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Abstract  Investigations have been performed to identify natural frequencies of longitudinal vibrations in a notched vertical 
rod with concentrated masses on the elastic suspender. It has been obtained that dependencies of the rod’s circular longitudinal 
vibration frequencies on the notch coordinate have a periodic pattern. If the notch is located in the nodal point, the circular 
frequency of natural vibrations does not depend on the notch length. As shown, an increase in the mass of the lower load results 
in decreasing natural circular frequencies of the rod’s longitudinal vibrations. The research into the problem shows that it is 
possible to determine the coordinate and dimensions of a transverse notch in the vertical rod using three frequencies of free 
longitudinal vibrations. 
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1. Introduction 
A sucker-rod string is the major component that limits 

pump unit reliability and working capacity in directional 
holes. A significant amount of failures in sucker-rod strings 
is caused by rod breaks. A rod break is supposed to be 
preceded by the formation of a portion with a smaller 
cross-sectional area. In case of a finite-length bar, a change 
in the natural frequency of longitudinal vibrations can be 
used to detect its defects[1]. In[2] the solution is given for 
determining the variable cross-sectional area along the 
longitudinal coordinate from the known dependence of the 
bar’s free-end displacement on the perturbing force frequency. 
In[3] and several other publications, a crack is simulated as a 
spring. A review of these studies is given in[4]. Different 
aspects of the problem are treated in[5, 6]. Paper[7] considers 
the solution to inverse problems on longitudinal travelling 
waves in finite-length bars. 

In[8], the author uses three natural longitudinal vibration 
frequencies and thus determines locality and dimensions of a 
transverse notch in a vertical rod stretched out by gravity and 
the force applied to its lower end. 

2. Statement of the Problem 
Here we consider the stress-strain state of a straight rod 

fastened at its upper end to the elastic suspender with  
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stiffness c1 and stretched out by gravity and concentrated 
masses M1 and M2 (Figure 1). The rod is assumed to have a 
short portion (as compared to its overall length)  with a 
smaller cross-section area. This notch does not cause any rod 
bending and simulates its damage, specifically of the 
open-crack type. Consideration is given only to the 
stress-strain state within the elastic limit for a thin rod. Since 
the crack results from a small nucleus, not necessarily in the 
most stressed section, the notch is assumed to be found at any 
place along the rod’s length. The problem lies in determining 
the notch coordinate and dimensions relying on the 
approximation of the plane-section hypothesis. 

  
Figure 1.  The design scheme 
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Let us denote the length and area of the rod’s cross section 
with L, F, the modulus of elasticity, density and coefficient 
of internal friction with E, ρ, μ, the length and area of the 
notch’s cross section with l, f, its coordinate with xc and the 
rod’s displacement and force of tension with u, T. The 
following dependence is taken to be between stress σ and 
deformation ε   
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According to what has been said, we have  
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Let us measure the coordinate х from the fastening point 

and write down  the boundary conditions 
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There is a complex spatial stress-strain state in and near 
the notch of short length l[9]. For the sake of simplicity, 
however, we assume uniaxial tension and compression. The 
experimental results[10] show that the mean value of the 
coefficient of longitudinal vibration attenuation in the 
notched rod under impact on its lower end is approximately 
20 percent greater than the analogous coefficient for a 
non-notched rod. Let us consider the dynamic problem[1] 
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Denoting the functions in the domains 0 ≤ х ≤ хс, хс ≤ х ≤ хс + l, 
хс + l ≤ х ≤ L with indices 1, 2, 3, respectively, let us write 
down the conditions for coupling solutions at х = хс and х = 
хс + l (conditions for the equality of strains and 
displacements)[11] 
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Conditions of form (3)-(4) are also given in[11] where the 
authors introduce a universal data processing procedure for 
the split Hopkinson bar[12]. Thus, the simplest notch model 
includes the coordinate хс, length l and parameter m. In the 
primal problem the coordinate хс, length l and parameter m 
are known; in the inverse problem they should be found.   

A particular solution to problem (1), at µ = 0, has the form 
( ) ( ).    ,    sinsincos 2 ρ=ω=αωα+α= EaatxBxAu

 
Six constants In this solution written down  for the domains 
0 ≤ х ≤ хс, хс ≤ х ≤ хс1, хс1 ≤ х ≤ L (хс1 = хс + l) are determined 
from six boundary conditions (2)-(4). In order for Ai, Bi 
(i=1÷3) not to be simultaneously zero, the following 
determinant should equal zero 

    ( ) ,0det =ija                          (5) 

where its non-zero elements are written down as 
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Condition (5) gives a frequency equation not presented 

here because of its awkwardness. 
When the coefficient is c1 → ∞, the frequency equation 

simplifies.  
For the non-notched rod without concentrated masses it 

follows from the frequency equation that cos αL = 0 and 
natural frequencies equal[1] αL = (2k – 1)π/2 (k = 1, 2, …) or 
ωk = (2k  – 1)πa/2L. 

The determination of m, l and xc calls for an analysis of 
natural longitudinal vibration frequencies in the notched rod 
to be done. 

3. Primal problem 

 

 

 
Figure 2.  Dependences of the rod’s circular longitudinal vibration 
frequencies ω1, ω2, ω3 on the notch coordinate xc for the parameter m=0.1 
and different lengths l (curve 1−0.01, 2−0.02, 3−0.04 m) 
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Figure 3.  Dependences of the rod’s circular longitudinal vibration 
frequencies ω1, ω2, ω3 on the mass M2 for the notch coordinate xc=50 m, 
parameter m=0.1 and different lengths l (curve 1−0.1, 2−0.2, 3−0.4 m) 

The solution to the frequency equation has been made 
numerically for the following parameters of the system:  E = 
2ּ1011

 Pa, ρ = 7800 kg/m3, L = 500 m, F = 0.00038 m2 (rod’s 
diameter is 22 mm), c1 → ∞, M1 = 20 kg, M2 = 20 kg.  The 
speed of sound is a = 5063.6 m/s. In this case the first, second 
and third natural frequencies of the non-notched rod are ω1 = 
15. 6963 s–1, ω2 = 47.0897 s–1, ω3 = 78.4853 s–1. For the 
notched rod at xc = 100 m, m = 0.1, l = 4 m the solution to the 
primal problem gives that circular longitudinal vibration 
frequencies are ω1 = 14.7787 s–1, ω2 = 46.2813 s–1, ω3 = 
79.0466 s–1. Figure 2 shows the dependences  of  the  rod’s  
circular  longitudinal vibration frequencies ω1, ω2, ω3 on the 

notch coordinate xc for the parameter m = 0.1 and different 
lengths l (curve 1−0.01, 2−0.02, 3−0.04 m). These 
dependences have periodic patterns. If the notch is located in 
the nodal point, the circular frequency of natural vibrations 
does not depend on the notch length. 

Figure 3 shows the dependences of the rod’s circular 
longitudinal vibration frequencies ω1, ω2, ω3 on the mass M2 
for the notch coordinate xc=50 m, parameter m = 0.1 and 
different lengths l (curve 1 − 0.1, 2 − 0.2, 3 − 0.4 m). As can 
be seen, at a given notch coordinate an increase in the mass 
M2 results in decreasing natural circular frequencies of the 
rod’s longitudinal vibrations. 

4. Inverse Problem  

 

 

 
Figure 4.  Dependences of the notch coordinate xc, length l and parameter 
m on the rod’s circular longitudinal vibration coordinate ω1, for ω2 =46.1 
rad/s (curve 1), ω2 =46.2 rad/s (curve 2), ω2 =46.3 rad/s (curve 3) , ω3 = 78.9 

rad/s 
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Writing the frequency equation for three frequencies of 
free longitudinal vibrations, we can use the resulting set of 
equations to determine the notch coordinate xc, length l and 
parameter m. For example, for the rod’s circular longitudinal 
vibration frequencies ω1 = 14.6 s–1, ω2 = 46.1 s–1, ω3 = 78.9 s–1 
the solution of the inverse problem gives that the rod has a 
notch at хс = 102.51 m, m = 0.062, l = 2.878 m.  

Figure 4 shows the dependences of the notch coordinate хс, 
length l and parameter m on the rod’s circular longitudinal 
vibration frequencies ω1, for ω2 = 46.1 rad/s (curve 1), ω2 = 
46.2 rad/s (curve 2), ω2 = 46.3 rad/s (curve 3), ω3 = 78.9 rad/s. 

5. Conclusions  
Dependencies of the rod’s circular longitudinal vibration 

frequencies on the notch coordinate have a periodic pattern. 
If the notch is located in the nodal point, the circular 
frequency of natural vibrations does not depend on the notch 
length.  

An increase in the mass of the lower load results, at a 
given notch coordinate, in decreasing natural circular 
frequencies of the rod’s longitudinal vibrations.  

The coordinate and dimensions of a transverse notch in the 
vertical rod hanged on the elastic suspender and stretched out 
by gravity and concentrated loads are determined using three 
frequencies of free longitudinal vibrations. 

The obtained results can be recommended for diagnosing 
damages in sucker-rod strings. 
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