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Abstract  In this paper, fracture mechanics in orthotropic plates, stress and displacement distributions around the crack 
tip in an an isotropic material are considered. Classical d isplacement based finite elements, elements with penalized 
equilibrium and elements with drilling degrees of freedom are employed. The path independent integrals J and I* are applied 
to orthotropic fracture mechanics problems to determine the stress intensity factor at the crack tip. Again, convergence 
studies are done, and the path independence of J and I* are investigated for orthotropic problems. Numerical results for typical 
fracture specimens are presented and discussed. The effect of the degree of anisotropy and fiber orientation on the stress 
intensity factor is also demonstrated. 
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1. Introduction 
Over the last decade or so, the finite element method has 

been firmly  established as a standard numerical technique for 
solving fracture mechanics problems. It would have been 
impossible to solve non-linear fracture problems, without the 
employment of the fin ite element method[1]. 

Rice's path-independent integral J is one of the most 
significant parameters in linear elastic fracture mechanics[1]. 
Recently the I* integral was introduced by Wu et al[1], which 
is the dual form of the J integral. The I* integral is based on 
the complementary energy princip le of the system where the 
J integral is based on the strain energy density of the system.  

Path independent integrals (J/ I*) should be solved with 
fin ite elements that are based on the same energy principle as 
the path independent integrals to ensure path independence. 
It is due to this fact that the I*integral makes the assumed 
stress element (based on the complementary energy  
principle) p lay a powerful role in computational fracture 
mechanics.  

In the penalty-equilibrium approach, stress equilibrium is 
enforced in indiv idual elements. Thus assumed stress 
elements with penalized equilibrium are ideal to solve the I* 
integral.  

In fracture mechanics, upper/lower bound estimation of 
the st ress intens ity  facto r becomes  a matter o f g reat 
significance as it is difficult to obtain the exact value of the 
stress intensity factor (K), no matter what experimental or 
numerical method  is  used  due to  the complexity  o f 
non-linear fracture[1]. It can be proved that the J integral  
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forms an approximate lower bound to K when displacement 
based elements are used to solve the integral and that the I* 
integral fo rms an approximate upper bound to K when stress 
equilibrium elements are used. 

While assumed stress interpolation increases the accuracy 
of low order membrane elements, drilling degrees of 
freedom have an additional advantage in low order 
membrane elements. Above and beyond enrichment of the 
displacement field, it increases the accuracy of low order 
elements. Drilling degrees of freedom also increases the 
modeling capability of these elements. 

In recent years, composite materials have been used 
increasingly in various engineering disciplines, notably in 
the fields of aerospace and marine engineering. 

The crack tip singularity in orthotropic materials can be 
completely characterized in the same manner as in the 
isotopic case by properly defining anisotropic stress intensity 
factors[2]. Stress intensity factors are important parameters 
in the assessment of the fracture strength of anisotropic 
composite structural components. Within the framework of 
plane, linear elastic fracture mechanics, a problem of 
continuing interest is the calculation of the stress intensity 
factor in  cracked orthotropic plates modeling fiber reinforced 
composites[3]. The study of the elastostatic fracture 
response of an orthotropic cracked plate subjected at 
infinity to a biaxial uniform load, and, the effects of 
orthotropy and load biaxiality on the near crack tip elastic 
fields is pointed out in[4]. The Kirchhoff and Mindlin plate 
theories are applied in this study to calculate the stresses and 
the energy release rates in delaminated orthotropic 
composite plates by[5].  

With the growth in applications of composite materials, a  
problem of continuing interest is the calculation of the stress 
intensity factor in cracked orthotropic plates modeling fiber 
reinforced composites. The fracture of composite materials 
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is an important and complex engineering problem. 
Significant defects can be built into a composite laminate 
during manufacturing of a new component. The material 
used can also be relatively frag ile and large cracks can result 
from minor service mishaps. High performance composites 
often consist of high strength fibers in a weak matrix. Hence, 
crack formation and growth is constrained by the fiber 
direction, resulting in  mixed  mode crack deformation 
growth. 

Several numerical methods for determining stress 
intensity factors in cracked an isotropic plates have been 
developed by extending the methods originally  developed 
for isotropic materials. The J integral can be used to develop 
a failure analysis approach which is applicable to both single 
and mixed mode crack p roblems in  orthotropic materials. In 
a mixed  mode, however, a  simple application of the J integral 
does not provide sufficient informat ion for a separate 
determination of mixed mode stress intensity factors. 
Various other methods are used to determine stress intensity 
factors for an isotropic materials: the Jk integral, the hybrid 
mongrel formulation, contour integrals based on Betti's 
reciprocal work theorem, etc. 

In this paper, the numerical evaluation of mode I and 
mode II stress intensity factors for orthotropic fracture 
mechanics problems is developed. The stress intensity 
factors are evaluated by using the fin ite element method, 
combine with path independent integrals 

2. Anisotropic Stress and Displacement 
Field Near a Crack Tip  

The stress and displacement expressions in the 
neighborhood of the crack tip in homogeneous anisotropic 
media under a plane stress condition with zero body forces 
are given by Saxce and Kang[6] as: 
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where Re denotes the real part of the complex function 
between brackets. s1, s2 and their conjugates are roots of the 
fourth order characteristic equation 
𝑎𝑎11𝑠𝑠4 + 2𝑎𝑎16𝑠𝑠3 + (2𝑎𝑎12 + 𝑎𝑎66 )𝑠𝑠2 − 2𝑎𝑎26 𝑠𝑠 + 𝑎𝑎22 = 0   (6) 
where the aij are the elastic compliance coefficients, which 
can be written in terms of Young's moduli Eij, Poisson's 
ratios νij and shear moduli Gij. For an orthotropic material, aij 
are given as 
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3. Finite Element Formulation 
In recent t imes, elements with in -plane rotational (d rilling) 

degrees of freedom have become quite popular. Apart from 
enrichment of the displacement field, which increases 
element accuracy, drilling degrees of freedom allow for the 
modeling of, for instance, folded plates and beam–slab 
intersections. These elements depend on a problem-depend
ent penalty parameter γ, which relates the in-plane 
translations to the in-plane rotations. Eventually, assumed 
stress formulat ions were combined with drilling degrees of 
freedom in a single element formulation, e.g. see Aminpour 
[7,8], Sze and Ghali[9], and Geyer and Groenwold for 
quadrilateral 8β and 9β drill families[10]. 

Satisfaction of element equilibrium may relat ively easily  
be enforced using a methodology similar to the post 
treatment or penalized  equilibrium approach presented by 
Wu and Cheung[11]. For drill elements, penalized 
equilibrium was proposed by Groenwold et al.[12,13]. 
Penalized equilibrium depends on yet another problem 
dependent penalty parameter, which we indicate by α. 

Elements with drilling degrees of freedom and elements 
with assumed stress interpolations have the potential to 
improve the modeling capabilit ies of, in  particu lar, low-order 
quadrilateral fin ite elements. Hence, it  seems desirable to 
formulate low-order elements with both an assumed stress 
interpolation field and drilling degrees of freedom, on 
condition that the elements are rank sufficient and invariant.  

4. The I* Integral 
Based on the energy foundation of the path-independent 

integral there must exist a dual version of Rice's J integral, 
which should also be a path-independent integral, be 
identical to J in value and be dependent on the system 
complementary energy. The I*integral presented by Wu et 
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al.[14] is such an integral. The J integral is equivalent to the 
release rate of strain energy Π(ui) with respect to the crack 
area, and the I* integral is equivalent to the release rate of the 
complementary energy Πc(σij) with respect to the crack area. 
An interesting application of the I*integral is that it is able to 
provide the approximate upper bound solution for crack 
problems. Equilibrium based elements (based on the 
complementary energy princip le) should be used to estimate 
the I*integral. 

For the purpose of developing the dual integral of J  

𝐽𝐽 = ∫ �𝑊𝑊(𝑢𝑢𝑖𝑖)𝑑𝑑𝑑𝑑 − 𝜎𝜎𝑖𝑖𝑖𝑖 𝑛𝑛𝑗𝑗
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑�
 
Γ          (8) 

with  Γ a curve surrounding the notch tip, W(ui) is the strain 
energy density, ui displacements, σij the stress tensor, nj the 
components of a unit vector normal to Γ. 

The I*integral can be defined as 
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where 𝐵𝐵�𝜎𝜎𝑖𝑖𝑖𝑖 � = 𝜎𝜎𝑖𝑖𝑖𝑖 𝜖𝜖𝑖𝑖𝑖𝑖 − 𝑊𝑊(𝑢𝑢𝑖𝑖) , εij is the infinitesimal 
strain tensor. 

Formulat ing the constitutive relations of a linear elastic 
orthotropic material in g lobal coordinates as follows: 
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the J and I* integrals can be expressed as follows in terms of 
the Mode I and Mode II stress intensity factors[15]: 
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5. Fracture Mechanics: Orthotropic 
Results 

To allow comparison with results presented in literature, 
the problems considered are mode I crack problems. For an 
orthotropic material crack problem to be a mode I problem, 
one of the principal axes of the material must be parallel to 
the crack axis. Therefore, only 0°, 90° or symmetric angle 
ply laminates can be considered. The fiber orientation in 
orthotropic material is defined as the angle between  the crack 
axis and the fiber in a counterclockwise direction, see Fig 1. 

Three test problems are investigated, namely  
_ a center cracked panel (CCP) with 0° ply arrangement, 

uniformly loaded in tension (the reference solution is taken 
from[15]), 

_ a single edge cracked panel (SECP) with 0° ply  
arrangement, uniformly loaded in tension (the reference 
solution is taken from[15]), and a double edge cracked panel 
(DECP) with symmetric angle ply arrangements, uniformly 
loaded in tension (the reference solution is taken from[3] 
and[16]). 

The in-plane lines of material symmetry for the first two 
problems coincide with the x-y axis. The material constants 
are set to be E1 = 1, E2 = 10,β1 = 1 and β2

2= 0.1, where β1β2 

= (E1/E2)1/2 and β1 + β2 = √2[(E1/E2)1/2 + E1/2G12- v12]1/2 
[15]. The units of loading are consistent with that of E. 

 

5.1. Convergence Study 

To study the influence of mesh refinement on the 
prediction of the stress intensity factor in orthotropic 
materials, a convergence study is firstly done. For the 
convergence study the center cracked  panel with 0° p ly 
arrangement is considered. Three different meshes are used 
with the same 5 integration contours. 

Mesh 1 consists of 17x9 elements in total and a radial fan 
of element around the crack t ip of 7x3 elements. Mesh 2 is a 
bisection of Mesh 1, and Mesh 3, in turn, is a  bisection of 
Mesh 2. 

For the convergence study we consider the following 
elements: 

_ J integral: Q4 (A d isplacement based quadrilateral 
element) 

_ J integral: Q4X (A d isplacement based quadrilateral 
element with drilling degrees of freedom) 

_ I* integral: PS(α) (A penalized version of the assumed 
stress quadrilateral element proposed by Pian and 
Sumihara[17]) 

_ I* integral: 8β(α) (A  penalized version of the assumed 
stress quadrilateral element with drilling degrees of freedom 
and 8 β parameters) 

_ I* integral: 9β(α) (A  penalized version of the assumed 
stress quadrilateral element with drilling degrees of freedom 
and 9 β parameters) 

For the meshes considered, the stress intensity factor K1 
calculated using the Q4 element violates the bound theorem, 
(see Fig 2(a)), and the results reveal a notable path 
dependency. This is due to the material orthotropy, which 
requires a very fine mesh for the Q4 elements[15]. 

With Q4X elements, the J integral is path-independent and 
satisfies the bound theorem (see Fig 2(b)). As expected, the 
stress intensity factors calculated with the J integral and  Q4X 

X 

θ 

Figure 1.  Definition of the fiber orientation in an orthotropic 
material 
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form a lower bound to the true value of the stress intensity 
factor, but the calculated stress intensity factor does 
converge to the analytical value with mesh refinement.  

When evaluating the J integral for orthotropic materials, 
the Q4X element seems superior to the Q4 element. 

We now turn the attention to the assumed stress based 
elements: For PS(α), 8β(α) and 9β(α), a convergence study 
is presented in Figs 3(a), 3(b ) and 3(c). The results confirm 
the path independence of the elements, while an upper bound 
to the stress intensity factor is predicted, as may be expected. 
Again, the calculated stress intensity factors do converge to 
the analytical solutions with mesh refinement. Clearly, the 
results obtained with mesh 3 are superior to the results 
obtained using mesh 1 or mesh 2. 

 
a) 

 
b) 

Figure 2.  Convergence study of KI for the orthotropic CCP with different 
displacement based elements: (a) Q4 (b) Q4X 

 
a) 

 
b) 

 
c) 

Figure 3.  Convergence study of KI for the orthotropic CCP with different 
assumed stress elements:(a) PS(α) (b) 8β(α) (c) 9β(α) 
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5.2. Selected Results Demonstrating Path Independence 

General results for the prob lems of interest are now 
presented. Throughout, mesh 3 is used. 

Center cracked panel with a 0° ply arrangement  
Fig. 4: The reference solution is K1 = 4.646. The results 

demonstrate adherence to the bound theorems: The stress 
intensity factor determined with the I* integral using 
penalized equilibrium elements forms an upper bound to the 
KI factor, while the stress intensity factor determined with 
the J integral and Q4X elements forms a lower bound to KI. 

Single edge crack panel with 0°p ly arrangement 
Fig. 5: Unfortunately, no theoretical reference solution 

could be found for this problem, but the results compare well 
with those obtained by Xiao et al[15]. 

 

a) 

 

b) 
Figure 4.  Summary of results for an orthotropic center cracked panel with 
θ= 0°fiber angle: (a) Q4, Q4X and PS(α) elements  (b) 8β(α) and 9β(α) 
elements 

 

a) 

 

b) 
Figure 5.  Summary of results for an orthotropic single edge cracked panel 
with θ = 0° fiber angle: (a) SECP with θ = 0°  Q4, Q4X, PS and PS(α) 
elements  (b) SECP with θ = 0° 8β, 8β(α) and 9β  elements 

5.3. The Effect of Fiber Orientation on the Stress 
Intensity Factor 

The effect of fiber orientation on a double edge cracked 
panel with a symmetric ply arrangement is now studied. 
Symmetric fiber orientations of ±0°, ±10°, ±20° ... ±90° are 
considered. 

The calculated stress intensity factors for this problem are 
shown in Fig 6. The results are compared with the results 
obtained by[16] and[3] where possible. For the double edge 
cracked plate problem, the material constants used are: 
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_ E1 = 144.798 GPa, E2 = 11.722 GPa, G12 = 9.6532 GPa,  
and ν = 0.21. 

The double edge cracked plate dimensions used are: 
_ Crack length: a = 3.5, Width: 2b = 14, Height: 2c = 14, 
The units of loading are consistent with that of E. 
For the double edge cracked panel, the results are 

summarized in Figs 6(a) and 6(b). The results reveal a slight 
(unimportant) path dependence. 

The results obtained for the DECP with symmetric angle 
ply lamina are shown in Fig 7, compare very well with the 
results obtained by Chu and Hong[16]. Comparing the 
results obtained by Chu and Hong with the results obtained 
by Kim[3], it is noted that large discrepancies exist between 
these results, which peak around angles of ±60s. According 
to Chu and Hong[16] it seems that these discrepancies are 
due to Kim's[3] miscalculation of compliance coefficients. 

The agreement with the results presented by Chu and 
Hong seems to indicate that the current implementation is 
correct. 

 
a) 

 
b) 

Figure 6.  Summary of results for an orthotropic double edge cracked panel: 
(a) fiber angle  θ= 90°   (b) fiber angle θ= 0° 

 
a) 

 
b) 

Figure 7.  Results for the effect of fiber orientation on a double edge crack 
plate, θ= ±0°through θ= ±90°(a) Solution for all elements (b) Solution for 
Q4X and 9βαonly 

5.4. The Effect of the Degree of Anisotropy on K 

To consider the effect of the degree of anisotropy on the 
stress intensity factor, a center cracked plate under uniform 
tensile stress is now considered. This problem was also 
considered by Su and Sun[18]. The ratio E1/E2 is varied to 
determine the influence of the degree of anisotropy on the 
stress intensity factor.  

The height to width ratio h/w and the crack length to width 
ratio a/w are varied to estimate the effect of geometry on the 
stress intensity factor. Height to width ratios of h/w = 1.0, 1.5, 
and 2.0 are considered. 

The material properties used are: 
_ Young's modulus E1 = 30.0, and 
_ Poisson's ratio ν12= 0.3. 
The values of E2 and G12 are obtained from 
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The results are summarized in Figs 8 and 9. When 
comparing the results with those obtained by Su and Sun[18], 
it is noted that the correlation between the results is very 
high. 

 
a) 

 
b) 

Figure 8.  The effect of the degree of anisotropy and height to width ratio 
for the orthotropic CCP with 0° ply arrangement: (a) Height to width ratio 
h/w = 1 (b) Height to width ratio h/w = 1.5 

A study of Figs 8 and 9 reveals the following: 
_ As the ratio of the crack length to plate width a/w 

increases, the stress intensity factor increases. 
_ An increase in the height to width ratio h/w of the 

cracked plate decreases the stress intensity factor 
significantly. 

_The effect of the degree of anisotropy decreases as a/w 
decreases and h/w increases. 

_ The effect of the degree of anisotropy on the stress 
intensity factor is considerable for rat ios of E1/E2 less than 1. 

_ The stress intensity factor is only influenced 
significantly when E1/E2>1 for a/w large and h/w small. 

 
Figure 9.  The effect of the degree of anisotropy and height to width ratio 
for the orthotropic CCP with 0°ply arrangement: Height to width ratio h/w = 
2 

6. Conclusions 
It is well known that orthotropic fracture mechanics 

problems can effectively be solved by combining the fin ite 
element method and the path independent integrals J and I*. 

Not as well known, is that assumed stress finite elements, 
combined with the I* integral, can be used to predict an 
upper bound to the stress intensity factor. Assumed stress 
elements without penalized equilibrium tend to under predict 
the stress intensity factor if the mesh is not highly refined; to 
predict the upper bound, assumed stress elements with 
penalized equilibrium are an attractive modeling option. 

Solving the J integral with displacement based elements, 
yields a lower bound to the stress intensity factor. A lower 
bound in isotropic fracture mechanics problems can be 
predicted accurately with Q4 or Q4X elements. In 
orthotropic fracture problems however, Q4 elements reveal a 
notable path dependency, for such problems, elements with 
drilling degrees of freedom represent a superior modeling 
option to Q4 elements. 

When using elements with drilling degrees of freedom to 
solve fracture mechanics problems, the integration scheme 
used and the value of the penalty parameter γin the elements, 
needs consideration. Reduced integration, with a small 
center point weight, or a too large penalty parameter, can 
introduce a checkerboard like locking pattern. Both the 
integration scheme and the penalty parameter γinfluence the 
stability of elements with drilling degrees of freedom 
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From a mechanics of material point of v iew, it is shown 
that the degree of anisotropy and the fiber orientation in 
orthotropic fracture mechanics problems have a large 
influence on the stress intensity factor. The influence of the 
degree of anisotropy decreases as the ratio of E1/E2 
increases. When the degree of anisotropy is larger than 1, the 
stress intensity factor is only influenced significantly for 
large a/w and small h/w rat ios. 

7. Recommendations for Further 
Studies 

_ In the section on displacement based elements with 
penalized equilibrium we only considered regular 
geometries; a treatment for irregular (generally distorted 
geometries) is awaiting. 

This can probably be done using 
1. Analytical or symbolic techniques to _nd the 

characteristic polynomial, or 
2. Through approximate relationships derived from the 

mapping to a `regular' parent element. 
_ While approximate relat ionships exist which relate the 

size o f the p lastic zone to a material specific stress intensity 
value, it  is not clear what the true value of rotations in the 
plastic zone are. It is recommended that this is addressed in a 
future study. 

_ A further study on the effect of fiber orientation on the 
stress intensity factor in orthotropic materials is 
recommended. 

_ The use of elements with drilling degrees of freedom in  
more complicated fracture mechanics problems will be a 
interesting study. 

_ A further study using path independent integrals (e.g. Jk) 
that can split the mixed mode stress intensity factor into 
Mode I and Mode II stress intensity factors is recommended. 

Nomenclature 
J, I*          Path independent integrals  
K, KI, KII    Stress intensity factors 
σx, σy, τxy    Normal and shear stress 
s1, s2, z1, z2, p1, p2, q1, q2   Complex functions  
aij                  Elastic compliance coefficients 
Eij,           Young's moduli  
νij            Poisson's ratios  
Gij.           Shear moduli 
Π(ui)         The release rate of strain energy  
Πc(σij)       The release rate of complementary energy 
α             Penalty parameter 
Γ           Curve surrounding the notch tip,  
W(ui)         Strain energy density,  
ui            Displacements,   
σij              St ress tensor,  
nj             Components of a unit vector normal to Γ. 
εij             The infinitesimal strain tensor. 

θ            fiber orientation. 
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