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Abstract In this paper, fracture mechanics in orthotropic plates, stress and displacement distributions around the crack
tip in an anisotropic material are considered. Classical displacement based finite elements, elements with penalized
equilibrium and elements with drilling degrees of freedomare employed. The path independent integrals J and I are applied
to orthotropic fracture mechanics problems to determine the stress intensity factor at the crack tip. Again, convergence
studies are done, and the path independence ofJ and I” are investigated for orthotropic problems. Numerical results for typical
fracture specimens are presented and discussed. The effect of the degree of anisotropy and fiber orientation on the stress

intensity factor is also demonstrated.
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1. Introduction

Over the last decade or so, the finite element method has
been firmly established as a standard numericaltechnique for
solving fracture mechanics problems. It would have been
impossible to solve non-linear fracture problems, without the
emp loyment of the finite element method[1].

Rice's path-independent integral J is one of the most
significant parameters in linearelastic fracture mechanics[1].
Recently the I integral was introduced by Wu et al[1], which
is the dual form of the J integral. The I integral is based on
the complementary energy principle of the system where the
J integral is based on the strain energy density of the system.

Path independent integrals (J/ I*) should be solved with
finite elements that are based on the same energy principle as
the path independent integrals to ensure path independence.
It is due to this fact that the I*integral makes the assumed
stress element (based on the complementary energy
principle) play a powerful role in computational fracture
mechanics.

In the penalty-equilibrium approach, stress equilibrium is
enforced in individual elements. Thus assumed stress
elements with penalized equilibrium are ideal to solve the I"
integral.

In fracture mechanics, upper/lower bound estimation of
the stress intensity factor becomes a matter of great
significance as it is difficult to obtain the exact value of the
stress intensity factor (K), no matter what experimental or
numerical method is used due to the complexity of
non-linear fracture[1]. It can be proved that the J integral
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forms an approximate lower bound to K when displacement
based elements are used to solve the integral and that the I
integral forms an approximate upper bound to K when stress
equilibrium elements are used.

While assumed stress interpolation increases the accuracy
of low order membrane elements, drilling degrees of
freedom have an additional advantage in low order
membrane elements. Above and beyond enrichment of the
displacement field, it increases the accuracy of low order
elements. Drilling degrees of freedom also increases the
modeling capability of these elements.

In recent years, composite materials have been used
increasingly in various engineering disciplines, notably in
the fields of aerospace and marine engineering.

The crack tip singularity in orthotropic materials can be
completely characterized in the same manner as in the
isotopic case by properly defining anisotropic stress intensity
factors[2]. Stress intensity factors are important parameters
in the assessment of the fracture strength of anisotropic
composite structural components. Within the framework of
plane, linear elastic fracture mechanics, a problem of
continuing interest is the calculation of the stress intensity
factorin cracked orthotropic plates modeling fiber reinforced
composites[3]. The study of the elastostatic fracture
response of an orthotropic cracked plate subjected at
infinity to a biaxial uniform load, and, the effects of
orthotropy and load biaxiality on the near crack tip elastic
fields is pointed out in[4]. The Kirchhoffand Mindlin plate
theories are applied in this study to calculate the stresses and
the energy release rates in delaminated orthotropic
composite plates by[5].

With the growth in applications of composite materials, a
problem of continuing interest is the calculation of the stress
intensity factor in cracked orthotropic plates modeling fiber
reinforced composites. The fracture of composite materials
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is an important and complex engineering problem.
Significant defects can be built into a composite laminate
during manufacturing of a new component. The material
used can also be relatively fragile and large cracks can result
from minor service mishaps. High performance composites
often consist of high strength fibers in a weak matrix. Hence,
crack formation and growth is constrained by the fiber
direction, resulting in mixed mode crack deformation
growth.

Several numerical methods for determining stress
intensity factors in cracked anisotropic plates have been
developed by extending the methods originally developed
for isotropic materials. The J integral can be used to develop
a failure analysis approach which is applicable to both single
and mixed mode crack problems in orthotropic materials. In
a mixed mode, however, a simp le application of the J integral
does not provide sufficient information for a separate
determination of mixed mode stress intensity factors.
Various other methods are used to determine stress intensity
factors for anisotropic materials: the Ji integral, the hybrid
mongrel formulation, contour integrals based on Betti's
reciprocal work theorem, etc.

In this paper, the numerical evaluation of mode I and
mode II stress intensity factors for orthotropic fracture
mechanics problems is developed. The stress intensity
factors are evaluated by using the finite element method,
combine with path independent integrals

2. Anisotropic Stress and Displacement
Field Near a Crack Tip

The stress and displacement expressions in the
neighborhood of the crack tip in homogeneous anisotropic
media under a plane stress condition with zero body forces
are given by Saxce and Kang[6] as:
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where the a;; are the elastic compliance coefficients, which
can be written in terms of Young's moduli Ej;, Poisson's
ratios v and shear moduli G;;. For an orthotropic material, a;;
are given as
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3. Finite Element Formulation

In recent times, elements with in-plane rotational (drilling)
degrees of freedom have become quite popular. Apart from
enrichment of the displacement field, which increases
element accuracy, drilling degrees of freedom allow for the
modeling of, for instance, folded plates and beam-slab
intersections. These elements depend on a problem-depend
ent penalty parameter » which relates the in-plane
translations to the in-plane rotations. Eventually, assumed
stress formulations were combined with drilling degrees of
freedom in a single element formulation, e.g. see A minpour
[7,8], Sze and Ghali[9], and Geyer and Groenwold for
quadrilateral 8 #and 9 £ drill families[10].

Satisfaction of element equilibrium may relatively easily
be enforced using a methodology similar to the post
treatment or penalized equilibrium approach presented by
Wu and Cheung[l1]. For drill elements, penalized
equilibrium was proposed by Groenwold et al.[12,13].
Penalized equilibrium depends on yet another problem
dependent penalty parameter, which we indicate by «.

Elements with drilling degrees of freedom and elements
with assumed stress interpolations have the potential to
improve the modeling capabilities of, in particular, low-order
quadrilateral finite elements. Hence, it seems desirable to
formulate low-order elements with both an assumed stress
interpolation field and drilling degrees of freedom, on
condition that the elements are rank sufficient and invariant.

4. The I* Integral

Based on the energy foundation of the path-independent
integral there must exist a dual version of Rice's J integral,
which should also be a path-independent integral, be
identical to J in value and be dependent on the system
complementary energy. The I*integral presented by Wu et
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al.[14] is such an integral. The J integral is equivalent to the
release rate of strain energy //(u;) with respect to the crack
area, and the I" integral is equivalent to the release rate of the
complementary energy /1.(c;) Wlth respect to the crack area.
An interesting application of the I'integral is that it is able to
provide the approximate upper bound solution for crack
problems. Equilibrium based elements (based on the
complementary energy princip le) should be used to estimate
the I'integral.
For the purpose of developing the dual integral of J

J = J [W)dy - oy 2 as] (8)

with 7™ a curve surrounding the notch tip, W(u;) is the strain
energy density, u; displacements, oj; the stress tensor, n;the
components of a unit vector normal to /-

The I'integral can be defined as
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Formulating the constitutive relations of a linear elastic
orthotropic material in global coordinates as follows:
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the J and I* integrals can be expressed as follows in terms of
the Mode [ and Mode Il stress intensity factors[15]:
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5. Fracture Mechanics: Orthotropic
Results

To allow comparison with results presented in literature,
the problems considered are mode I crack problems. For an
orthotropic material crack problem to be a mode I problem,
one of the principal axes of the material must be parallel to
the crack axis. Therefore, only 0°, 90° or symmetric angle
ply laminates can be considered. The fiber orientation in
orthotropic material is defined as the angle between the crack
axis and the fiber in a counterclockwise direction, see Fig 1.

Three test problems are investigated, namely

_ a center cracked panel (CCP) with 0° ply arrangement,
uniformly loaded in tension (the reference solution is taken
from[15]),

_a single edge cracked panel (SECP) with 0° ply
arrangement, uniformly loaded in tension (the reference
solution is taken from[15]), and a double edge cracked panel
(DECP) with symmetric angle ply arrangements, uniformly
loaded in tension (the reference solution is taken from[3]
and[16]).

The in-plane lines of material symmetry for the first two
problems coincide with the x-y axis. The material constants
aresettobe E; =1, E; =10, =1 and ﬂ22: 0.1, where ;3

Stress Intensity Solutions for Cracked Orthotropic Plates

= (EVEy"™ and fi + fpr = V2[(E/E)"™ + E/2Gpr- vy ™
[15]. The units of loading are consistent with that of £.

Figure 1. Definition of the fiber orientation in an orthotropic
material

5.1. Convergence Study

To study the influence of mesh refinement on the
prediction of the stress intensity factor in orthotropic
materials, a convergence study is firstly done. For the
convergence study the center cracked panel with 0° ply
arrangement is considered. Three different meshes are used
with the same 5 integration contours.

Mesh 1 consists of 17x9 elements in total and a radial fan
of element around the crack tip of 7x3 elements. Mesh 2is a
bisection of Mesh 1, and Mesh 3, in turn, is a bisection of
Mesh 2.

For the convergence study we consider the following
elements:

_J integral: Q4 (A displacement based quadrilateral
element)

_J integral: Q4X (A displacement based quadrilateral
element with drilling degrees of freedom)

_ r integral: PS(@) (A penalized version of the assumed
stress quadrilateral element proposed by Pian and
Sumihara[17])

_ r integral: 84(a) (A penalized version of the assumed
stress quadrilateral element with drilling degrees of freedom
and 8 fparameters)

_ r integral: 95(ca) (A penalized version of the assumed
stress quadrilateral element with drilling degrees of freedom
and 9 fparameters)

For the meshes considered, the stress intensity factor K;
calculated using the Q4 element violates the bound theorem,
(see Fig 2(a)), and the results reveal a notable path
dependency. This is due to the material orthotropy, which
requires a very fine mesh for the Q4 elements[15].

With Q4X elements, the J integral is path-independent and
satisfies the bound theorem (see Fig 2(b)). As expected, the
stress intensity factors calculated with the J integraland Q4X
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form a lower bound to the true value of the stress intensity
factor, but the calculated stress intensity factor does
converge to the analytical value with mesh refinement.

When evaluating the J integral for orthotropic materials,
the Q4X element seems superior to the Q4 element.

We now turn the attention to the assumed stress based
elements: For PS(a), 83(a) and 9B(a), a convergence study
is presented in Figs 3(a), 3(b) and 3(c). The results confirm
the path independence of the elements, while an upper bound
to the stress intensity factor is predicted, as may be expected.
Again, the calculated stress intensity factors do converge to
the analytical solutions with mesh refinement. Clearly, the
results obtained with mesh 3 are superior to the results
obtained using mesh 1 or mesh 2.
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Figure 2. Convergence study of K; for the orthotropic CCP with different
displacement based elements: (a) Q4 (b) Q4X
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5.2.Selected Results Demonstrating Path Independence

General results for the problems of interest are now
presented. Throughout, mesh 3 is used.

Center cracked panel with a 0° ply arrangement

Fig. 4: The reference solution is K1 = 4.646. The results
demonstrate adherence to the bound theorems: The stress
intensity factor determined with the 1" integral using
penalized equilibrium elements forms an upper bound to the
K factor, while the stress intensity factor determined with
the J integral and Q4 X elements forms a lower bound to K.

Single edge crack panel with 0°ply arrangement

Fig. 5: Unfortunately, no theoretical reference solution
could be found for this problem, but the results compare well
with those obtained by Xiao et al[15].
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Figure 4. Summary of results for an orthotropic center cracked panel with
0= 0°fiber angle: (a) Q4, Q4X and PS(a) elements (b) 8B(a) and IP(ar)
elements
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Figure 5. Summary of results for an orthotropic single edge cracked panel
with @ = 0° fiber angle: (a) SECP with 6 =0° Q4, Q4X, PS and PS(a)
elements (b) SECP with 6 =0°8B, 88(c) and 9B elements

5.3. The Effect of Fiber Orientation on the Stress
Intensity Factor

The effect of fiber orientation on a double edge cracked
panel with a symmetric ply arrangement is now studied.
Symmetric fiber orientations of £0°, £10°, £20° ... £90° are
considered.

The calculated stress intensity factors for this problem are
shown in Fig 6. The results are compared with the results
obtained by[16] and[3] where possible. For the double edge
cracked plate problem, the material constants used are:
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_ E1 =144.798 GPa, E2 =11.722 GPa, G12 =9.6532 GPa,
and v=0.21.

The double edge cracked plate dimensions used are:

_ Crack length: a= 3.5, Width: 2b = 14, Height: 2c = 14,

The units of loading are consistent with that of E.

For the double edge cracked panel, the results are
summarized in Figs 6(a) and 6(b). The results reveal a slight
(unimportant) path dependence.

The results obtained for the DECP with symmetric angle
ply lamina are shown in Fig 7, compare very well with the
results obtained by Chu and Hong[16]. Comparing the
results obtained by Chu and Hong with the results obtained
by Kim[3], it is noted that large discrepancies exist between
these results, which peak around angles of £60;. According
to Chu and Hong[16] it seems that these discrepancies are
due to Kim's[3] miscalculation of compliance coefficients.

The agreement with the results presented by Chu and
Hong seems to indicate that the current implementation is
correct.
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5.4. The Effect of the Degree of Anisotropy on K

To consider the effect of the degree of anisotropy on the
stress intensity factor, a center cracked plate under uniform
tensile stress is now considered. This problem was also
considered by Su and Sun[18]. The ratio E;/E,is varied to
determine the influence of the degree of anisotropy on the
stress intensity factor.

The height to width ratio h/w and the crack length to width
ratio a/w are varied to estimate the effect of geometry on the
stress intensity factor. Height to width ratios of h/w = 1.0, 1.5,
and 2.0 are considered.

The material properties used are:

_ Young's modulus E; = 30.0, and

_ Poisson's ratio vi,=0.3.

The values of E, and Gy, are obtained from



128 A. Toubal et al.:

N

El El El
e N (N i e S
E, E, ' 26, “

The results are summarized in Figs 8 and 9. When
comparing the results with those obtained by Su and Sun[18§],
it is noted that the correlation between the results is very
high.
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Figure 8. The effect of the degree of anisotropy and height to width ratio
for the orthotropic CCP with 0° ply arrangement: (a) Height to width ratio
h/w=1 (b) Height to width ratio h/w=1.5

A study of Figs 8 and 9 reveals the following:

_ As the ratio of the crack length to plate width a/w
increases, the stress intensity factor increases.

_ An increase in the height to width ratio h/w of the
cracked plate decreases the stress intensity factor
significantly.

_The effect of the degree of anisotropy decreases as a/w
decreases and h/w increases.

Stress Intensity Solutions for Cracked Orthotropic Plates

_ The effect of the degree of anisotropy on the stress
intensity factor is considerable for ratios of E;/E; less than 1.

_ The stress intensity factor is only influenced
significantly when E;/E,>1 for a/w large and h/w small.
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Figure 9. The effect of the degree of anisotropy and height to width ratio
for the orthotropic CCP with 0°ply arrangement : Height to width ratio h/w =
2

6. Conclusions

It is well known that orthotropic fracture mechanics
problems can effectively be solved by combining the finite
element method and the path independent integrals J and T*.

Not as well known, is that assumed stress finite elements,
combined with the I* integral, can be used to predict an
upper bound to the stress intensity factor. Assumed stress
elements without penalized equilibrium tend to under predict
the stress intensity factor if the mesh is not highly refined; to
predict the upper bound, assumed stress elements with
penalized equilibriumare an attractive modeling option.

Solving the J integral with displacement based elements,
yields a lower bound to the stress intensity factor. A lower
bound in isotropic fracture mechanics problems can be
predicted accurately with Q4 or Q4X elements. In
orthotropic fracture problems however, Q4 elements reveal a
notable path dependency, for such problems, elements with
drilling degrees of freedom represent a superior modeling
option to Q4 elements.

When using elements with drilling degrees of freedom to
solve fracture mechanics problems, the integration scheme
used and the value of the penalty parameter yin the elements,
needs consideration. Reduced integration, with a small
center point weight, or a too large penalty parameter, can
introduce a checkerboard like locking pattern. Both the
integration scheme and the penalty parameter yinfluence the
stability of elements with drilling degrees of freedom
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From a mechanics of material point of view, it is shown
that the degree of anisotropy and the fiber orientation in
orthotropic fracture mechanics problems have a large
influence on the stress intensity factor. The influence of the
degree of anisotropy decreases as the ratio of EI/E2
increases. When the degree of anisotropy is larger than 1, the
stress intensity factor is only influenced significantly for
large a/w and small h/w ratios.

7. Recommendations for Further
Studies

_In the section on displacement based elements with
penalized equilibrium we only considered regular
geometries; a treatment for irregular (generally distorted
geometries) is awaiting.

This can probably be done using

1. Analytical or symbolic techniques
characteristic polynomial, or

2. Through approximate relationships derived from the
mapping to a "regular' parent element.

_ While approximate relationships exist which relate the
size o fthe plastic zone to a material specific stress intensity
value, it is not clear what the true value of rotations in the
plastic zone are. It is recommended that this is addressed in a
future study.

_ A further study on the effect of fiber orientation on the
stress intensity factor in orthotropic materials is
recommended.

_ The use of elements with drilling degrees of freedom in
more complicated fracture mechanics problems will be a
interesting study.

_ A further study using path independent integrals (e.g. Jk)
that can split the mixed mode stress intensity factor into
Mode I and Mode II stress intensity factors is recommended.

to _nd the

Nomenclature
LT Path independent integrals
K, K;, Ky Stress intensity factors
Oy, Oy, Txy Normal and shear stress
$1,82, 21, 22, P1, P2, 41,42 Complex functions
aj Elastic compliance coefficients
Ej, Young's moduli
Vi Poisson's ratios
G Shear moduli

ij+

Iuy) The release rate of strain energy

(o) The release rate of complementary energy
o Penalty parameter

r Curve surrounding the notch tip,

W(u;) Strain energy density,

u; Displacements,

o} Stress tensor,

n; Components of a unit vector normal to 7.

& The infinitesimal strain tensor.
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fiber orientation.
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