2 on AB line in rectangular with a notch 
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Figure 21.  Variation of τS/ωμ versus x1 on EB line in rectangular with a notch 

 
Figure 22.  Variation of τS/ωμ versus x2 on EF line in rectangular with a notch 

4. Third Sample Problem 
This problem is an extension of the proposed method to 

problems having multiple connected cross-sections and 
different materials. The selected problem is a rectangular 

concrete column with four rebars. The ratio of shear modules 
of concrete and iron is ½. (e.g Figure 23) 

This problem can be thought as the summation of two 
different problems. First problem is a rectangular 
cross-section with four holes. These holes are symmetric 

 



44 Hakan Türken et al.:  The Solution of Torsion Problem for the Bars   
with Irregular Cross Sections by Boundary Element Method 

relative to x1 and x2 axes. For this domain boundary is the 
summation of external boundary of the rectangular and the 
boundaries of the holes. And the equation (25) takes the 
following form for this problem 

)(yϕ      )( 1Sy∈  
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0         )( 1Sy∉  

1 1 1 2 2 2
1 2 2
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1 lnρ dC
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µ ω

+ + +

 
−  

 ∫           (65) 

Here CS represents the whole boundary. Ci (i=1,2,3,4) 
represents the boundary of the i’ th hole and t3/μ1ω represents 
the third component of the surface traction vector on any 
surface hole. The assumptions and definitions up to now are 
valid for this problem too. It is assumed that the new 
unknown t3/μ1ω is also linear on the linear elements defined 
on holes. But number of the unknowns is more than number 
of the equations. Then a single rebar must also be considered. 

The φ values are the same at the corresponding points of the 
hole and the rebar. But there is also t3 component of the 
surface traction vector on the rebar and this term involves 
μ2ω divisor instead of μ1ω. And the sign of it opposite for the 
corresponding points with the hole. Considering these facts 
and applying the method explained before the unknowns of 
this problem can also be solved. Unknowns are the φ values 
on the whole boundary and in addition to these the third 
component of the surface traction vector on the boundaries 
of the holes. After construction of necessary linear equations 
this unknowns can be solved. For the selected example 
results are plotted in Figure 24, Figure 25, Figure 26 and 
Figure 27. After these the variations of τ13 /μ1ω and τ23 /μ1ω 
functions are plotted one vertical and one horizontal line in 
Figure 28, Figure 29, Figure 30 and Figure 31. 

 
Figure 23.  Reinforced rectangular concrete column 

 
Figure 24.  Variation of φ versus x2 on AB line in Figure 23 
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Figure 25.  Variation of φ versus x2 on CB line in Figure 23 

 
Figure 26.  Variation of φ versus ϴ on the boundary of the first hole  
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Figure 27.  Variation of t3/ωμ1 versus ϴ on the boundary of the first hole  

 
Figure 28.  Variation of τ13/ωμ1 versus x1 on x2=11cm line   
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Figure 29.  Variation of τ23/ωμ1 versus x1 on x2=11cm line 

 
Figure 30.  Variation of τ13/ωμ1 versus x2 on x1=5cm line  
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Figure 31.  Variation of τ23/ωμ1 versus x2 on x1=5 cm line 

5. Conclusions 
A boundary element formulation is developed for torsion 

problems in bars with arbitrary cross-sections. At first this 
formulation is valid for only cross-sections with 
simple-connected contours. But formulation of the problem 
can be extended to multiple-connected cross-sections since it 
is given as a stress problem of elasticity. Besides 
mixed-boundary problems can also be solved extending the 
formulation. Formulation involves the calculation of 
displacement components inside and the boundary of the 
cross-section. For the calculation of stresses two different 
formulations are given. The first one is for the stress 
components inside the cross-section while the second is for 
the unknown stress component on the boundary. But 
formulation allows calculating the unknown stress 
component only at the boundary points with a single tangent. 
First selected sample problem is a rectangular. The results 
are compatible with the results of analytical solution of this 
problem given by Muskhelishvili. The relative error is 
practically zero for displacements and stresses. But this 
value is 9/10000 for determination of torsional rigidity. 
Second sample problem is also a rectangular with a 
triangular notch. For this problem it is understood that at the 
points far from the notch whole quantities are very near with 
those belong to the full rectangular. Besides the variation of 

torsional rigidity is very small because of the small notch. 
All singularities arising in boundary element formulation 
have been eliminated. The biggest differences occur near the 
tip of the notch. At the tip u3 displacement has been 
calculated but at this point unknown stress component 
cannot be calculated. However one can approach to this point 
from inside of the region. For this purpose the variations of 
τ13/μω and τ23/μω shear stresses, versus x2 have been plotted 
in Figures 18-19 on a line which is parallel to x2 axis and .5 
cm to the tip of the notch. At the point N (e.g. Figure 5) 
τ13/μω =0 τ23/μω =-61,8262 cm have been found. For full 
rectangular same quantity is τ23/μω =-39,2292 cm. 
Magnification factor is nearly 1,58. For the selected third 
sample problem method is extended to multiple-connected 
regions and also selected problem involves two different 
materials. For a full rectangular R has been found to be 
178864,77cm4 and but for reinforced column same value has 
been found as 354738,25cm4. The most interesting result of 
this problem is that φ function change sign in one quarter.  
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